Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Stroke is the leading cause of morbidity and mortality in diabetic patients. Diabetes alters the endothelial function and disrupts brain pathways, resulting in a variety of systemic metabolic complications. Diabetics not only have impaired neurotransmission, but also have progressive neurodegeneration, which leads to long-term neurological complications. Diabetes risk factors and physiology alter the frequency and severity of cardiovascular and cerebrovascular events, necessitating more hospitalizations. Stroke and diabetes have a mutually reinforcing relationship that worsens their outcomes. Diabetes has far-reaching systemic consequences for human physiology as a metabolic syndrome. As a result, diabetic stroke patients require dual-therapeutics with dual protection. Scientific researchers have made tremendous progress in diabetes-related stroke and its therapeutics over the last few decades. We have summarised diabetic brain and associated risk factors, co-morbidities, biomarkers, and hyperglycemia-associated neurovascular insult and cognitive demur. In addition to providing an overview of the effects of hyperglycaemia on brain physiology, this article aims to summarise the evidence from current glucose-lowering treatment, recent advances in stroke therapeutics as well as exploring stem cell therapy in the management of diabetes-associated stroke.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/1871527321666220609200852
2023-07-01
2025-10-18
Loading full text...

Full text loading...

/content/journals/cnsnddt/10.2174/1871527321666220609200852
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test