Skip to content
2000
Volume 5, Issue 6
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

As T-type calcium channels open near resting membrane potential and markedly influence neuronal excitability their activity needs to be tightly regulated. Few neuronal T-current regulations have been described so far, but interestingly some of them involve unusual mechanisms like G protein-independent but receptor-coupled modulation, while the use of recombinant channels has established both a direct action of Gβγ subunits, anandamide, arachidonic acid and a phophorylation process by CaMKII. Nearly all reported types of modulation involve Cav3.2 channels while no regulation of Cav3.1 has been reported, a difference that may originate from diversities in the intracellular loop connecting the II and III domains of the two isotypes. The search for T-current regulators requires taking into account their peculiar activation properties, since a close link may exist between the channel conformation and its modulation. Indeed, in thalamocortical neurons a phosphorylationmediated regulation of the amplitude of the T-current has been shown to be highly dependent upon the state of the channel and only to become apparent when the channels are in the voltage range close to neuronal resting membrane potential.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/187152706779025544
2006-12-01
2025-09-05
Loading full text...

Full text loading...

/content/journals/cnsnddt/10.2174/187152706779025544
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test