CNS & Neurological Disorders - Drug Targets (Formerly Current Drug Targets - CNS & Neurological Disorders) - Online First
Description text for Online First listing goes here...
21 - 24 of 24 results
-
-
Parkinson’s Disease: A Progressive Neurodegenerative Disorder and Structure-Activity Relationship of MAO Inhibitor Scaffolds as an Important Therapeutic Regimen
Authors: Salauddin, Syed Amir Azam Zaidi, Mohammed Ubaid, Saniya Shamim, Mohd. Javed Naim, Suruchi Khanna and Ozair AlamAvailable online: 30 October 2024More LessParkinson’s disease is considered an advancing neurodegenerative disorder with unknown causes, and its association with some risk factors, including aging, family history, and exposure to chemicals, makes it the second most common occurring neurodegenerative disorder throughout the world with increasing prevalence. Parkinson’s disease is associated with slow movement, rigidity, tremors, imbalance, depression, anxiety, cognitive impairment, orthostasis, hyperhidrosis, sleep disorders, pain, and sensory disturbances. In recent decades, there has been a rise in research on the development of effective and potential therapies for the treatment of Parkinson’s disease. An important target for neuroprotection is Monoamine Oxidases (MAO), which hydrolyze neurotransmitters like dopamine and produce very reactive free radicals as a by-product. Aging and neurodegenerative illnesses cause overexpression in the brain, which exacerbates neuronal loss. The treatment of Parkinson's disease with MAO inhibitors has shown promising outcomes. Herein, we reported characteristic features of Parkinson’s disease, various treatment strategies, and the SAR of potential drugs that can be explored further as lead for the development of newer molecules with improved pharmacological profiles.
-
-
-
In Silico and ADMET Studies of Spiro-Quinazoline Compounds as Acetylcholine Esterase Inhibitors Against Alzheimer’s Disease
Available online: 25 October 2024More LessBackgroundAlzheimer's disease (AD) is a prevalent neurodegenerative condition characterized by progressive cognitive decline and memory impairment resulting from the degeneration and death of brain neurons. Acetylcholinesterase (AChE) inhibitors are used in primary pharmacotherapy for numerous neurodegenerative conditions, providing their capacity to modulate acetylcholine levels crucial for cognitive function. Recently, quinazoline derivatives have emerged as a compelling model for neurodegenerative disease treatment, showcasing promising pharmacological features. Their unique structural features and pharmacokinetic profiles have sparked interest in their potential efficacy and safety across diverse neurodegenerative disorders. The exposure of quinazoline derivatives as a potential therapeutic way underscores the imperative for continued research exploration. Their multifaceted mechanisms of action and ability to target various pathways implicated in neurodegeneration offer exciting prospects for developing novel, effective, and well-tolerated treatments. Further investigations into their pharmacological activities and precise therapeutic roles are essential to advance our understanding of neurodegenerative disease pathophysiology and promote the development of modern therapeutic strategies to address this critical medical challenge.
MethodsQuinazoline derivatives have gained eminent acetylcholinesterase (AChE) inhibitory activity. Their ability to effectively modulate AChE activity makes them promising candidates for treating neurological disorders, particularly Alzheimer's disease (AD). Their intricate molecular structures confer selectivity and affinity for AChE, offering potential for the development of novel therapeutic agents targeting cholinergic pathways. Hence, in this study, we designed, synthesized, and characterized a series of spiro[cycloalakane-1,2'-quinazoline derivatives (1-6) to assess their possible AChE inhibiting ability using docking into the active sites.
ResultsThe AChE inhibitory potential of spiro[cycloalkane-1,2'-quinazoline derivatives (1-6) was explored via docking studies of the AChE active site. The findings revealed significant inhibitory activity and highlighted the promising nature of these derivatives.
ConclusionThe synthesized spiro[cycloalkane-1,2'-quinazoline derivatives (1-6) exhibited their notable potential as AChE inhibitors. The observed significant inhibitory activity suggested that these derivatives warrant further exploration as candidates for developing therapeutic agents in AChE inhibitory pathways. This study emphasizes the relevance of quinazoline derivatives in searching for novel treatments for neurological disorders, particularly associated with cholinergic dysfunction, and they could be a useful alternative therapeutic agent.
-
-
-
An Insight into Medicinal Chemistry and SAR Studies of Cholinesterase and BACE-1 Inhibitors for Alzheimer's Disease
Authors: Abhimannu Shome, Keshav Taruneshwar Jha, Chahat, Viney Chawla and Pooja A. ChawlaAvailable online: 16 October 2024More LessAlzheimer's Disease (AD) is a serious neurodegenerative condition that predominantly impacts the cholinergic neurons of the entorhinal cortex and hippocampal regions, playing a critical role in learning, navigation, and brain processing. This paper aims to discuss the three main hypotheses of Alzheimer's disease, focusing on neurotoxicity and neurodegeneration caused by mitochondrial dysfunction and ROS production, particularly analyzing the susceptibility differences between genders. Our comprehensive review focuses on significant findings from the past five years, particularly on Cholinesterase (ChE) and BACE-1 inhibitors. Researchers have conducted a detailed analysis of in vitro, in silico, and in vivo data, incorporating extensive Structure-Activity Relationship (SAR) studies. The reviewed papers have been sourced from platforms, such as Google Scholar, Semantic Scholar, and ClinicalTrials.gov, and have been selected based on their AChE and BACE-1 inhibitory activity and structural motif similarity. The review identifies the most effective compounds targeting ChE and BACE-1, highlighting acridine, dihydropyridine, and thiazole-coumarin hybrids for ChE inhibition, and oxadiazole, benzofuran, and dihydropyrimidinone for BACE-1 inhibition. This demonstrates a diverse array of potent heterocyclic hybrids. The review presents a varied compilation of scaffolds showing promise in treating Alzheimer's disease, highlighting the potential of specific compounds against ChE and BACE-1. Given the critical insights derived from our analysis, we posit that this compilation will substantially contribute to the ongoing efforts to combat neurodegeneration and prolong dementia, underscoring the importance of continuous research in this domain.
-
-
-
BBBper: A Machine Learning-based Online Tool for Blood-Brain Barrier (BBB) Permeability Prediction
Authors: Pawan Kumar, Vandana Saini, Dinesh Gupta, Pooja A. Chawla and Ajit KumarAvailable online: 16 October 2024More LessAimsNeuronal disorders have affected more than 15% of the world's population, signifying the importance of continued design and development of drugs that can cross the Blood-Brain Barrier (BBB).
BackgroundBBB limits the permeability of external compounds by 98% to maintain and regulate brain homeostasis. Hence, BBB permeability prediction is vital to predict the activity of a drug-like substance.
ObjectiveHere, we report about developing BBBper (Blood-Brain Barrier permeability prediction) using machine learning tool.
MethodA supervised machine learning-based online tool, based on physicochemical parameters to predict the BBB permeability of given chemical compounds was developed. The user-end webpage was developed in HTML and linked with back-end server by a python script to run user queries and results.
ResultBBBper uses a random forest algorithm at the back end, showing 97% accuracy on the external dataset, compared to 70-92% accuracy of currently available web-based BBB permeability prediction tools.
ConclusionThe BBBper web tool is freely available at http://bbbper.mdu.ac.in.
-
Most Read This Month Most Read RSS feed
Most Cited Most Cited RSS feed
-
-
A Retrospective, Multi-Center Cohort Study Evaluating the Severity- Related Effects of Cerebrolysin Treatment on Clinical Outcomes in Traumatic Brain Injury
Authors: Dafin F. Muresanu, Alexandru V. Ciurea, Radu M. Gorgan, Eva Gheorghita, Stefan I. Florian, Horatiu Stan, Alin Blaga, Nicolai Ianovici, Stefan M. Iencean, Dana Turliuc, Horia B. Davidescu, Cornel Mihalache, Felix M. Brehar, Anca . S. Mihaescu, Dinu C. Mardare, Aurelian Anghelescu, Carmen Chiparus, Magdalena Lapadat, Viorel Pruna, Dumitru Mohan, Constantin Costea, Daniel Costea, Claudiu Palade, Narcisa Bucur, Jesus Figueroa and Anton Alvarez
-
-
-
- More Less