Skip to content
2000
Volume 11, Issue 1
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Nanoparticles from the environment or through industrial sources can induce profound alterations in human health, often leading to brain dysfunction. However, it is still unclear whether nanoparticle intoxication could also alter the physiological or pathological responses of additional brain injury, stress response or disease processes. Military personals engaged in combat or peacekeeping operations are often exposed to nanoparticles from various environmental sources, e.g., Ag, Cu, Si, C, Al. In addition, these military personals are often exposed to high environmental heat, or gun and missle explosion injury leading to head or spinal trauma. Thus it is likely that additional CNS injury or stress-induced pathophysiological processes are influenced by nanoparticle intoxication. In this situation, when a combination of nanoparticles and central nervous system (CNS) injury or stress exist together, drug therapy needed to correct these anomalies may not work as effectively as in normal situation. Previous studies from our laboratory show that nanoparticle-intoxicated animals when subjected to hyperthermia resulted in exacerbation of brain pathology. In these animals, antioxidant compounds, e.g., H-290/51 that inhibits free radical formation and induces marked neuroprotection in normal rats after heat stress, failed to protect brain damage when a combination of nanoparticles and heat exposure was used. However, nanowired H-290/51 resulted in better neuroprotection in nanoparticles intoxicated animals after heat stress. Interestingly, high doses of the normal compound induced some neuroprotection in these nanoparticle-treated, heat-stressed rats. These observations suggest that a combination of nanoparticles and heat stress is dangerous and in such situations modification of drug dosage is needed to achieve comparable neuroprotection. In this review possible mechanisms of nanoparticle-induced exacerbation of heat induced neurotoxicity and brain protection achieved by nanowired drug delivery is discussed that is largely based on our own investigations.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/187152712799960736
2012-02-01
2025-09-25
Loading full text...

Full text loading...

/content/journals/cnsnddt/10.2174/187152712799960736
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test