Skip to content
2000
Volume 22, Issue 4
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Background

Sodalite is a type of zeolite with an intricate structure comprising a system of interrelated cages and tunnels. It is extensively used in sieving applications due to its unique structure and properties. As a result, it finds several uses in water and air purification, radioactive decontamination, detergents, and so on. Due to the potential positive environmental impact of sodalite materials, analysing the molecule at a structural level becomes the need of the hour.

Methods

Molecular descriptors form the basis of many convenient and cost-effective techniques for studying molecular structures. In this article, the neighbourhood sum-based descriptors are computed edge-partition techniques, simplifying the intricate structures with cages and tunnels into more simple graphs for mathematical convenience.

Results

This article presents the calculated analytical expressions for molecular descriptors, specifically focusing on various neighbourhood sum degree-based indices in sodalite structures.

Conclusion

The results presented in this article establish the dependence of the physical properties of a molecule on its underlying structure using the computed molecular descriptors. The graphical comparison of the results provides a visual representation of the behaviour of indices with respect to the molecular structure.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794320235240926054912
2024-11-07
2025-09-02
Loading full text...

Full text loading...

References

  1. GutmanI. AshrafiA.R. The edge version of the Szeged index.Croat. Chem. Acta2008812263266
    [Google Scholar]
  2. EstradaE. TorresL. RodríguezL. GutmanI. An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes.Indian J. Chem.199837A10849855
    [Google Scholar]
  3. RandićM. Characterization of molecular branching.J. Am. Chem. Soc.197597236609661510.1021/ja00856a001
    [Google Scholar]
  4. JiriC. HermanV.B. AvelinoC. FerdiS. Introduction to zeolite science and practice.Stud. Surf. Sci.20072110581065
    [Google Scholar]
  5. TorrensF. CastellanoG. Fractal dimension of active-site models of zeolite catalysts.J. Nanomater.20062006101705210.1155/JNM/2006/17052
    [Google Scholar]
  6. ArockiarajM. ClementJ. PaulD. BalasubramanianK. Quantitative structural descriptors of sodalite materials.J. Mol. Struct.2021122312876610.1016/j.molstruc.2020.128766
    [Google Scholar]
  7. LiuJ.B. ArockiarajM. PaulD. ClementJ. ZhaoX. TiggaS. Degree descriptors and graph entropy quantities of zeolite ACO.Curr. Org. Synth.202421326327310.2174/1570179421666230825151331 37641991
    [Google Scholar]
  8. PaulD. ArockiarajM. TiggaS. BalasubramanianK. Zeolite AST: Relativistic degree and distance based topological descriptors.Comput. Theor. Chem.2022121811393310.1016/j.comptc.2022.113933
    [Google Scholar]
  9. ArockiarajM. PaulD. KlavžarS. ClementJ. TiggaS. BalasubramanianK. Relativistic topological and spectral characteristics of zeolite SAS structures.J. Mol. Struct.2022127013385410.1016/j.molstruc.2022.133854
    [Google Scholar]
  10. JacobK. ClementJ. ArockiarajM. PaulD. BalasubramanianK. Topological characterization and entropy measures of tetragonal zeolite merlinoites.J. Mol. Struct.2023127713478610.1016/j.molstruc.2022.134786
    [Google Scholar]
  11. ArockiarajM. PaulD. KlavžarS. ClementJ. TiggaS. BalasubramanianK. Relativistic distance based and bond additive topological descriptors of zeolite RHO materials.J. Mol. Struct.2022125013179810.1016/j.molstruc.2021.131798
    [Google Scholar]
  12. ArockiarajM. PaulD. GhaniM.U. TiggaS. ChuY.M. Entropy structural characterization of zeolites BCT and DFT with bond-wise scaled comparison.Sci. Rep.20231311087410.1038/s41598‑023‑37931‑2 37407626
    [Google Scholar]
  13. PrabhuS. MuruganG. CaryM. ArulperumjothiM. LiuJ-B. On certain distance and degree based topological indices of Zeolite LTA frameworks.Mater. Res. Express20207505500610.1088/2053‑1591/ab8b18
    [Google Scholar]
  14. BarthT.F.W. The structures of the minerals of the sodalite family, Z. Krist.-.Cryst. Mater.19328316
    [Google Scholar]
  15. HassanI. GrundyH.D. The crystal structures of sodalite-group minerals.Acta Crystallogr. B198440161310.1107/S0108768184001683
    [Google Scholar]
  16. LambregtsM.J. FrankS. Application of Vegard’s law to mixed cation sodalites: A simple method for determining the stoichiometry.Talanta200462362763010.1016/j.talanta.2003.09.007 18969339
    [Google Scholar]
  17. KhajaviS. JansenJ.C. KapteijnF. Application of hydroxy sodalite films as novel water selective membranes.J. Membr. Sci.2009326115316010.1016/j.memsci.2008.09.046
    [Google Scholar]
  18. JulietrajaK. AlsinaiA. AlameriA. Theoretical analysis of superphenalene using different kinds of VDB indices.J. Chem.20222022111010.1155/2022/5683644
    [Google Scholar]
  19. MondalS. DeyA. DeN. PalA. QSPR analysis of some novel neighbourhood degree-based topological descriptors.Complex Intell. Syst.20217297799610.1007/s40747‑020‑00262‑0
    [Google Scholar]
  20. DhanajayamurthyB.V. Sophia ShaliniG.B. Reduced neighborhood degree-based topological indices on anti-cancer drugs with QSPR analysis.Mater. Today Proc.20225460861410.1016/j.matpr.2021.10.198
    [Google Scholar]
  21. ChamuaM. BuragohainJ. BharaliA. Some novel neighborhood degree sum‐based versus degree‐based topological indices in QSPR analysis of alkanes from n‐butane to nonanes.Int. J. Quantum Chem.20241241e2729210.1002/qua.27292
    [Google Scholar]
  22. WestD.B. An Introduction to Graph Deory.Upper Saddle River, NJ, USAPrentice-Hall1996
    [Google Scholar]
  23. MondalS. DeN. PalA. Onsome new neighbourhood degree based indices.Acta Chemica Iasi2019271314610.2478/achi‑2019‑0003
    [Google Scholar]
  24. GutmanI. MilovanovicI. MilovanovicE. Relations between ordinary and multiplicative degree-based topological indices.Filomat20183283031304210.2298/FIL1808031G
    [Google Scholar]
  25. ShaoZ. JahanbaniA. SheikholeslamiS.M. Multiplicative topological indices of molecular structure in anticancer drugs.Polycycl. Aromat. Compd.202242247548810.1080/10406638.2020.1743329
    [Google Scholar]
  26. HussainZ. AhsanA. ArshadS.H. Computing multiplicative topological indices of some chemical nenotubes and networks.Open J. Discret. Appl. Math.20192371810.30538/psrp‑odam2019.0018
    [Google Scholar]
  27. TodeschiniR. ConsonniV. New local vertex invariants and molecular descriptors based on functions of the vertex degrees.MATCH Commun. Math. Comput. Chem.2010642359372
    [Google Scholar]
  28. YangJ. KonsalrajJ. RajaS.A.A. Neighbourhood sum degree-based indices and entropy measures for certain family of graphene molecules.Molecules202228116810.3390/molecules28010168 36615362
    [Google Scholar]
  29. AlsinaiA. SalehA. AhmedH. MishraL.N. SonerN.D. On fourth leap Zagreb index of graphs.Discrete Math. Algorithms Appl.2023152225007710.1142/S179383092250077X
    [Google Scholar]
  30. JavarajuS. AhmedH. AlsinaiA. SonerN.D. Domination topological properties of carbidopa-levodopa used for treatment Parkinson’s disease by using φp-polynomial.Eurasian Chemical Communications202139614621
    [Google Scholar]
/content/journals/cos/10.2174/0115701794320235240926054912
Loading
/content/journals/cos/10.2174/0115701794320235240926054912
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test