Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Nitrogen-containing heterocycles, such as indoles and quinolines, serve as the key scaffolds in numerous pharmaceuticals, pesticides, and natural products. The synthetic methods of nitrogen-containing heterocycles show significant scientific and industrial values. As a chemical intermediate featuring dual functional groups, cyanamide plays a crucial role in organic synthesis, directly affecting the development of new drugs and the design of new materials. Particularly in the synthesis of nitrogen-containing heterocyclic compounds, the cyano group can introduce various groups through radical pathways to synthesize polycyclic N-heterocyclic frameworks, as well as yielding a variety of nitrogen-containing heterocycles through non-radical pathways. This diverse reaction pathway makes the application of cyanamide in chemical synthesis more extensive and flexible. The progress involving cyanamide in the synthesis of quinazoline and quinazolinone, -lactams, and other nitrogen-containing heterocyclic frameworks is summarized. The main mechanisms and reaction strategies are emphasized and explicated from the perspective of radical and non-radical synthetic pathways, revealing the potential application value of these compounds in different fields. This review paves the way for the synthesis of various nitrogen-containing heterocyclic compounds, particularly in achieving green chemistry and sustainable development goals. These new methods and ideas are expected to promote the development of more efficient and economical synthesis strategies in the future, thereby advancing the widespread application of nitrogen-containing heterocyclic compounds in pharmaceuticals, agricultural chemicals, and new materials.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794345484241217075932
2025-01-23
2025-10-08
Loading full text...

Full text loading...

References

  1. BorchersA. PielerT. Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs.Genes20101341342610.3390/genes1030413 24710095
    [Google Scholar]
  2. ChughA. KumarA. VermaA. KumarS. KumarP. A review of antimalarial activity of two or three nitrogen atoms containing heterocyclic compounds.Med. Chem. Res.202029101723175010.1007/s00044‑020‑02604‑6
    [Google Scholar]
  3. GoelH. KumarR. TanwarP. UpadhyayT.K. KhanF. PandeyP. KangS. MoonM. ChoiJ. ChoiM. ParkM.N. KimB. SaeedM. Unraveling the therapeutic potential of natural products in the prevention and treatment of leukemia.Biomed. Pharmacother.202316011435110.1016/j.biopha.2023.114351 36736284
    [Google Scholar]
  4. Kanupriya; Mittal, R.K.; Sharma, V.; Biswas, T.; Mishra, I. Recent advances in nitrogen-containing heterocyclic scaffolds as antiviral agents.Med. Chem.202420548750210.2174/0115734064280150231212113012 38279757
    [Google Scholar]
  5. LiY. JiangL. QuJ. PengX. WuK. ChenM. PengY. CaoX. Research progress and prospect of nitrogen-containing heterocycle in anti-gastric cancer drugs: A review.Curr. Med. Chem.20243113610.2174/0109298673296147240405113328 38659263
    [Google Scholar]
  6. CimarelliC. Multicomponent reactions.Molecules20192413237210.3390/molecules24132372 31252514
    [Google Scholar]
  7. LiS. DongJ. A visible-light-induced cyclization reaction.Curr. Org. Chem.202327121020103510.2174/1385272827666230911115749
    [Google Scholar]
  8. RoggeT. KaplanerisN. ChataniN. KimJ. ChangS. PunjiB. SchaferL.L. MusaevD.G. Wencel-DelordJ. RobertsC.A. SarpongR. WilsonZ.E. BrimbleM.A. JohanssonM.J. AckermannL. C–H activation.Nat. Rev. Methods Primers2021114310.1038/s43586‑021‑00041‑2
    [Google Scholar]
  9. SatoT. ChidaN. Nucleophilic addition to N-alkoxyamides.Org. Biomol. Chem.201412203147315010.1039/c4ob00389f 24728383
    [Google Scholar]
  10. CaiY. HuaY. LuZ. LanQ. LinZ. FeiJ. ChenZ. ZhangH. XiaH. Electrophilic aromatic substitution reactions of compounds with Craig-Möbius aromaticity.Proc. Natl. Acad. Sci. USA202111839e210231011810.1073/pnas.2102310118 34544859
    [Google Scholar]
  11. FengJ. GengW.C. JiangH. WuB. Recent advances in biocatalysis of nitrogen-containing heterocycles.Biotechnol. Adv.20225410781310.1016/j.biotechadv.2021.107813 34450199
    [Google Scholar]
  12. CamposJ.F. Berteina-RaboinS. Tandem catalysis: Synthesis of nitrogen-containing heterocycles.Catalysts202010663110.3390/catal10060631
    [Google Scholar]
  13. GuoJ. ZhangP. ZhuL. ChenH. ShenH.X. WangC.F. ChenS. Solvent-engineered synthesis of multicolor emissive carbon dots from citric acid and cyanamide.Ind. Eng. Chem. Res.202463209050905710.1021/acs.iecr.4c00136
    [Google Scholar]
  14. ZhaoX. HuiB. ChenX. JiaT. YuX. LiL. ZhangX. LuZ. YangX. ORR properties of PtM (M = Fe and Ni) ordered alloys with the effect of small molecules of cyanamide.Appl. Surf. Sci.202466316018310.1016/j.apsusc.2024.160183
    [Google Scholar]
  15. Tombé BodianE.H. FayeC. ThiaréD.D. DiopN.A. DiawP.A. DelattreF. ColyA. GiamarchiP. Cyclodextrin-enhanced photo-induced fluorescence of tau -fluvalinate, molecular modelling of inclusion complexes and determination in natural waters.Anal. Methods202416264347435910.1039/D4AY00326H 38888682
    [Google Scholar]
  16. KhalafM.M. Abd El-LateefH.M. MoustafaA.H. AwadM.F. GoudaM. AhmedD.H. Regiospecific synthesis of N,N′ -disubstituted-2-imino-hydantoins derived from cyanamides.Synth. Commun.202454131086109510.1080/00397911.2024.2368765
    [Google Scholar]
  17. LiD. LiQ. ZhangQ. YangR. YeQ. TianD. JiangD. Integrating bimetallic borides with g-C3N4 containing cyanamide defects for efficient photocatalytic nitrogen fixation.J. Colloid Interface Sci.202467263164110.1016/j.jcis.2024.05.238 38865877
    [Google Scholar]
  18. KumarV.H. JanardanS. TamminanaR. Iodine‐promoted synthesis of cyanamides in aqueous media and their synthetic application.ChemistrySelect2023842e20230285810.1002/slct.202302858
    [Google Scholar]
  19. LyginA.V. de MeijereA. Isocyanides in the synthesis of nitrogen heterocycles.Angew. Chem. Int. Ed.201049489094912410.1002/anie.201000723 21053220
    [Google Scholar]
  20. GaoM. XuB. Transition metal-participated synthesis and utilization of N-containing heterocycles: Exploring for nitrogen sources.Chem. Rec.20161631701171410.1002/tcr.201600020 27230734
    [Google Scholar]
  21. RíosM.C. PortillaJ. Recent advances in synthesis and properties of pyrazoles.Chemistry20224394096810.3390/chemistry4030065
    [Google Scholar]
  22. BroderickK.E. PotluriP. ZhuangS. SchefflerI.E. SharmaV.S. PilzR.B. BossG.R. Cyanide detoxification by the cobalamin precursor cobinamide.Exp. Biol. Med.2006231564164910.1177/153537020623100519 16636313
    [Google Scholar]
  23. Di GioiaF. GonnellaM. BuonoV. AyalaO. CacchiarelliJ. SantamariaP. Calcium cyanamide effects on nitrogen use efficiency, yield, nitrates, and dry matter content of lettuce.Agron. J.2017109135436210.2134/agronj2016.06.0366
    [Google Scholar]
  24. ShaoM. LiM.X. WangZ.X. HeX. ZhangH.H. Structural diversity and vibrational spectra of nine Cu(I)-Cyanide metal–organic frameworks with in situ generated N-heterocyclic ligands.Cryst. Growth Des.201717126281629010.1021/acs.cgd.7b00967
    [Google Scholar]
  25. BenhamouL. ChardonE. LavigneG. Bellemin-LaponnazS. CésarV. Synthetic routes to N-heterocyclic carbene precursors.Chem. Rev.201111142705273310.1021/cr100328e 21235210
    [Google Scholar]
  26. KouznetsovV.V. GalvisC.E.P. Strecker reaction and α-amino nitriles: Recent advances in their chemistry, synthesis, and biological properties.Tetrahedron201874877381010.1016/j.tet.2018.01.005
    [Google Scholar]
  27. PatelR.I. SharmaS. SharmaA. Cyanation: A photochemical approach and applications in organic synthesis.Org. Chem. Front.20218123166320010.1039/D1QO00162K
    [Google Scholar]
  28. KumarS. BattulaV.R. KailasamK. Single molecular precursors for CxNy materials- Blending of carbon and nitrogen beyond g-C3N4.Carbon202118333235410.1016/j.carbon.2021.07.025
    [Google Scholar]
  29. ZhuoX. ZhengL. LiuY. WangY. ZouX. ZhongY. GuoW. Visible light-enhanced [3 + 2] cycloaddition of N, N -disubstituted hydrazines with organo-cyanamides: Access to polysubstituted 1,2,4-triazol-3-amines.J. Org. Chem.2024892994100910.1021/acs.joc.3c02085 38166434
    [Google Scholar]
  30. ForrestS.J.K. SchluschaßB. Yuzik-KlimovaE.Y. SchneiderS. Nitrogen fixation via splitting into nitrido complexes.Chem. Rev.2021121116522658710.1021/acs.chemrev.0c00958 33973774
    [Google Scholar]
  31. ShiX. WangQ. QinC. WuL.J. ChenY. WangG.X. CaiY. GaoW. HeT. WeiJ. GuoJ. ChenP. XiZ. Synthesis of pyrimidines from dinitrogen and carbon.Natl. Sci. Rev.2022912nwac16810.1093/nsr/nwac168 36778107
    [Google Scholar]
  32. Preeti; Singh, K.N. Metal-free multicomponent reactions: A benign access to monocyclic six-membered N-heterocycles.Org. Biomol. Chem.202119122622265710.1039/D1OB00145K
    [Google Scholar]
  33. WangD. DésaubryL. LiG. HuangM. ZhengS. Recent advances in the synthesis of C2‐functionalized pyridines and quinolines using N ‐oxide chemistry.Adv. Synth. Catal.2021363123910.1002/adsc.202000910
    [Google Scholar]
  34. MoloneyM.G. Reactions of aldehydes and ketones and their derivatives.Organic Reaction Mechanisms.Wiley202414510.1002/9781119716846.ch1
    [Google Scholar]
  35. QiuM. FuX. FuP. HuangJ. Construction of aziridine, azetidine, indole and quinoline-like heterocycles via Pd-mediated C–H activation/annulation strategies.Org. Biomol. Chem.20222071339135910.1039/D1OB02146J 35044404
    [Google Scholar]
  36. ZhouR. LiuR. LiR. HeZ. Progress in phosphine-promoted annulations between two electrophiles.Youji Huaxue201434122385240510.6023/cjoc201406049
    [Google Scholar]
  37. XiaoH. ChaiZ. WangH.F. WangX.W. CaoD.D. LiuW. LuY.P. YangY.Q. ZhaoG. Bifunctional N-acyl-aminophosphine-catalyzed asymmetric [4+2] cycloadditions of allenoates and imines.Chemistry20111738105621056510.1002/chem.201100850 21853481
    [Google Scholar]
  38. TanK.L. VasudevanA. BergmanR.G. EllmanJ.A. SouersA.J. Microwave-assisted C-H bond activation: A rapid entry into functionalized heterocycles.Org. Lett.20035122131213410.1021/ol030050j 12790546
    [Google Scholar]
  39. TanK.L. BergmanR.G. EllmanJ.A. Annulation of alkenyl-substituted heterocycles via rhodium-catalyzed intramolecular C-H activated coupling reactions.J. Am. Chem. Soc.2001123112685268610.1021/ja0058738 11456947
    [Google Scholar]
  40. WangY.F. ZhuX. ChibaS. Copper-catalyzed aerobic [3+2]-annulation of N-alkenyl amidines.J. Am. Chem. Soc.201213483679368210.1021/ja2120629 22296256
    [Google Scholar]
  41. LiQ.Y. ChengS.Y. TangH.T. PanY.M. Synthesis of rutaecarpine alkaloids via an electrochemical cross dehydrogenation coupling reaction.Green Chem.201921205517552010.1039/C9GC03028J
    [Google Scholar]
  42. AldabbaghF. BowmanW.R. Radical cyclisation onto imidazoles and benzimidazoles.Tetrahedron Lett.199738213793379410.1016/S0040‑4039(97)00740‑5
    [Google Scholar]
  43. MolnárÁ. Microwave-assisted CN formation reactions.Green Sustainable Process for Chemical and Environmental Engineering and Science, Inamuddin. BoddulaR. AsiriA.M. Elsevier20215120310.1016/B978‑0‑12‑819848‑3.00002‑5
    [Google Scholar]
  44. JohnsonC.D. Chapter 26 - Bicyclic compounds containing a pyridine ring; Quinoline and its derivatives.Supplements to the 2nd Edition of Rodd's Chemistry of Carbon CompoundsElsevier: Amsterdam197511918110.1016/B978‑044453346‑3.50164‑5
    [Google Scholar]
  45. TejaC. KhanF.R.N. Radical transformations towards the synthesis of quinoline: A review.Chem. Asian J.202015244153416710.1002/asia.202001156 33135361
    [Google Scholar]
  46. JiangS. TianX.J. FengS.Y. LiJ.S. LiZ.W. LuC.H. LiC.J. LiuW.D. Visible-light photoredox catalyzed double C–H functionalization: Radical cascade cyclization of ethers with benzimidazole-based cyanamides.Org. Lett.202123369269610.1021/acs.orglett.0c03853 33438394
    [Google Scholar]
  47. XiaojingT. ZhenzhenF. SiJ. ZhiweiL. JiangshengL. YuefeiZ. CuihongL. WeidongL. Metal-free synthesis of benzimidazo[1,2- c]quinazolines from N -cyanobenzimidazoles via double C—H functionalizations.Youji Huaxue202242113684369210.6023/cjoc202205030
    [Google Scholar]
  48. HuY. LiuC-L. HeW-T. LiuL-H. LiJ-S. LiZ-W. LiuH-W. LiW-S. Visible-light-driven synthesis of 6-aroyl benzimidazo[1,2-c]quinazolines from N-cyanobenzimidazoles and α-keto acids by radical relay cyclization.European J. Org. Chem.20242734e20240056310.1002/ejoc.202400563
    [Google Scholar]
  49. EvanoG. BaguiaH. DeldaeleC. RomeroE. MicheletB. Copper-catalyzed photoinduced radical domino cyclization of ynamides and cyanamides: A unified entry to rosettacin, luotonin a, and deoxyvasicinone.Synthesis201850153022303010.1055/s‑0037‑1610134
    [Google Scholar]
  50. TurnerO.J. HirstD.J. MurphyJ.A. Hydrogen atom transfer‐mediated domino cyclisation reaction to access (spiro)quinazolinones.Chemistry202026143026302910.1002/chem.201905712 31922300
    [Google Scholar]
  51. SinghS.K. KumarS. YadavM.S. TiwariV.K. Pyridyl glycosyl triazole/cui-mediated domino/tandem synthesis of quinazolinones.J. Org. Chem.20228722153891540210.1021/acs.joc.2c01951 36305798
    [Google Scholar]
  52. SyamalaL.V.R.B. KhopadeT.M. WarghudeP.K. BhatR.G. An access to α, β-unsaturated ketones via dual cooperative catalysis.Tetrahedron Lett.2019601889110.1016/j.tetlet.2018.11.065
    [Google Scholar]
  53. ChoudhuryS.S. MahapatraS. SahuA.K. HembramP.C.P.N. JenaS. BiswalH.S. Synthesis of α,β-unsaturated ketones in water: The claisen–schmidt condensation revisited.ACS Sustain. Chem.& Eng.20221043142711427910.1021/acssuschemeng.2c04388
    [Google Scholar]
  54. ChenD. JiM. ZhuC. Intramolecular nitration–aminocarbonylation of unactivated olefins: Metal-free synthesis of γ-lactams.Chem. Commun.201955547796779910.1039/C9CC03736E 31214673
    [Google Scholar]
  55. LiuJ. ChenD. JiM. WuX. ZhuC. Synthesis of γ-lactams via trifluoromethylative aminocarbonylation of unactivated olefins.Tetrahedron Lett.202061715147910.1016/j.tetlet.2019.151479
    [Google Scholar]
  56. LiZ. WuY.H. XiJ.M. WeiZ.L. LiaoW.W. Copper-catalyzed difluoroalkylation of alkene/nitrile insertion/cyclization tandem sequences: Construction of difluorinated bicyclic amidines.Org. Lett.202123249591959610.1021/acs.orglett.1c03802 34874172
    [Google Scholar]
  57. XiJ.M. SunY.H. LiW.C. WuY.H. WeiZ.L. LiaoW.W. Radical alkene-trifluoromethylation-triggered nitrile insertion/remote functionalization relay processes: Diverse synthesis of trifluoromethylated azaheterocycles enabled by copper catalysis.Org. Lett.20222441110111510.1021/acs.orglett.2c00083 35080394
    [Google Scholar]
  58. CuiJ. TongY. LiY. Synthesis of trifluoromethylated γ-lactams through radical cascades of N -cyano alkenes with CF 3 SO 2 Na.J. Org. Chem.20228723160901609810.1021/acs.joc.2c01775 36370090
    [Google Scholar]
  59. FensterbankL. LacôteE. LarraufieM-H. MaestriG. MalacriaM. OllivierC. The cyanamide moiety, synthesis and reactivity.Synthesis20124491279129210.1055/s‑0031‑1289749
    [Google Scholar]
  60. ChernyshovV.V. PopadyukI.I. YarovayaO.I. SalakhutdinovN.F. Nitrogen-containing heterocyclic compounds obtained from monoterpenes or their derivatives: Synthesis and properties.Top. Curr. Chem.202238054210.1007/s41061‑022‑00399‑1 35951263
    [Google Scholar]
  61. AlberolaA. AndrésC. OrtegaA.G. PedrosaR. VicenteM. The reaction of β-aminoenones with cyanamide. A high efficient synthesis of 2-aminopyrimidines.Synth. Commun.198717111309131410.1080/00397918708057752
    [Google Scholar]
  62. DubovtsevA.Y. ZverevaV.V. ShcherbakovN.V. Dar’inD.V. NovikovA.S. KukushkinV.Y. Acid-catalyzed [2 + 2 + 2] cycloaddition of two cyanamides and one ynamide: Highly regioselective synthesis of 2,4,6-triaminopyrimidines.Org. Biomol. Chem.202119204577458410.1039/D1OB00513H 33954321
    [Google Scholar]
  63. SugiyamaY. AmoM. IbeK. OkamotoS. Synthesis of 2‐aminopyridines via cobalt‐catalyzed cycloaddition of diynes with N‐substituted and N ‐unsubstituted cyanamides.Adv. Synth. Catal.2023365223897390110.1002/adsc.202300818
    [Google Scholar]
  64. SpahnN.A. NguyenM.H. RennerJ. LaneT.K. LouieJ. Regioselective iron-catalyzed [2 + 2 + 2] cycloaddition reaction forming 4,6-disubstituted 2-aminopyridines from terminal alkynes and cyanamides.J. Org. Chem.201782123424210.1021/acs.joc.6b02374 27957836
    [Google Scholar]
  65. KumariS. MaddeboinaK. BachuR.D. BodduS.H.S. TrippierP.C. TiwariA.K. Pivotal role of nitrogen heterocycles in Alzheimer’s disease drug discovery.Drug Discov. Today2022271010332210.1016/j.drudis.2022.07.007 35868626
    [Google Scholar]
  66. DuaR. ShrivastavaS. SonwaneS. SrivastavaS. Pharmacological significance of synthetic heterocycles scaffold: A review.Adv. Biol. Res.201153120144
    [Google Scholar]
  67. KerruN. GummidiL. MaddilaS. GanguK.K. JonnalagaddaS.B. A review on recent advances in nitrogen-containing molecules and their biological applications.Molecules2020258190910.3390/molecules25081909 32326131
    [Google Scholar]
  68. WuY.H. LiC.J. WeiZ.L. LiaoW.W. Multicomponent cyclization with an inorganic sulfur dioxide surrogate: Straightforward construction of difluorinated benzosultams.Org. Lett.202224499112911710.1021/acs.orglett.2c03771 36453929
    [Google Scholar]
  69. SunY.H. LiC.J. XiJ.M. WeiZ.L. LiaoW.W. Electrochemical tandem cyclization to access sulfonylated fused sultams via SO 2 insertion with sodium metabisulfite.Org. Chem. Front.202310370571110.1039/D2QO01821G
    [Google Scholar]
  70. Zain-AlabdeenA.I. El-MoselhyT.F. SharafeldinN. AngeliA. SupuranC.T. El-HamamsyM.H. Synthesis and anticancer activity of new benzensulfonamides incorporating s-triazines as cyclic linkers for inhibition of carbonic anhydrase IX.Sci. Rep.20221211675610.1038/s41598‑022‑21024‑7 36202955
    [Google Scholar]
  71. SeoY.J. KimE. OhI.S. HyunJ.Y. SongJ.H. LimH.J. ParkS.J. Intramolecular cyclization of N -cyano sulfoximines by N–CN bond activation.RSC Advances20231335244452444910.1039/D3RA04208A 37583669
    [Google Scholar]
  72. MiyazakiY. OhtaN. SembaK. NakaoY. Intramolecular aminocyanation of alkenes by cooperative palladium/boron catalysis.J. Am. Chem. Soc.2014136103732373510.1021/ja4122632 24580141
    [Google Scholar]
  73. BhatS.V. RobinsonD. MosesJ.E. SharmaP. Synthesis of oxadiazol-5-imines via the cyclizative capture of in situ generated cyanamide ions and nitrile oxides.Org. Lett.20161851100110310.1021/acs.orglett.6b00203 26889784
    [Google Scholar]
  74. WrightK. DrouillatB. MenguyL. MarrotJ. CoutyF. 3‐Bromo N ‐alkyl cyanamides as versatile building blocks.Eur. J. Org. Chem.20192019111211710.1002/ejoc.201801439
    [Google Scholar]
  75. JinJ.K. ZhangF.L. ZhaoQ. LuJ.A. WangY.F. Synthesis of diverse boron-handled n-heterocycles via radical borylative cyclization of N -allylcyanamides.Org. Lett.201820237558756210.1021/acs.orglett.8b03303 30427202
    [Google Scholar]
  76. WangC.C. QuY.L. LiuX.H. MaZ.W. YangB. LiuZ.J. ChenX.P. ChenY.J. Synthesis of five-membered cyclic guanidines via cascade [3 + 2] cycloaddition of α-haloamides with organo-cyanamides.J. Org. Chem.20218643546355410.1021/acs.joc.0c02932 33538590
    [Google Scholar]
  77. ShcherbakovN.V. ChikunovaE.I. Dar’inD. KukushkinV.Y. DubovtsevA.Y. Redox-neutral and atom-economic route to β-carbolines via gold-catalyzed [4 + 2] cycloaddition of indolylynamides and cyanamides.J. Org. Chem.20218624178041781510.1021/acs.joc.1c02119 34812641
    [Google Scholar]
  78. NasrollahzadehM. ShafieiN. OroojiY. Magnetic chitosan stabilized Cu(II)-tetrazole complex: An effective nanocatalyst for the synthesis of 3-imino-2-phenylisoindolin-1-one derivatives under ultrasound irradiation.Sci. Rep.2022121672410.1038/s41598‑022‑10591‑4 35468913
    [Google Scholar]
  79. AvadhaniA. IniyavanP. KumarY. IlaH. Single-pot preparation of 4-amino-2-(het)aryl-5-substituted thiazoles employing functionalized dithioesters as thiocarbonyl precursors.J. Org. Chem.202186128508851510.1021/acs.joc.1c00616 34107686
    [Google Scholar]
  80. FuZ. FuY. YinJ. HaoG. YiX. ZhongT. GuoS. CaiH. Electrochemical strategies for N -cyanation of secondary amines and α C -cyanation of tertiary amines under transition metal-free conditions.Green Chem.202123239422942710.1039/D1GC02529E
    [Google Scholar]
  81. YangM. JiangR. MuY. HongY. WanY. HouJ. TangD. Electrochemical cycloaddition of hydrazones with cyanamide for the synthesis of substituted 5-amine-1,2,4-triazoles.Chem. Commun.202359162303230610.1039/D2CC06277A 36745484
    [Google Scholar]
  82. YanZ.H. YanY. WeiZ.L. LiaoW.W. Electrochemical trifluoromethylation/bicyclization of N -cyanamide alkenes: Synthesis of bicyclic amidine derivatives.J. Org. Chem.20248942718272510.1021/acs.joc.3c02777 38306613
    [Google Scholar]
/content/journals/cos/10.2174/0115701794345484241217075932
Loading
/content/journals/cos/10.2174/0115701794345484241217075932
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test