Skip to content
2000
image of Enzymatic Biomarkers for Early Diagnosis of Alzheimer's Disease: Uncovering Key Targets and Mechanisms

Abstract

Alzheimer's Disease (AD) is a neuronal illness that disrupts behavior, cognitive, and functional abilities. The development of AD is progressive, continuous, and irreversible, from preclinical illness to mild cognitive or even behavioral disturbance to dementia (a medical brain condition) triggered by AD. Worldwide accepted hypotheses of AD are called the amyloid-cascade and hyperphosphorylated tau-cascade hypotheses, and enzymes are implicated in the pathophysiology of AD directly or indirectly. There is an implication of enzymes in the pathophysiology of AD. Enzymes include proteases (., neprilysin), kinases (., glycogen synthase kinase-3), cholinergic enzymes (., acetylcholinesterase), metalloproteinases (., matrix metalloproteinases), and oxidative stress-related enzymes (., superoxide dismutase). However, during abnormal or early Alzheimer’s Disease (AD) conditions, the activity and expression of these enzymes are altered in biological samples such as blood, urine, and cerebrospinal fluid (CSF) in patients with early AD when examined. These alterations in enzyme activity in early AD demonstrate the potential of these enzymes as biomarkers. Early detection of AD in its early stages is crucial for effective control and treatment of the disease. Existing diagnostic techniques rely mainly on neuroimaging and medical evaluation. Through this technique, we can only diagnose the advanced or late stage of AD. Therefore, there is a crucial need to establish valid biomarkers that might assist in the early detection of AD. Enzymatic targets have come to light as a promising alternative for the development of selective and sensitive diagnostic assays. This review aims to investigate the potential of enzymes as an enzymatic target for early AD diagnosis, emphasizing their diagnostic use and fundamental mechanisms. Here, we summarize the role or implication of 25 enzymes in the pathophysiology of AD in the early stage.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273418918251112112429
2026-01-23
2026-01-29
Loading full text...

Full text loading...

References

  1. Ding X. Chen Y. Zhang X. Duan Y. Yuan G. Liu C. Research progress on the protection and mechanism of active peptides in Alzheimer’s disease and Parkinson’s disease. Neuropeptides 2024 107 102457 10.1016/j.npep.2024.102457 39068763
    [Google Scholar]
  2. Jiang Q. Liu J. Huang S. Antiageing strategy for neurodegenerative diseases: From mechanisms to clinical advances. Signal Transduct. Target. Ther. 2025 10 1 76 10.1038/s41392‑025‑02145‑7 40059211
    [Google Scholar]
  3. Ray S. Dey S. Digal A.K. Yadav K.K. Das A.P. Sanitary waste and microplastic pollution in the Euro-Mediterranean region: challenges and solutions. EuroMediterr. J. Environ. Integr. 2025 1 23 10.1007/s41207‑025‑00879‑y
    [Google Scholar]
  4. Shepherd T.M. Dogra S. Clinical translation of integrated PET-MRI for neurodegenerative disease. J. Magn. Reson. Imaging 2025 1 19 10.1002/jmri.70046
    [Google Scholar]
  5. Kumar D. Anand P. Singh S. Proposed therapeutic strategy to combat Alzheimer’s disease by targeting beta and gamma secretases. Curr. Alzheimer Res. 2025 22 10.2174/0115672050380899250602042028 40491367
    [Google Scholar]
  6. Singh N. Nandy S.K. Jyoti A. Protein kinase C (PKC) in neurological health: Implications for Alzheimer’s disease and chronic alcohol consumption. Brain Sci. 2024 14 6 554 10.3390/brainsci14060554 38928554
    [Google Scholar]
  7. Sharma A. Sharma C. Sharma L. Targeting the vivid facets of apolipoproteins as a cardiovascular risk factor in rheumatoid arthritis. Can. J. Physiol. Pharmacol. 2024 102 5 305 317 10.1139/cjpp‑2023‑0259 38334084
    [Google Scholar]
  8. Sharma L. Sharma A. Kumar D. Promising protein biomarkers in the early diagnosis of Alzheimer’s disease. Metab. Brain Dis. 2022 37 6 1727 1744 10.1007/s11011‑021‑00847‑9 35015199
    [Google Scholar]
  9. Ali N.H. Al-Kuraishy H.M. Al-Gareeb A.I. Neprilysin inhibitors and risk of Alzheimer’s disease: A future perspective. J. Cell. Mol. Med. 2024 28 2 e17993 10.1111/jcmm.17993 37847125
    [Google Scholar]
  10. Saxena S.K. Ansari S. Maurya V.K. Neprilysin-mediated amyloid beta clearance and its therapeutic implications in neurodegenerative disorders. ACS Pharmacol. Transl. Sci. 2024 7 12 3645 3657 10.1021/acsptsci.4c00400 39698259
    [Google Scholar]
  11. Żukowska J. Moss S.J. Subramanian V. Acharya K.R. Molecular basis of selective amyloid‐β degrading enzymes in Alzheimer’s disease. FEBS J. 2024 291 14 2999 3029 10.1111/febs.16939 37622248
    [Google Scholar]
  12. Turner A.J. Fisk L. Nalivaeva N.N. Targeting amyloid-degrading enzymes as therapeutic strategies in neurodegeneration. Ann. N. Y. Acad. Sci. 2004 1035 1 1 20 10.1196/annals.1332.001 15681797
    [Google Scholar]
  13. Birch A.M. The contribution of astrocytes to Alzheimer’s disease. Biochem. Soc. Trans. 2014 42 5 1316 1320 10.1042/BST20140171 25233409
    [Google Scholar]
  14. Grimm M.O.W. Mett J. Stahlmann C.P. Haupenthal V.J. Zimmer V.C. Hartmann T. Neprilysin and Aβ clearance: Impact of the APP intracellular domain in NEP regulation and implications in Alzheimer’s disease. Front. Aging Neurosci. 2013 5 98 10.3389/fnagi.2013.00098 24391587
    [Google Scholar]
  15. Liu J. Mouradian M.M. Pathogenetic contributions and therapeutic implications of transglutaminase 2 in neurodegenerative diseases. Int. J. Mol. Sci. 2024 25 4 2364 10.3390/ijms25042364 38397040
    [Google Scholar]
  16. Buccarelli M. Castellani G. Fiorentino V. Biological implications and functional significance of transglutaminase type 2 in nervous system tumors. Cells 2024 13 8 667 10.3390/cells13080667 38667282
    [Google Scholar]
  17. Yadav N. Kim S.Y. Transglutaminase2: An enduring enzyme in diabetes and age-related metabolic diseases. Kinases and Phosphatases 2024 2 1 67 91 10.3390/kinasesphosphatases2010005
    [Google Scholar]
  18. Godwa T. Dubey S. Tiwari P. Enzymes and Alzheimer’s disease: Pioneering drug development strategies. Curr. Psychopharmacol. 2025 13 e22115560340307 10.2174/0122115560340307250106065419
    [Google Scholar]
  19. Basilicata M. Grillo P. Tancredi A. Oral health and use of novel transbuccal drug delivery systems in patients with Alzheimer’s and Parkinson’s disease: A review. Appl. Sci. 2023 13 8 4974 10.3390/app13084974
    [Google Scholar]
  20. Tatsukawa H. Hitomi K. Role of transglutaminase 2 in cell death, survival, and fibrosis. Cells 2021 10 7 1842 10.3390/cells10071842 34360011
    [Google Scholar]
  21. Sturno A.M. Hassell J.E. Lanaspa M.A. Bruce K.D. Do microglia metabolize fructose in Alzheimer’s disease? J. Neuroinflammation 2025 22 1 85 10.1186/s12974‑025‑03401‑x 40089786
    [Google Scholar]
  22. Kong W. Lyu C. Liao H. Du Y. Collagen crosslinking: Effect on structure, mechanics and fibrosis progression. Biomed. Mater. 2021 16 6 062005 10.1088/1748‑605X/ac2b79 34587604
    [Google Scholar]
  23. Koutsodendris N. Nelson M.R. Rao A. Huang Y. Apolipoprotein E and Alzheimer’s disease: Findings, hypotheses, and potential mechanisms. Annu. Rev. Pathol. 2022 17 1 73 99 10.1146/annurev‑pathmechdis‑030421‑112756 34460318
    [Google Scholar]
  24. Katt W.P. Aplin C. Cerione R.A. Exploring the role of transglutaminase in patients with glioblastoma: Current perspectives. OncoTargets Ther. 2022 15 277 290 10.2147/OTT.S329262 35340676
    [Google Scholar]
  25. Ahmad I. Singh R. Pal S. Exploring the role of glycolytic enzymes PFKFB3 and GAPDH in the modulation of Aβ and neurodegeneration and their potential of therapeutic targets in Alzheimer’s disease. Appl. Biochem. Biotechnol. 2023 195 7 4673 4688 10.1007/s12010‑023‑04340‑0 36692648
    [Google Scholar]
  26. Kannan C.R. The adrenal medulla and pheochromocytoma. In: Essential Endocrinology. Boston, MA Springer US 1986 279 286 10.1007/978‑1‑4899‑1692‑1_32
    [Google Scholar]
  27. Li J. Sun C. Cai W. Li J. Rosen B.P. Chen J. Insights into S-adenosyl-l-methionine (SAM)-dependent methyltransferase related diseases and genetic polymorphisms. Mutat. Res. Rev. Mutat. Res. 2021 788 108396 10.1016/j.mrrev.2021.108396 34893161
    [Google Scholar]
  28. Mahmoodi N. Harijan R.K. Schramm V.L. Transition-state analogues of phenylethanolamine N -methyltransferase. J. Am. Chem. Soc. 2020 142 33 14222 14233 10.1021/jacs.0c05446 32702980
    [Google Scholar]
  29. Shipston M.J. Glucocorticoid action in the anterior pituitary gland: Insights from corticotroph physiology. Curr. Opin. Endocr. Metab. Res. 2022 25 100358 10.1016/j.coemr.2022.100358 36632471
    [Google Scholar]
  30. Xu R. Zhao L. Liu J. Natural adrenocorticotropic hormone (ACTH) relieves acute inflammation in gout patients by changing the function of macrophages. J. Healthc. Eng. 2022 2022 1 14 10.1155/2022/9241835 35646298
    [Google Scholar]
  31. Yang P. Tian H. Zou Y.R. Epinephrine production in Th17 cells and experimental autoimmune encephalitis. Front. Immunol. 2021 12 616583 10.3389/fimmu.2021.616583 33692790
    [Google Scholar]
  32. Giatti S. Di Domizio A. Diviccaro S. Three-dimensional proteome-wide scale screening for the 5-alpha reductase inhibitor finasteride: Identification of a novel off-target. J. Med. Chem. 2021 64 8 4553 4566 10.1021/acs.jmedchem.0c02039 33843213
    [Google Scholar]
  33. Neti S.S. Wang B. Iwig D.F. Onderko E.L. Booker S.J. Enzymatic fluoromethylation enabled by the S -adenosylmethionine analog Te -adenosyl- L -(fluoromethyl)homotellurocysteine. ACS Cent. Sci. 2023 9 5 905 914 10.1021/acscentsci.2c01385 37252363
    [Google Scholar]
  34. Mercan D. Heneka M.T. The contribution of the locus coeruleus–noradrenaline system degeneration during the progression of Alzheimer’s disease. Biology 2022 11 12 1822 10.3390/biology11121822 36552331
    [Google Scholar]
  35. Li M.W. Chang S.J. Chang H.H. Yang S.S.D. Role of phenylethanolamine‐N‐methyltransferase on nicotine‐induced vasodilation in rat cerebral arteries. Microcirculation 2024 31 5 e12858 10.1111/micc.12858 38837563
    [Google Scholar]
  36. Shobatake R. Ota H. Takahashi N. Ueno S. Sugie K. Takasawa S. The impact of intermittent hypoxia on metabolism and cognition. Int. J. Mol. Sci. 2022 23 21 12957 10.3390/ijms232112957 36361741
    [Google Scholar]
  37. Mann M.B. Wu S. Rostamkhani M. Tourtellotte W. MacMurray J. Comings D.E. Phenylethanolamine N‐methyltransferase (PNMT) gene and early‐onset Alzheimer disease. Am. J. Med. Genet. 2001 105 4 312 316 10.1002/ajmg.1363 11378842
    [Google Scholar]
  38. Connolly K. Lehoux M. O’Rourke R. Potential role of chitinase‐3‐like protein 1 (CHI3L1/YKL‐40) in neurodegeneration and Alzheimer’s disease. Alzheimers Dement. 2023 19 1 9 24 10.1002/alz.12612 35234337
    [Google Scholar]
  39. Choi J. Lee H.W. Suk K. Plasma level of chitinase 3-like 1 protein increases in patients with early Alzheimer’s disease. J. Neurol. 2011 258 12 2181 2185 10.1007/s00415‑011‑6087‑9 21562723
    [Google Scholar]
  40. Moreno-Rodriguez M. Perez S.E. Nadeem M. Malek-Ahmadi M. Mufson E.J. Frontal cortex chitinase and pentraxin neuroinflammatory alterations during the progression of Alzheimer’s disease. J. Neuroinflammation 2020 17 1 58 10.1186/s12974‑020‑1723‑x 32066474
    [Google Scholar]
  41. Novobilský R. Bártová P. Stejskal D. Kondé A. Bar M. Kušnierová P. Chitinase‐3‐like 1 protein (CHI3L1) levels in patients with cognitive deficits and movement disorders: Comparison with other biomarkers. Brain Behav. 2025 15 6 e70619 10.1002/brb3.70619 40495463
    [Google Scholar]
  42. Sanfilippo C. Malaguarnera L. Di Rosa M. Chitinase expression in Alzheimer’s disease and non-demented brains regions. J. Neurol. Sci. 2016 369 242 249 10.1016/j.jns.2016.08.029 27653898
    [Google Scholar]
  43. Pinteac R. Montalban X. Comabella M. Chitinases and chitinase-like proteins as biomarkers in neurologic disorders. Neurol. Neuroimmunol. Neuroinflamm. 2021 8 1 e921 10.1212/NXI.0000000000000921 33293459
    [Google Scholar]
  44. Zhang H. Ng K.P. Therriault J. Cerebrospinal fluid phosphorylated tau, visinin-like protein-1, and chitinase-3-like protein 1 in mild cognitive impairment and Alzheimer’s disease. Transl. Neurodegener. 2018 7 1 23 10.1186/s40035‑018‑0127‑7 30311914
    [Google Scholar]
  45. Kester M.I. Teunissen C.E. Sutphen C. Cerebrospinal fluid VILIP-1 and YKL-40, candidate biomarkers to diagnose, predict and monitor Alzheimer’s disease in a memory clinic cohort. Alzheimers Res. Ther. 2015 7 1 59 10.1186/s13195‑015‑0142‑1 26383836
    [Google Scholar]
  46. Dulewicz M. Kulczyńska-Przybik A. Mroczko B. Neurogranin and VILIP-1 as molecular indicators of neurodegeneration in Alzheimer’s disease: A systematic review and meta-analysis. Int. J. Mol. Sci. 2020 21 21 8335 10.3390/ijms21218335 33172069
    [Google Scholar]
  47. Zandbagleh A. Miltiadous A. Sanei S. Azami H. Beta-to-theta entropy ratio of EEG in aging, frontotemporal dementia, and Alzheimer’s dementia. Am. J. Geriatr. Psychiatry 2024 32 11 1361 1382 10.1016/j.jagp.2024.06.009 39004533
    [Google Scholar]
  48. Ulugut H. Pijnenburg Y.A.L. Frontotemporal dementia: Past, present, and future. Alzheimers Dement. 2023 19 11 5253 5263 10.1002/alz.13363 37379561
    [Google Scholar]
  49. Ali M. Erabadda B. Chen Y. Shared and disease-specific pathways in frontotemporal dementia and Alzheimer’s and Parkinson’s diseases. Nat. Med. 2025 31 8 2567 2577 10.1038/s41591‑025‑03833‑1
    [Google Scholar]
  50. Cubas-Núñez L. Gil-Perotín S. Castillo-Villalba J. Potential role of CHI3L1+ astrocytes in progression in MS. Neurol. Neuroimmunol. Neuroinflamm. 2021 8 3 e972 10.1212/NXI.0000000000000972 33658322
    [Google Scholar]
  51. Song Y. Astrocyte-derived CHI3L1 signaling impairs neurogenesis and cognition in the demyelinated hippocampus. 2024 Available from:https://www.cell.com/cell-reports/fulltext/S2211-1247(24)00554-0?uuid=uuid%3Ae2e1565c-440f-4164-80c2-ad36fea09567 10.1016/j.celrep.2024.114226
    [Google Scholar]
  52. Taylor H.A. Przemylska L. Clavane E.M. Meakin P.J. BACE1: More than just a β‐secretase. Obes. Rev. 2022 23 7 e13430 10.1111/obr.13430 35119166
    [Google Scholar]
  53. Sayad A. Najafi S. Hussen B.M. The emerging roles of the β-secretase BACE1 and the long non-coding RNA BACE1-AS in human diseases: A focus on neurodegenerative diseases and cancer. Front. Aging Neurosci. 2022 14 853180 10.3389/fnagi.2022.853180 35386116
    [Google Scholar]
  54. Zhang Z. Li X.G. Wang Z.H. δ-Secretase-cleaved Tau stimulates Aβ production via upregulating STAT1-BACE1 signaling in Alzheimer’s disease. Mol. Psychiatry 2021 26 2 586 603 10.1038/s41380‑018‑0286‑z 30382187
    [Google Scholar]
  55. Xia Y. Wang Z.H. Zhang Z. Delta- and beta- secretases crosstalk amplifies the amyloidogenic pathway in Alzheimer’s disease. Prog. Neurobiol. 2021 204 102113 10.1016/j.pneurobio.2021.102113 34166772
    [Google Scholar]
  56. Almohmadi N.H. Al-Kuraishy H.M. Albuhadily A.K. Alzheimer disease: Amyloid peptide controversies and challenges of anti-Aβ immunotherapy. J. Pharmacol. Exp. Ther. 2025 392 8 103639 10.1016/j.jpet.2025.103639 40674941
    [Google Scholar]
  57. Youn K. Ho C.T. Jun M. Multifaceted neuroprotective effects of (-)-epigallocatechin-3-gallate (EGCG) in Alzheimer’s disease: An overview of pre-clinical studies focused on β-amyloid peptide. Food Sci. Hum. Wellness 2022 11 3 483 493 10.1016/j.fshw.2021.12.006
    [Google Scholar]
  58. Gao F. Zhang M. Wang Q. Associations of CSF BACE1 with amyloid pathology, neurodegeneration, and cognition in Alzheimer’s disease. Acta Neuropathol. 2024 147 1 97 10.1007/s00401‑024‑02750‑w 38856925
    [Google Scholar]
  59. Nicsanu R. Cervellati C. Benussi L. Increased serum beta-secretase 1 activity is an early marker of Alzheimer’s disease. J. Alzheimers Dis. 2022 87 1 433 441 10.3233/JAD‑215542 35275540
    [Google Scholar]
  60. Qiao A. Li J. Hu Y. Wang J. Zhao Z. Reduction BACE1 expression via suppressing NF-κB mediated signaling by Tamibarotene in a mouse model of Alzheimer’s disease. IBRO Neurosci. Rep. 2021 10 153 160 10.1016/j.ibneur.2021.02.004 33842919
    [Google Scholar]
  61. Wen W. Li P. Liu P. Xu S. Wang F. Huang J. Post-translational modifications of BACE1 in Alzheimer’s disease. Curr. Neuropharmacol. 2021 19 1 211 222 10.2174/1570159X19666210121163224
    [Google Scholar]
  62. Jung C.G. Yamashita H. Kato R. Deletion of UCP1 in Tg2576 mice increases body temperature and exacerbates Alzheimer’s disease-related pathologies. Int. J. Mol. Sci. 2023 24 3 2741 10.3390/ijms24032741 36769062
    [Google Scholar]
  63. Jung C.G. Kato R. Zhou C. Sustained high body temperature exacerbates cognitive function and Alzheimer’s disease-related pathologies. Sci. Rep. 2022 12 1 12273 10.1038/s41598‑022‑16626‑0 35851831
    [Google Scholar]
  64. Behl T. Kaur D. Sehgal A. Role of monoamine oxidase activity in Alzheimer’s disease: An insight into the therapeutic potential of inhibitors. Molecules 2021 26 12 3724 10.3390/molecules26123724 34207264
    [Google Scholar]
  65. Jaisa-aad M. Muñoz-Castro C. Healey M.A. Hyman B.T. Serrano-Pozo A. Characterization of monoamine oxidase-B (MAO-B) as a biomarker of reactive astrogliosis in Alzheimer’s disease and related dementias. Acta Neuropathol. 2024 147 1 66 10.1007/s00401‑024‑02712‑2 38568475
    [Google Scholar]
  66. Rahman M.S. Uddin M.S. Rahman M.A. Exploring the role of monoamine oxidase activity in aging and Alzheimer’s disease. Curr. Pharm. Des. 2021 27 38 4017 4029 10.2174/1381612827666210612051713 34126892
    [Google Scholar]
  67. Nam M.H. Na H. Justin Lee C. Yun M. A key mediator and imaging target in Alzheimer’s disease: Unlocking the role of reactive astrogliosis through MAOB. Nucl. Med. Mol. Imaging 2024 58 4 177 184 10.1007/s13139‑023‑00837‑y 38932762
    [Google Scholar]
  68. Kamel N.N. Aly H.F. Fouad G.I. Anti-Alzheimer activity of new coumarin-based derivatives targeting acetylcholinesterase inhibition. RSC Advances 2023 13 27 18496 18510 10.1039/D3RA02344C 37346948
    [Google Scholar]
  69. Wang H. Yan Z. Yang W. A strategy of monitoring acetylcholinesterase and screening of natural inhibitors from Uncaria for Alzheimer’s disease therapy based on near-infrared fluorescence probe. Sens. Actuators B Chem. 2025 424 136895 10.1016/j.snb.2024.136895
    [Google Scholar]
  70. Taqui R. Debnath M. Ahmed S. Ghosh A. Advances on plant extracts and phytocompounds with acetylcholinesterase inhibition activity for possible treatment of Alzheimer’s disease. Phytomed. Plus 2022 2 1 100184 10.1016/j.phyplu.2021.100184
    [Google Scholar]
  71. Vecchio I. Sorrentino L. Paoletti A. Marra R. Arbitrio M. The state of the art on acetylcholinesterase inhibitors in the treatment of Alzheimer’s disease. J. Cent. Nerv. Syst. Dis. 2021 13 11795735211029113 10.1177/11795735211029113 34285627
    [Google Scholar]
  72. Peitzika S.C. Pontiki E. A review on recent approaches on molecular docking studies of novel compounds targeting acetylcholinesterase in Alzheimer disease. Molecules 2023 28 3 1084 10.3390/molecules28031084 36770750
    [Google Scholar]
  73. Swinford C.G. Risacher S.L. Wu Y.C. Altered cerebral blood flow in older adults with Alzheimer’s disease: A systematic review. Brain Imaging Behav. 2023 17 2 223 256 10.1007/s11682‑022‑00750‑6 36484922
    [Google Scholar]
  74. Graff B.J. Harrison S.L. Payne S.J. El-Bouri W.K. Regional cerebral blood flow changes in healthy ageing and Alzheimer’s disease: A narrative review. Cerebrovasc. Dis. 2023 52 1 11 20 10.1159/000524797 35640565
    [Google Scholar]
  75. Aksnes M. Edwin T.H. Saltvedt I. Sex-specific associations of matrix metalloproteinases in Alzheimer’s disease. Biol. Sex Differ. 2023 14 1 35 10.1186/s13293‑023‑00514‑x 37221606
    [Google Scholar]
  76. Perveen A. Mir R.A. Gulfishan M. Hafeez A. MMP-3 And MMP-9 concentrations in Alzheimer’s disease: A cerebrospinal fluid and Serum analysis. Educ Adm Theory Pract 2024 30 4 6248 6254
    [Google Scholar]
  77. Radosinska D. Radosinska J. The link between matrix metalloproteinases and Alzheimer’s disease pathophysiology. Mol. Neurobiol. 2025 62 1 885 899 10.1007/s12035‑024‑04315‑0 38935232
    [Google Scholar]
  78. Sasaki Y. Kimura N. Aso Y. Yabuuchi K. Aikawa M. Matsubara E. Relationship between cerebrospinal fluid matrix metalloproteinases levels and brain amyloid deposition in mild cognitive impairment. Biomolecules 2021 11 10 1496 10.3390/biom11101496 34680129
    [Google Scholar]
  79. Tarantini S. Yabluchanskiy A. Lindsey M.L. Csiszar A. Ungvari Z. Effect of genetic depletion of MMP-9 on neurological manifestations of hypertension-induced intracerebral hemorrhages in aged mice. Geroscience 2021 43 5 2611 2619 10.1007/s11357‑021‑00402‑5 34415518
    [Google Scholar]
  80. García-Morales V. González-Acedo A. Melguizo-Rodríguez L. Current understanding of the physiopathology, diagnosis and therapeutic approach to Alzheimer’s disease. Biomedicines 2021 9 12 1910 10.3390/biomedicines9121910 34944723
    [Google Scholar]
  81. Corraliza-Gomez M. Bermejo T. Lilue J. Insulin-degrading enzyme (IDE) as a modulator of microglial phenotypes in the context of Alzheimer’s disease and brain aging. J. Neuroinflammation 2023 20 1 233 10.1186/s12974‑023‑02914‑7 37817156
    [Google Scholar]
  82. Sahoo B.R. Panda P.K. Liang W. Tang W.J. Ahuja R. Ramamoorthy A. Degradation of Alzheimer’s amyloid-β by a catalytically inactive insulin-degrading enzyme. J. Mol. Biol. 2021 433 13 166993 10.1016/j.jmb.2021.166993 33865867
    [Google Scholar]
  83. Habif M. Do Carmo S. Báez M.V. Early long-term memory impairment and changes in the expression of synaptic plasticity-associated genes, in the McGill-R-Thy1-APP rat model of alzheimer’s-like brain amyloidosis. Front. Aging Neurosci. 2021 12 585873 10.3389/fnagi.2020.585873 33551786
    [Google Scholar]
  84. Riffo-Lepe N. González-Sanmiguel J. Armijo-Weingart L. Synaptic and synchronic impairments in subcortical brain regions associated with early non-cognitive dysfunction in Alzheimer’s disease. Neural Regen. Res. 2026 21 1 248 264 10.4103/NRR.NRR‑D‑24‑01052 39885666
    [Google Scholar]
  85. Balendra V. Singh S.K. Therapeutic potential of astaxanthin and superoxide dismutase in Alzheimer’s disease. Open Biol. 2021 11 6 210013 10.1098/rsob.210013 34186009
    [Google Scholar]
  86. Islam M.N. Rauf A. Fahad F.I. Superoxide dismutase: An updated review on its health benefits and industrial applications. Crit. Rev. Food Sci. Nutr. 2022 62 26 7282 7300 10.1080/10408398.2021.1913400 33905274
    [Google Scholar]
  87. Reed T.T. Pierce W.M. Markesbery W.R. Butterfield D.A. Proteomic identification of HNE-bound proteins in early Alzheimer disease: Insights into the role of lipid peroxidation in the progression of AD. Brain Res. 2009 1274 66 76 10.1016/j.brainres.2009.04.009 19374891
    [Google Scholar]
  88. Mandlik D.S. Mandlik S.K. S A. Therapeutic implications of glycogen synthase kinase-3β in Alzheimer’s disease: A novel therapeutic target. Int. J. Neurosci. 2024 134 6 603 619 10.1080/00207454.2022.2130297 36178363
    [Google Scholar]
  89. Jia Y. Guo Z. Guo Q. Wang X. Glycogen synthase kinase-3β, NLRP3 Inflammasome, and Alzheimer’s disease. Curr. Med. Sci. 2023 43 5 847 854 10.1007/s11596‑023‑2788‑4 37721665
    [Google Scholar]
  90. Karati D. Meur S. Roy S. Glycogen synthase kinase 3 (GSK3) inhibition: A potential therapeutic strategy for Alzheimer’s disease. Naunyn Schmiedebergs Arch. Pharmacol. 2025 398 3 2319 2342 10.1007/s00210‑024‑03500‑1 39432068
    [Google Scholar]
  91. Marosi M. Arman P. Aceto G. D’Ascenzo M. Laezza F. Glycogen synthase kinase 3: Ion channels, plasticity, and diseases. Int. J. Mol. Sci. 2022 23 8 4413 10.3390/ijms23084413 35457230
    [Google Scholar]
  92. Garemilla S. Kumari R. Kumar R. CDK5 as a therapeutic tool for the treatment of Alzheimer’s disease: A review. Eur. J. Pharmacol. 2024 978 176760 10.1016/j.ejphar.2024.176760 38901526
    [Google Scholar]
  93. Shukla R. Singh T.R. Identification of small molecules against cyclin dependent kinase-5 using chemoinformatics approach for Alzheimer’s disease and other tauopathies. J. Biomol. Struct. Dyn. 2022 40 6 2815 2827 10.1080/07391102.2020.1844050 33155527
    [Google Scholar]
  94. Xing S. Li Q. Xiong B. Structure and therapeutic uses of butyrylcholinesterase: Application in detoxification, Alzheimer’s disease, and fat metabolism. Med. Res. Rev. 2021 41 2 858 901 10.1002/med.21745 33103262
    [Google Scholar]
  95. Zhou S. Huang G. The biological activities of butyrylcholinesterase inhibitors. Biomed. Pharmacother. 2022 146 112556 10.1016/j.biopha.2021.112556 34953393
    [Google Scholar]
  96. Fernández-Bolaños J.G. López Ó. Butyrylcholinesterase inhibitors as potential anti-Alzheimer’s agents: An updated patent review (2018-present). Expert Opin. Ther. Pat. 2022 32 8 913 932 10.1080/13543776.2022.2083956 35623095
    [Google Scholar]
  97. Liu J. Yuan S. Niu X. Kelleher R. Sheridan H. ESR1 dysfunction triggers neuroinflammation as a critical upstream causative factor of the Alzheimer’s disease process. Aging 2022 14 21 8595 8614 10.18632/aging.204359 36326669
    [Google Scholar]
  98. Wójcik P. Jastrzębski M.K. Zięba A. Matosiuk D. Kaczor A.A. Caspases in Alzheimer’s disease: Mechanism of activation, role, and potential treatment. Mol. Neurobiol. 2024 61 7 4834 4853 10.1007/s12035‑023‑03847‑1 38135855
    [Google Scholar]
  99. Villavicencio-Tejo F. Olesen M.A. Aránguiz A. Quintanilla R.A. Activation of the Nrf2 pathway prevents mitochondrial dysfunction induced by caspase-3 cleaved tau: Implications for Alzheimer’s disease. Antioxidants 2022 11 3 515 10.3390/antiox11030515 35326165
    [Google Scholar]
  100. Singh V. Kumar A. Sood P. Anti-apoptotic natural products for the management of Alzheimer’s disease. In: Neuro-Nutraceuticals and Drug Discovery and Delivery in Alzheimer’s Disease. Apple Academic Press 2025 111 151 10.1201/9781003570585‑6
    [Google Scholar]
  101. Carello-Collar G. Bellaver B. Ferreira P.C.L. The GABAergic system in Alzheimer’s disease: A systematic review with meta-analysis. Mol. Psychiatry 2023 28 12 5025 5036 10.1038/s41380‑023‑02140‑w 37419974
    [Google Scholar]
  102. Muñoz E.J.G. Development of LC-MS/MS method for the determination of glutamine and gaba in CSF—case study on Alzheimer’s disease patients. 2021 Available from:https://search.proquest.com/openview/587419e3601ac7171cacbaed100ff6a1/1?pq-origsite=gscholar&cbl=2026366&diss=y
  103. Chen Z.R. Huang J.B. Yang S.L. Hong F.F. Role of cholinergic signaling in Alzheimer’s disease. Molecules 2022 27 6 1816 10.3390/molecules27061816 35335180
    [Google Scholar]
  104. Calzoni E. Cerrotti G. Sagini K. Evidence of lysosomal β-hexosaminidase enzymatic activity associated with extracellular vesicles: Potential applications for the correction of Sandhoff disease. J. Funct. Biomater. 2024 15 6 153 10.3390/jfb15060153 38921527
    [Google Scholar]
  105. Tsourmas K.I. Butler C.A. Kwang N.E. Myeloid-derived β-hexosaminidase is essential for neuronal health and lysosome function: Implications for Sandhoff disease. bioRxiv 2024 2024.10.21.619538 10.1101/2024.10.21.619538
    [Google Scholar]
  106. Athanasaki A. Melanis K. Tsantzali I. Type 2 diabetes mellitus as a risk factor for Alzheimer’s disease: Review and meta-analysis. Biomedicines 2022 10 4 778 10.3390/biomedicines10040778 35453527
    [Google Scholar]
  107. Hamzé R. Delangre E. Tolu S. Type 2 diabetes mellitus and Alzheimer’s disease: Shared molecular mechanisms and potential common therapeutic targets. Int. J. Mol. Sci. 2022 23 23 15287 10.3390/ijms232315287 36499613
    [Google Scholar]
  108. Samant N.P. Gupta G.L. Role of phospholipase A2 and glutamate in Alzheimer’s disease. In: Phospholipases in Physiology and Pathology. Elsevier 2023 321 330 10.1016/B978‑0‑443‑21800‑2.00011‑7
    [Google Scholar]
  109. Foulon T. Cadel S. Cohen P. Aminopeptidase B. EC 3.4.11.6). Int. J. Biochem. Cell Biol. 1999 31 7 747 750 10.1016/S1357‑2725(99)00021‑7 10467730
    [Google Scholar]
  110. Valverde A. Dunys J. Lorivel T. Aminopeptidase A contributes to biochemical, anatomical and cognitive defects in Alzheimer’s disease (AD) mouse model and is increased at early stage in sporadic AD brain. Acta Neuropathol. 2021 141 6 823 839 10.1007/s00401‑021‑02308‑0 33881611
    [Google Scholar]
  111. Moussa N. Dayoub N. Exploring the role of COX-2 in Alzheimer’s disease: Potential therapeutic implications of COX-2 inhibitors. Saudi Pharm. J. 2023 31 9 101729 10.1016/j.jsps.2023.101729 37638222
    [Google Scholar]
  112. Woodling N.S. Colas D. Wang Q. Cyclooxygenase inhibition targets neurons to prevent early behavioural decline in Alzheimer’s disease model mice. Brain 2016 139 7 2063 2081 10.1093/brain/aww117 27190010
    [Google Scholar]
  113. Gattaz W.F. Maras A. Cairns N.J. Levy R. Förstl H. Decreased phospholipase A2 activity in Alzheimer brains. Biol. Psychiatry 1995 37 1 13 17 10.1016/0006‑3223(94)00123‑K 7893853
    [Google Scholar]
  114. Sun G.Y. Geng X. Teng T. Dynamic role of phospholipases A2 in health and diseases in the central nervous system. Cells 2021 10 11 2963 10.3390/cells10112963 34831185
    [Google Scholar]
  115. Khan S.A. Ilies M.A. The phospholipase A2 superfamily: Structure, isozymes, catalysis, physiologic and pathologic roles. Int. J. Mol. Sci. 2023 24 2 1353 10.3390/ijms24021353 36674864
    [Google Scholar]
  116. Vergini D.E. Hadjipavlou-Litina D. A patent review on arachidonic acid lipoxygenase (LOX) inhibitors for the treatment of neurodegenerative diseases (2018-present). Expert Opin. Ther. Pat. 2025 35 3 291 304 10.1080/13543776.2024.2447067 39717968
    [Google Scholar]
  117. Chen Q. Zheng Q. Yang Y. 12/15-lipoxygenase regulation of diabetic cognitive dysfunction is determined by interfering with inflammation and cell apoptosis. Int. J. Mol. Sci. 2022 23 16 8997 10.3390/ijms23168997 36012263
    [Google Scholar]
  118. Kulkarni A. Nadler J.L. Mirmira R.G. Casimiro I. Regulation of tissue inflammation by 12-lipoxygenases. Biomolecules 2021 11 5 717 10.3390/biom11050717 34064822
    [Google Scholar]
  119. Lee S. Kim T.K. Choi J.E. Dysfunction of striatal MeCP2 is associated with cognitive decline in a mouse model of Alzheimer’s disease. Theranostics 2022 12 3 1404 1418 10.7150/thno.68439 35154497
    [Google Scholar]
  120. Di Maio A. De Rosa A. Pelucchi S. Analysis of mRNA and protein levels of CAP2, DLG1 and ADAM10 genes in post-mortem brain of schizophrenia, Parkinson’s and Alzheimer’s disease patients. Int. J. Mol. Sci. 2022 23 3 1539 10.3390/ijms23031539 35163460
    [Google Scholar]
  121. Liang C.S. Li D.J. Yang F.C. Mortality rates in Alzheimer’s disease and non-Alzheimer’s dementias: A systematic review and meta-analysis. Lancet Healthy Longev. 2021 2 8 e479 e488 10.1016/S2666‑7568(21)00140‑9 36097997
    [Google Scholar]
  122. Hisanaga S. Krishnankutty A. Kimura T. In vivo analysis of the phosphorylation of tau and the tau protein kinases Cdk5-p35 and GSK3β by using Phos-tag SDS–PAGE. J. Proteomics 2022 262 104591 10.1016/j.jprot.2022.104591 35430389
    [Google Scholar]
  123. Adnan M. Anwar S. DasGupta D. Targeting inhibition of microtubule affinity regulating kinase 4 by Harmaline: Strategy to combat Alzheimer’s disease. Int. J. Biol. Macromol. 2023 224 188 195 10.1016/j.ijbiomac.2022.10.115 36257368
    [Google Scholar]
  124. Annadurai N. Das V. Microtubule affinity regulating kinase 4: A potential drug target from cancers to neurodegenerative diseases. In: Protein Kinase Inhibitors. Elsevier 2022 571 596 10.1016/B978‑0‑323‑91287‑7.00017‑X
    [Google Scholar]
  125. Zempel H. Chudobová J. Microtubule affinity regulating kinase (MARK/Par1) isoforms differentially regulate Alzheimer-like TAU missorting and Aβ-mediated synapse pathology. Neural Regen. Res. 2023 18 2 335 336 10.4103/1673‑5374.346477 35900423
    [Google Scholar]
  126. Chai Y.L. Liang N.H.P. Chong J.R. Serum cathepsin D is a potential biomarker for Alzheimer’s disease dementia and cognitive decline. J. Alzheimers Dis. 2023 91 3 989 998 10.3233/JAD‑220852 36565119
    [Google Scholar]
  127. Suire C.N. Leissring M.A. Cathepsin D. A candidate link between amyloid β-protein and tauopathy in Alzheimer disease. J. Exp. Neurol. 2021 2 1 10 15 33665647
    [Google Scholar]
  128. Kim J.W. Jung S.Y. Kim Y. Identification of cathepsin D as a plasma biomarker for Alzheimer’s disease. Cells 2021 10 1 138 10.3390/cells10010138 33445607
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273418918251112112429
Loading
/content/journals/cnsnddt/10.2174/0118715273418918251112112429
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test