Skip to content
2000
Volume 7, Issue 1
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Ligand-independent and/or proNGF-induced p75NTR signaling has emerged as a potential major contributor to a number of pathological states, including axotomy-induced death, motor neuron degeneration, neuronal degeneration in Alzheimer's disease and oligodendrocyte death following spinal cord injury. A long standing goal in the neurotrophin field has been the development of non-peptide, small molecules capable of functioning as specific ligands at neurotrophin receptors such as p75NTR to promote desired biological outcomes. Synthetic peptides modeled on neurotrophin protein domains have been found to bind to and activate various neurotrophin receptors, raising the possibility that active, nonpeptide, small molecule ligands might also be identified; however, traditional high-throughput screening approaches have been largely ineffective in identifying such compounds. Using pharmacophores derived from the structure of loop 1 of nerve growth factor, non-peptide, small molecules that function as p75NTR ligands to promote survival and block proNGFinduced death have recently been identified. Small molecule p75NTR ligands, with high potency and specificity, may provide novel therapeutic approaches for neurodegenerative diseases, neurotrauma and other pathologic states.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/187152708783885093
2008-02-01
2025-10-31
Loading full text...

Full text loading...

/content/journals/cnsnddt/10.2174/187152708783885093
Loading

  • Article Type:
    Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test