Skip to content
2000
Volume 13, Issue 1
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

An increasing amount of evidence suggests that the dysregulation of the Akt-mTOR (Akt-mammalian Target Of Rapamycin) signaling network is associated with intellectual disabilities, such as fragile X, tuberous sclerosis and Rett’s syndrome. The Akt-mTOR pathway is involved in dendrite morphogenesis and synaptic plasticity, and it has been shown to modulate both glutamatergic and GABAergic synaptic transmission. We have recently shown that the AktmTOR pathway is hyperactive in the hippocampus of Ts1Cje mice, a model of Down’s syndrome, leading to increased local dendritic translation that could interfere with synaptic plasticity. Rapamycin and rapalogs are specific inhibitors of mTOR, and some of these inhibitors are Food and Drug Administration-approved drugs. In this review, we discuss the molecular basis and consequences of Akt-mTOR hyperactivation in Down’s syndrome, paying close attention to alterations in the molecular mechanisms underlying synaptic plasticity. We also analyze the pros and cons of using rapamycin/rapalogs for the treatment of the cognitive impairments associated with this condition.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/18715273113126660184
2014-02-01
2025-10-04
Loading full text...

Full text loading...

/content/journals/cnsnddt/10.2174/18715273113126660184
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test