Skip to content
2000
image of Pathological Insights into Neurodegenerative and Neurodevelopmental Disorders: Perspectives for the Development of Novel Treatment Approaches

Abstract

Neurodegenerative and neurodevelopmental disorders represent a significant global health burden, characterized by progressive neuronal dysfunction and loss. Both diseases, despite their diverse etiologies and mechanisms, share a complex interplay of genetic, environmental, and biological factors. Neurodegenerative diseases are caused by multiple factors, including aging, mitochondrial dysfunction, oxidative stress, inflammation, genetic mutations, and protein misfolding. In contrast, neurodevelopmental disorders are primarily influenced by epigenetic alterations, neurotransmitter imbalances, early brain damage, environmental factors, and genetic variations. Despite extensive research, effective treatments remain unavailable due to the complexity of their pathologies and the biochemical pathways involved. A deep understanding of the complexities and individual differences associated with these disorders is crucial for developing effective treatments. In this background, this review provides a comprehensive overview of neurodegenerative and neurodevelopmental disorders, including their clinical symptoms, etiology, pathogenesis, underlying mechanisms, potential drug targets, reported drugs, advanced treatment options, and challenges in the drug discovery process. This comprehensive literature review was conducted using databases such as PubMed and Scopus, focusing on research published up to April 2025. By understanding the complexities of these disorders, researchers can develop novel therapeutic approaches, including potential drugs and advanced treatment methods, to mitigate their devastating impact.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273402657250905055635
2025-10-03
2025-11-13
Loading full text...

Full text loading...

References

  1. Steinmetz J.D. Seeher K.M. Schiess N. Global, regional, and national burden of disorders affecting the nervous system, 1990-2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol. 2024 23 4 344 381 10.1016/S1474‑4422(24)00038‑3 38493795
    [Google Scholar]
  2. Intersectoral global action plan on epilepsy and other neurological disorders 2020 Available from:https://iris.who.int/bitstream/handle/10665/371495/9789240076624-eng.pdf?sequence=1
  3. Palanisamy C.P. Pei J. Alugoju P. New strategies of neurodegenerative disease treatment with extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs). Theranostics 2023 13 12 4138 4165 10.7150/thno.83066 37554286
    [Google Scholar]
  4. Diagnostic and statistical manual of mental disorders 2013 Available from:https://www.mredscircleoftrust.com/storage/app/media/DSM%205%20TR.pdf
  5. Report from barrow neurological institute 2021 Available from:https://www.barrowneuro.org/condition/neurodegenerative-disorders/
  6. Schor N.F. Bianchi D.W. Neurodevelopmental clues to neurodegeneration. Pediatr. Neurol. 2021 123 67 76 10.1016/j.pediatrneurol.2021.07.012 34399111
    [Google Scholar]
  7. Long I. Editorial: Common pathways in neurodevelopmental conditions and neurodegenerative disorders. Front. Neurosci. 2024 18 1454384 10.3389/fnins.2024.1454384 39170686
    [Google Scholar]
  8. Brett B.L. Gardner R.C. Godbout J. Dams-O’Connor K. Keene C.D. Traumatic brain injury and risk of neurodegenerative disorder. Biol. Psychiatry 2022 91 5 498 507 10.1016/j.biopsych.2021.05.025 34364650
    [Google Scholar]
  9. Rao J.S. Kellom M. Kim H.W. Rapoport S.I. Reese E.A. Neuroinflammation and synaptic loss. Neurochem. Res. 2012 37 5 903 910 10.1007/s11064‑012‑0708‑2 22311128
    [Google Scholar]
  10. Cortese S. Holtmann M. Banaschewski T. Practitioner review: Current best practice in the management of adverse events during treatment with ADHD medications in children and adolescents. J. Child Psychol. Psychiatry 2013 54 3 227 246 10.1111/jcpp.12036 23294014
    [Google Scholar]
  11. Cummings J. Lee G. Ritter A. Sabbagh M. Zhong K. Alzheimer’s disease drug development pipeline: 2020. Alzheimers Dement. 2020 6 1 e12050 10.1002/trc2.12050
    [Google Scholar]
  12. Poewe W. Seppi K. Tanner C.M. Parkinson disease. Nat. Rev. Dis. Primers 2017 3 1 17013 10.1038/nrdp.2017.13 28332488
    [Google Scholar]
  13. Lamptey R.N.L. Chaulagain B. Trivedi R. Gothwal A. Layek B. Singh J. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics. Int. J. Mol. Sci. 2022 23 3 1851 10.3390/ijms23031851 35163773
    [Google Scholar]
  14. Harilal S. Jose J. Parambi D.G.T. Advancements in nanotherapeutics for Alzheimer’s disease: Current perspectives. J. Pharm. Pharmacol. 2019 71 9 1370 1383 10.1111/jphp.13132 31304982
    [Google Scholar]
  15. Hinge N.S. Kathuria H. Pandey M.M. Engineering of structural and functional properties of nanotherapeutics and nanodiagnostics for intranasal brain targeting in Alzheimer’s. Appl. Mater. Today 2022 26 101303 10.1016/j.apmt.2021.101303
    [Google Scholar]
  16. 2025 https://www.who.int/news-room/fact-sheets/detail/dementia
  17. Breijyeh Z. Karaman R. Comprehensive review on alzheimer’s disease: Causes and treatment. Molecules 2020 25 24 5789 10.3390/molecules25245789 33302541
    [Google Scholar]
  18. DeMaagd G Philip A Parkinson’s disease and its management: Part 1: Disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis 2015 40 8 504 32 26236139
  19. Andhale R. Shrivastava D. Huntington’s disease: A clinical review. Cureus 2022 14 8 28484 10.7759/cureus.28484 36176885
    [Google Scholar]
  20. Ghasemi N. Razavi S. Nikzad E. Multiple sclerosis: Pathogenesis, symptoms, diagnoses and cell-based therapy. Cell J. 2017 19 1 1 10 10.22074/cellj.2016.4867 28367411
    [Google Scholar]
  21. Watanabe H. Shima S. Mizutani Y. Ueda A. Ito M. Multiple system atrophy: Advances in diagnosis and therapy. J. Mov. Disord. 2023 16 1 13 21 10.14802/jmd.22082 36537066
    [Google Scholar]
  22. Masrori P. Van Damme P. Amyotrophic lateral sclerosis: A clinical review. Eur. J. Neurol. 2020 27 10 1918 1929 10.1111/ene.14393 32526057
    [Google Scholar]
  23. Lee G. Leugers C.J. Tau and tauopathies. Prog. Mol. Biol. Transl. Sci. 2012 107 263 293 10.1016/B978‑0‑12‑385883‑2.00004‑7 22482453
    [Google Scholar]
  24. Geschwind MD Prion diseases. Continuum 2015 21 6 Neuroinfectious Disease 1612 38 10.1212/CON.0000000000000251 26633779
    [Google Scholar]
  25. Kumar A. Sidhu J. Lui F. Alzheimer Disease. StatPearls. Treasure Island, FL StatPearls Publishing 2025
    [Google Scholar]
  26. Jahn H. Memory loss in Alzheimer’s disease. Dialogues Clin. Neurosci. 2013 15 4 445 454 10.31887/DCNS.2013.15.4/hjahn 24459411
    [Google Scholar]
  27. Atri A. Dickerson B.C. Clevenger C. Alzheimer’s association clinical practice guideline for the diagnostic evaluation, testing, counseling, and disclosure of suspected Alzheimer’s disease and related disorders (DETeCD-ADRD): Executive summary of recommendations for primary care. Alzheimers Dement. 2025 21 6 14333 10.1002/alz.14333 39713942
    [Google Scholar]
  28. Tahami Monfared A.A. Byrnes M.J. White L.A. Zhang Q. Alzheimer’s disease: Epidemiology and clinical progression. Neurol. Ther. 2022 11 2 553 569 10.1007/s40120‑022‑00338‑8 35286590
    [Google Scholar]
  29. Verma S. Paramanick D. β-Secretase as a primary drug target of Alzheimer disease: Function, structure, and inhibition In: Kumar D, Patil VM, Wu D, Thorat N, Eds. Deciphering Drug Targets for Alzheimer’s Disease. Singapore: Springer 2023 10.1007/978‑981‑99‑2657‑2_5
    [Google Scholar]
  30. Yarns B.C. Holiday K.A. Carlson D.M. Cosgrove C.K. Melrose R.J. Pathophysiology of Alzheimer’s Disease. Psychiatr. Clin. North Am. 2022 45 4 663 676 10.1016/j.psc.2022.07.003 36396271
    [Google Scholar]
  31. Tiwari S. Atluri V. Kaushik A. Yndart A. Nair M. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int. J. Nanomedicine 2019 14 5541 5554 10.2147/IJN.S200490 31410002
    [Google Scholar]
  32. Agarwal U. Verma S. Tonk R.K. Chromenone: An emerging scaffold in anti-Alzheimer drug discovery. Bioorg. Med. Chem. Lett. 2024 111 129912 10.1016/j.bmcl.2024.129912 39089526
    [Google Scholar]
  33. Bomasang-Layno E. Bronsther R. Diagnosis and treatment of alzheimer’s disease. Del. J. Public Health 2021 7 4 74 85 10.32481/djph.2021.09.009 34604768
    [Google Scholar]
  34. Kerwin D. Abdelnour C. Caramelli P. Alzheimer’s disease diagnosis and management: Perspectives from around the world. Alzheimers Dement. 2022 14 1 12334 10.1002/dad2.12334 35898519
    [Google Scholar]
  35. Dubois B. Villain N. Frisoni G.B. Clinical diagnosis of Alzheimer’s disease: Recommendations of the International Working Group. Lancet Neurol. 2021 20 6 484 496 10.1016/S1474‑4422(21)00066‑1 33933186
    [Google Scholar]
  36. Alhazmi H.A. Albratty M. An update on the novel and approved drugs for Alzheimer disease. Saudi Pharm. J. 2022 30 12 1755 1764 10.1016/j.jsps.2022.10.004 36601504
    [Google Scholar]
  37. Brockmann R. Nixon J. Love B.L. Yunusa I. Impacts of FDA approval and medicare restriction on antiamyloid therapies for Alzheimer’s disease: Patient outcomes, healthcare costs, and drug development. Lancet Reg. Health Am. 2023 20 100467 10.1016/j.lana.2023.100467 36908502
    [Google Scholar]
  38. Huang L.K. Kuan Y.C. Lin H.W. Hu C.J. Clinical trials of new drugs for Alzheimer disease: A 2020-2023 update. J. Biomed. Sci. 2023 30 1 83 10.1186/s12929‑023‑00976‑6 37784171
    [Google Scholar]
  39. Blaikie L. Kay G. Kong Thoo Lin P. Current and emerging therapeutic targets of alzheimer’s disease for the design of multi-target directed ligands. MedChemComm 2019 10 12 2052 2072 10.1039/C9MD00337A 32206241
    [Google Scholar]
  40. Kouli A. Torsney K.M. Kuan W.L. Parkinson’s disease: Etiology, neuropathology, and pathogenesis. In: Stoker Thomas B, Ed. Parkinson’s Disease: Pathogenesis and Clinical Aspects. Stoker Thomas B. Singapore Codon Publications 2018 10.15586/codonpublications.parkinsonsdisease.2018.ch1
    [Google Scholar]
  41. Parkinson’s Disease: Challenges, progress, and promise 2021
  42. Zafar S. Yaddanapudi S.S. Parkinson disease. In: StatPearls. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  43. Galvan A. Wichmann T. Pathophysiology of parkinsonism. Clin. Neurophysiol. 2008 119 7 1459 1474 10.1016/j.clinph.2008.03.017 18467168
    [Google Scholar]
  44. Simon D.K. Tanner C.M. Brundin P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin. Geriatr. Med. 2020 36 1 1 12 10.1016/j.cger.2019.08.002 31733690
    [Google Scholar]
  45. Rizek P. Kumar N. Jog M.S. An update on the diagnosis and treatment of Parkinson disease. CMAJ 2016 188 16 1157 1165 10.1503/cmaj.151179 27221269
    [Google Scholar]
  46. Armstrong M.J. Okun M.S. Diagnosis and treatment of parkinson disease. JAMA 2020 323 6 548 560 10.1001/jama.2019.22360 32044947
    [Google Scholar]
  47. Sivanandy P. Leey T.C. Xiang T.C. Systematic review on Parkinson’s disease medications, emphasizing on three recently approved drugs to control parkinson’s symptoms. Int. J. Environ. Res. Public Health 2021 19 1 364 10.3390/ijerph19010364 35010624
    [Google Scholar]
  48. Di Luca D.G. Reyes N.G.D. Fox S.H. Newly approved and investigational drugs for motor symptom control in parkinson’s disease. Drugs 2022 82 10 1027 1053 10.1007/s40265‑022‑01747‑7 35841520
    [Google Scholar]
  49. Murakami H. Shiraishi T. Umehara T. Omoto S. Iguchi Y. Recent advances in drug therapy for parkinson’s disease. Intern. Med. 2023 62 1 33 42 10.2169/internalmedicine.8940‑21 35110492
    [Google Scholar]
  50. Singh M.P. Singh B. Rai S.N. Promising drug targets and associated therapeutic interventions in Parkinson’s disease. Neural Regen. Res. 2021 16 9 1730 1739 10.4103/1673‑5374.306066 33510062
    [Google Scholar]
  51. Ajitkumar A. Lui F. De Jesus O. Huntington Disease. StatPearls. Treasure Island, FL StatPearls Publishing 2025
    [Google Scholar]
  52. Huntington's disease Huntington's disease 2020 Available from:https://www.ninds.nih.gov/health-information/disorders/huntingtons-disease
  53. Irfan Z. Khanam S. Karmakar V. Pathogenesis of huntington’s disease: An emphasis on molecular pathways and prevention by natural remedies. Brain Sci. 2022 12 10 1389 10.3390/brainsci12101389 36291322
    [Google Scholar]
  54. Jiang A. Handley R.R. Lehnert K. Snell R.G. From pathogenesis to therapeutics: A review of 150 years of huntington’s disease research. Int. J. Mol. Sci. 2023 24 16 13021 10.3390/ijms241613021 37629202
    [Google Scholar]
  55. Roos R.A.C. Huntington’s disease: A clinical review. Orphanet J. Rare Dis. 2010 5 1 40 10.1186/1750‑1172‑5‑40 21171977
    [Google Scholar]
  56. Chao T.K. Hu J. Pringsheim T. Risk factors for the onset and progression of Huntington disease. Neurotoxicology 2017 61 79 99 10.1016/j.neuro.2017.01.005 28111121
    [Google Scholar]
  57. Kim A. Lalonde K. Truesdell A. New avenues for the treatment of huntington’s disease. Int. J. Mol. Sci. 2021 22 16 8363 10.3390/ijms22168363 34445070
    [Google Scholar]
  58. Heinz A. Schilling J. van Roon-Mom W. Krauß S. The MID1 protein: A promising therapeutic target in huntington’s disease. Front. Genet. 2021 12 761714 10.3389/fgene.2021.761714 34659371
    [Google Scholar]
  59. Dugger B.N. Dickson D.W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 2017 9 7 a028035 10.1101/cshperspect.a028035 28062563
    [Google Scholar]
  60. Gitler A.D. Dhillon P. Shorter J. Neurodegenerative disease: Models, mechanisms, and a new hope. Dis. Model. Mech. 2017 10 5 499 502 10.1242/dmm.030205 28468935
    [Google Scholar]
  61. Katsuno M. Sahashi K. Iguchi Y. Hashizume A. Preclinical progression of neurodegenerative diseases. Nagoya J. Med. Sci. 2018 80 3 289 298 10.18999/nagjms.80.3.289 30214078
    [Google Scholar]
  62. Institute of medicine Institute of medicine 2013 Available from:https://www.ncbi.nlm.nih.gov/books/NBK208522/
  63. Tsoi P.S. Quan M.D. Ferreon J.C. Ferreon A.C.M. Aggregation of disordered proteins associated with neurodegeneration. Int. J. Mol. Sci. 2023 24 4 3380 10.3390/ijms24043380 36834792
    [Google Scholar]
  64. Sweeney P. Park H. Baumann M. Protein misfolding in neurodegenerative diseases: Implications and strategies. Transl. Neurodegener. 2017 6 1 6 10.1186/s40035‑017‑0077‑5 28293421
    [Google Scholar]
  65. Takeuchi T. Suzuki M. Fujikake N. Intercellular chaperone transmission via exosomes contributes to maintenance of protein homeostasis at the organismal level. Proc. Natl. Acad. Sci. USA 2015 112 19 E2497 E2506 10.1073/pnas.1412651112 25918398
    [Google Scholar]
  66. Monaco A. Fraldi A. Protein aggregation and dysfunction of autophagy-lysosomal pathway: A vicious cycle in lysosomal storage diseases. Front. Mol. Neurosci. 2020 13 37 10.3389/fnmol.2020.00037 32218723
    [Google Scholar]
  67. Park H. Kang J.H. Lee S. Autophagy in neurodegenerative diseases: A hunter for aggregates. Int. J. Mol. Sci. 2020 21 9 3369 10.3390/ijms21093369 32397599
    [Google Scholar]
  68. Giri P.M. Banerjee A. Ghosal A. Layek B. Neuroinflammation in neurodegenerative disorders: Current knowledge and therapeutic implications. Int. J. Mol. Sci. 2024 25 7 3995 10.3390/ijms25073995 38612804
    [Google Scholar]
  69. Chen L. Deng H. Cui H. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018 9 6 7204 7218 10.18632/oncotarget.23208 29467962
    [Google Scholar]
  70. Garland E.F. Hartnell I.J. Boche D. Microglia and astrocyte function and communication: What do we know in humans? Front. Neurosci. 2022 16 824888 10.3389/fnins.2022.824888 35250459
    [Google Scholar]
  71. Lee J.W. Chun W. Lee H.J. The role of microglia in the development of neurodegenerative diseases. Biomedicines 2021 9 10 1449 10.3390/biomedicines9101449 34680566
    [Google Scholar]
  72. Vandenbark A.A. Offner H. Matejuk S. Matejuk A. Microglia and astrocyte involvement in neurodegeneration and brain cancer. J. Neuroinflammation 2021 18 1 298 10.1186/s12974‑021‑02355‑0 34949203
    [Google Scholar]
  73. Moriyama K. Nishida O. Targeting cytokines, pathogen-associated molecular patterns, and damage-associated molecular patterns in sepsis via blood purification. Int. J. Mol. Sci. 2021 22 16 8882 10.3390/ijms22168882 34445610
    [Google Scholar]
  74. Roh J.S. Sohn D.H. Damage-associated molecular patterns in inflammatory diseases. Immune Netw. 2018 18 4 27 10.4110/in.2018.18.e27 30181915
    [Google Scholar]
  75. Uttara B. Singh A. Zamboni P. Mahajan R. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 2009 7 1 65 74 10.2174/157015909787602823 19721819
    [Google Scholar]
  76. Gilgun-Sherki Y. Melamed E. Offen D. Oxidative stress induced-neurodegenerative diseases: The need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 2001 40 8 959 975 10.1016/S0028‑3908(01)00019‑3 11406187
    [Google Scholar]
  77. Kim G.H. Kim J.E. Rhie S.J. Yoon S. The role of oxidative stress in neurodegenerative diseases. Exp. Neurobiol. 2015 24 4 325 340 10.5607/en.2015.24.4.325 26713080
    [Google Scholar]
  78. Bhattacharyya A. Chattopadhyay R. Mitra S. Crowe S.E. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev. 2014 94 2 329 354 10.1152/physrev.00040.2012 24692350
    [Google Scholar]
  79. Pizzino G. Irrera N. Cucinotta M. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017 2017 1 8416763 10.1155/2017/8416763 28819546
    [Google Scholar]
  80. Ma C. Hong F. Yang S. Amyloidosis in alzheimer’s disease: Pathogeny, etiology, and related therapeutic directions. Molecules 2022 27 4 1210 10.3390/molecules27041210 35209007
    [Google Scholar]
  81. Walker L.C. Aβ plaques. Free Neuropathol. 2020 1 31 10.17879/freeneuropathology‑2020‑3025 33345256
    [Google Scholar]
  82. Murphy M.P. LeVine H. Alzheimer’s disease and the amyloid-beta peptide. J. Alzheimers Dis. 2010 19 1 311 323 10.3233/JAD‑2010‑1221 20061647
    [Google Scholar]
  83. Haider A. Spurling B.C. Sánchez-Manso J.C. Lewy Body Dementia. StatPearls. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  84. Gomperts SN Lewy body dementias. Continuum 2016 22 2 Dementia 435 63 10.1212/CON.0000000000000309 27042903
    [Google Scholar]
  85. Gibb W.R. Lees A.J. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 1988 51 6 745 752 10.1136/jnnp.51.6.745 2841426
    [Google Scholar]
  86. Lim K.L. Tan J.M.M. Role of the ubiquitin proteasome system in Parkinson’s disease. BMC Biochem. 2007 8 Suppl. 1 S13 10.1186/1471‑2091‑8‑S1‑S13 18047737
    [Google Scholar]
  87. Walden H. Muqit M.M.K. Ubiquitin and Parkinson’s disease through the looking glass of genetics. Biochem. J. 2017 474 9 1439 1451 10.1042/BCJ20160498 28408429
    [Google Scholar]
  88. Bertram L. Tanzi R.E. The genetic epidemiology of neurodegenerative disease. J. Clin. Invest. 2005 115 6 1449 1457 10.1172/JCI24761 15931380
    [Google Scholar]
  89. Chin-Chan M. Navarro-Yepes J. Quintanilla-Vega B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front. Cell. Neurosci. 2015 9 124 10.3389/fncel.2015.00124 25914621
    [Google Scholar]
  90. Ayeni E.A. Aldossary A.M. Ayejoto D.A. Neurodegenerative diseases: Implications of environmental and climatic influences on neurotransmitters and neuronal hormones activities. Int. J. Environ. Res. Public Health 2022 19 19 12495 10.3390/ijerph191912495 36231792
    [Google Scholar]
  91. Peterson CT Dysfunction of the microbiota-gut-brain axis in neurodegenerative disease: The promise of therapeutic modulation with prebiotics, medicinal herbs, probiotics, and synbiotics J Evid-Based Integr Med 2020 25 2515690X20957225
    [Google Scholar]
  92. Friedland R.P. Haribabu B. Neurodegenerative diseases: From gut-brain axis to brain microbiome. Front. Aging Neurosci. 2023 15 1171955 10.3389/fnagi.2023.1171955 37273657
    [Google Scholar]
  93. Ambrosini Y.M. Borcherding D. Kanthasamy A. The gut-brain axis in neurodegenerative diseases and relevance of the canine model: A review. Front. Aging Neurosci. 2019 11 130 10.3389/fnagi.2019.00130 31275138
    [Google Scholar]
  94. Yu X. Ji C. Shao A. Neurovascular unit dysfunction and neurodegenerative disorders. Front. Neurosci. 2020 14 334 10.3389/fnins.2020.00334 32410936
    [Google Scholar]
  95. Zhou Z.D. Wang D.Q. Tan E.K. Editorial: The role of neurovascular unit in neurodegeneration. Front. Cell. Neurosci. 2022 16 870631 10.3389/fncel.2022.870631 35518648
    [Google Scholar]
  96. Frost B. Diamond M.I. Prion-like mechanisms in neurodegenerative diseases. Nat. Rev. Neurosci. 2010 11 3 155 159 10.1038/nrn2786 20029438
    [Google Scholar]
  97. Brundin P. Melki R. Kopito R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat. Rev. Mol. Cell Biol. 2010 11 4 301 307 10.1038/nrm2873 20308987
    [Google Scholar]
  98. Polymenidou M. Cleveland D.W. Prion-like spread of protein aggregates in neurodegeneration. J. Exp. Med. 2012 209 5 889 893 10.1084/jem.20120741 22566400
    [Google Scholar]
  99. Joshi T. Ahuja N. The prion basis of progressive neurodegenerative disorders. Interdiscip. Perspect. Infect. Dis. 2023 2023 1 5 10.1155/2023/6687264 36825209
    [Google Scholar]
  100. Parenti I. Rabaneda L.G. Schoen H. Novarino G. Neurodevelopmental disorders: From genetics to functional pathways. Trends Neurosci. 2020 43 8 608 621 10.1016/j.tins.2020.05.004 32507511
    [Google Scholar]
  101. Thapar A. Cooper M. Rutter M. Neurodevelopmental disorders. Lancet Psychiatry 2017 4 4 339 346 10.1016/S2215‑0366(16)30376‑5 27979720
    [Google Scholar]
  102. Solberg B.S. Zayats T. Posserud M.B. Patterns of psychiatric comorbidity and genetic correlations provide new insights into differences between attention-deficit/hyperactivity disorder and autism spectrum disorder. Biol. Psychiatry 2019 86 8 587 598 10.1016/j.biopsych.2019.04.021 31182215
    [Google Scholar]
  103. Huerta M. Bishop S.L. Duncan A. Hus V. Lord C. Application of DSM-5 criteria for autism spectrum disorder to three samples of children with DSM-IV diagnoses of pervasive developmental disorders. Am. J. Psychiatry 2012 169 10 1056 1064 10.1176/appi.ajp.2012.12020276 23032385
    [Google Scholar]
  104. Morris-Rosendahl D.J. Crocq M.A. Neurodevelopmental disorders—the history and future of a diagnosticconcept. Dialogues Clin. Neurosci. 2020 22 1 65 72 10.31887/DCNS.2020.22.1/macrocq 32699506
    [Google Scholar]
  105. Olson L. Bishop S. Thurm A. Differential diagnosis of autism and other neurodevelopmental disorders. Pediatr. Clin. North Am. 2024 71 2 157 177 10.1016/j.pcl.2023.12.004 38423714
    [Google Scholar]
  106. Lord C. Elsabbagh M. Baird G. Veenstra-Vanderweele J. Autism spectrum disorder. Lancet 2018 392 10146 508 520 10.1016/S0140‑6736(18)31129‑2 30078460
    [Google Scholar]
  107. Xiao Z. Qiu T. Ke X. Autism spectrum disorder as early neurodevelopmental disorder: Evidence from the brain imaging abnormalities in 2-3 years old toddlers. J. Autism Dev. Disord. 2014 44 7 1633 1640 10.1007/s10803‑014‑2033‑x 24419870
    [Google Scholar]
  108. Wing L. Potter D. The epidemiology of autistic spectrum disorders: Is the prevalence rising? Ment. Retard. Dev. Disabil. Res. Rev. 2002 8 3 151 161 10.1002/mrdd.10029 12216059
    [Google Scholar]
  109. Kogan M.D. Blumberg S.J. Schieve L.A. Prevalence of parent-reported diagnosis of autism spectrum disorder among children in the US, 2007. Pediatrics 2009 124 5 1395 1403 10.1542/peds.2009‑1522 19805460
    [Google Scholar]
  110. Hirota T. King B.H. Autism spectrum disorder. JAMA 2023 329 2 157 168 10.1001/jama.2022.23661 36625807
    [Google Scholar]
  111. Girli A. Doğmaz S. Ability of children with learning disabilities and children with autism spectrum disorder to recognize feelings from facial expressions and body language. World J Edu 2018 8 2 10 26 10.5430/wje.v8n2p10
    [Google Scholar]
  112. Mesibov G.B. Shea V. Adams L.W. Understanding asperger syndrome and high functioning autism. 2001 Available from:https://books.google.co.in/books?id=WSHTe6Nkx-gC
    [Google Scholar]
  113. Berry K. Russell K. Frost K. Restricted and repetitive behaviors in autism spectrum disorder: A review of associated features and presentation across clinical populations. Curr. Dev. Disord. Rep. 2018 5 2 108 115 [Internet] 10.1007/s40474‑018‑0139‑0
    [Google Scholar]
  114. Hazen E.P. Stornelli J.L. O’Rourke J.A. Koesterer K. McDougle C.J. Sensory symptoms in autism spectrum disorders. In: Harv. Rev. Psychiatry 2014 22 2 112 124 10.1097/01.HRP.0000445143.08773.58 24614766
    [Google Scholar]
  115. Gaines K. Bourne A. Pearson M. Kleibrink M. Designing for autism spectrum disorders. New York Routledge 2016 10.4324/9781315856872
    [Google Scholar]
  116. Ashburner J. Bennett L. Rodger S. Ziviani J. Understanding the sensory experiences of young people with autism spectrum disorder: A preliminary investigation. Aust. Occup. Ther. J. 2013 60 3 171 180 10.1111/1440‑1630.12025 23730782
    [Google Scholar]
  117. Hilton C.L. Sensory processing and motor issues in autism spectrum disorders. In: International Handbook of Autism and Pervasive Developmental Disorders. New York, NY Springer 2011 10.1007/978‑1‑4419‑8065‑6_11
    [Google Scholar]
  118. Suarez M.A. Sensory processing in children with autism spectrum disorders and impact on functioning. Pediatr. Clin. North Am. 2012 59 1 203 214 xii-xiii 10.1016/j.pcl.2011.10.012 22284803
    [Google Scholar]
  119. Barbaro J. Dissanayake C. Early markers of autism spectrum disorders in infants and toddlers prospectively identified in the Social Attention and Communication Study. Autism 2013 17 1 64 86 10.1177/1362361312442597 22735682
    [Google Scholar]
  120. DeVane C.L. Charles J.M. Abramson R.K. Pharmacotherapy of autism spectrum disorder: Results from the randomized BAART clinical trial. Pharmacotherapy 2019 39 6 626 635 10.1002/phar.2271 31063671
    [Google Scholar]
  121. Jobski K. Höfer J. Hoffmann F. Bachmann C. Use of psychotropic drugs in patients with autism spectrum disorders: A systematic review. Acta Psychiatr. Scand. 2017 135 1 8 28 10.1111/acps.12644 27624381
    [Google Scholar]
  122. Williams K. Wheeler D.M. Silove N. Hazell P. Cochrane Review: Selective serotonin reuptake inhibitors (SSRIs) for autism spectrum disorders (ASD). Evid. Based Child Health 2011 6 4 1044 1078 10.1002/ebch.804
    [Google Scholar]
  123. Banas K. Sawchuk B. Clonidine as a treatment of behavioural disturbances in autism spectrum disorder: A systematic literature review. J. Can. Acad. Child Adolesc. Psychiatry 2020 29 2 110 120 32405312
    [Google Scholar]
  124. Aishworiya R. Valica T. Hagerman R. Restrepo B. An update on psychopharmacological treatment of autism spectrum disorder. Neurotherapeutics 2022 19 1 248 262 10.1007/s13311‑022‑01183‑1 35029811
    [Google Scholar]
  125. Rafaniello C. Sullo M.G. Carnovale C. We really need clear guidelines and recommendations for safer and proper use of aripiprazole and risperidone in a pediatric population: Real-world analysis of eudravigilance database. Front. Psychiatry 2020 11 550201 10.3389/fpsyt.2020.550201 33343407
    [Google Scholar]
  126. Simms M. Kliegman R.M. Lye P.S. Bordini B.J. Toth H. Basel D. Intellectual and developmental disability. Nel Pediat Sympt Based Diag 2018 367 92
    [Google Scholar]
  127. von Gontard A. Hussong J. Yang S.S. Chase J. Franco I. Wright A. Neurodevelopmental disorders and incontinence in children and adolescents: Attention‐deficit/hyperactivity disorder, autism spectrum disorder, and intellectual disability—A consensus document of the International Children’s Continence Society. Neurourol. Urodyn. 2022 41 1 102 114 10.1002/nau.24798 34586694
    [Google Scholar]
  128. Woolf S. Woolf C.M. Oakland T. Adaptive behavior among adults with intellectual disabilities and its relationship to community independence. Intellect. Dev. Disabil. 2010 48 3 209 215 10.1352/1944‑7558‑48.3.209 20597731
    [Google Scholar]
  129. Van Petegem S. Beyers W. Vansteenkiste M. Soenens B. On the association between adolescent autonomy and psychosocial functioning: Examining decisional independence from a self-determination theory perspective. Dev. Psychol. 2012 48 1 76 88 10.1037/a0025307 21910525
    [Google Scholar]
  130. Karam S.M. Riegel M. Segal S.L. Genetic causes of intellectual disability in a birth cohort: A population-based study. Am. J. Med. Genet. A. 2015 167 6 1204 1214 10.1002/ajmg.a.37011 25728503
    [Google Scholar]
  131. Polyak A. Rosenfeld J.A. Girirajan S. An assessment of sex bias in neurodevelopmental disorders. Genome Med. 2015 7 1 94 10.1186/s13073‑015‑0216‑5 26307204
    [Google Scholar]
  132. Dulcan M.K. Dulcan’s textbook of child and adolescent psychiatry. Washington, D.C. American Psychiatric Publishing 2021 10.1176/appi.books.9781615374809
    [Google Scholar]
  133. Marrus N. Hall L. Intellectual disability and language disorder. Child Adolesc. Psychiatr. Clin. N. Am. 2017 26 3 539 554 10.1016/j.chc.2017.03.001 28577608
    [Google Scholar]
  134. Patel DR Apple R Kanungo S Akkal A Narrative review of intellectual disability: Definitions, evaluation and principles of treatment 2018 Available from:https://pm.amegroups.org/article/view/4626
  135. Reschly D.J. Documenting the developmental origins of mild mental retardation. Appl. Neuropsychol. 2009 16 2 124 134 10.1080/09084280902864469 19430994
    [Google Scholar]
  136. Hall I. Strydom A. Richards M. Hardy R. Bernal J. Wadsworth M. Social outcomes in adulthood of children with intellectual impairment: Evidence from a birth cohort. J. Intellect. Disabil. Res. 2005 49 3 171 182 10.1111/j.1365‑2788.2005.00636.x 15713192
    [Google Scholar]
  137. Harris J.C. Intellectual disability: Understanding its development, causes, classification, evaluation, and treatment. New York, NY, US Oxford University Press 2006
    [Google Scholar]
  138. Mirza I. Tareen A. Davidson L.L. Rahman A. Community management of intellectual disabilities in Pakistan: A mixed methods study. J. Intellect. Disabil. Res. 2009 53 6 559 570 10.1111/j.1365‑2788.2009.01176.x 19504727
    [Google Scholar]
  139. Price M. Raffelsbauer D. ADHD: A true neurodevelopmental disorder? Med. Writ. 2012 21 2 114 122 10.1179/2047480612Z.00000000023
    [Google Scholar]
  140. Caye A. Spadini A.V. Karam R.G. Predictors of persistence of ADHD into adulthood: A systematic review of the literature and meta-analysis. Eur. Child Adolesc. Psychiatry 2016 25 11 1151 1159 10.1007/s00787‑016‑0831‑8 27021056
    [Google Scholar]
  141. Goulardins J.B. Marques J.C.B. De Oliveira J.A. Attention deficit hyperactivity disorder and motor impairment. Percept. Mot. Skills 2017 124 2 425 440 10.1177/0031512517690607 28361657
    [Google Scholar]
  142. Holden S.E. Jenkins-Jones S. Poole C.D. Morgan C.L. Coghill D. Currie C.J. The prevalence and incidence, resource use and financial costs of treating people with attention deficit/hyperactivity disorder (ADHD) in the United Kingdom (1998 to 2010). Child Adolesc. Psychiatry Ment. Health 2013 7 1 34 10.1186/1753‑2000‑7‑34 24119376
    [Google Scholar]
  143. de la Peña I.C. Pan M.C. Thai C.G. Alisso T. Attention-deficit/] hyperactivity disorder predominantly inattentive subtype/] presentation: Research progress and translational studies. Brain Sci. 2020 10 5 292 10.3390/brainsci10050292 32422912
    [Google Scholar]
  144. Fredriksen M. Dahl A.A. Martinsen E.W. Klungsoyr O. Faraone S.V. Peleikis D.E. Childhood and persistent ADHD symptoms associated with educational failure and long-term occupational disability in adult ADHD. Atten. Defic. Hyperact. Disord. 2014 6 2 87 99 10.1007/s12402‑014‑0126‑1 24497125
    [Google Scholar]
  145. Frank-Briggs A.I. Attention deficit hyperactivity disorder (ADHD). J. Pediatr. Neurol. 2011 9 03 291 298
    [Google Scholar]
  146. Wolraich M.L. Hagan J.F. Allan C. Clinical practice guideline for the diagnosis, evaluation, and treatment of attention-deficit/hyperactivity disorder in children and adolescents. Pediatrics 2019 144 4 20192528 10.1542/peds.2019‑2528 31570648
    [Google Scholar]
  147. Young S. Hollingdale J. Absoud M. Guidance for identification and treatment of individuals with attention deficit/hyperactivity disorder and autism spectrum disorder based upon expert consensus. BMC Med. 2020 18 1 146 10.1186/s12916‑020‑01585‑y 32448170
    [Google Scholar]
  148. Markowitz J.S. Yu G. Stimulants and Other Non-stimulants for Attention-Deficit/Hyperactivity Disorder (ADHD). In: Jann MW, Penzak SR, Cohen LJ, Eds Applied Clinical Pharmacokinetics and Pharmacodynamics of Psychopharmacological Agents. Jann M.W. Penzak S.R. Cohen L.J. Cham Springer International Publishing 2016 303 327 10.1007/978‑3‑319‑27883‑4_12
    [Google Scholar]
  149. Huizink A.C. Prenatal substance use, prenatal stress and offspring behavioural outcomes: Considerations for future studies. Nord. J. Psychiatry 2012 66 2 115 122 10.3109/08039488.2011.641586 22242892
    [Google Scholar]
  150. Kasdallah N. Ben Salem H. Kbaier H. Bouguerra C. Blibech S. Douagi M. Premature birth, low birth weight and birth defects after assisted reproductive therapies. a 18-year comparative study. Tunis. Med. 2017 95 2 103 108 29424868
    [Google Scholar]
  151. Kadlaskar G. Piergies A. Miller M. Environmental Risk Factors for Attention-Deficit/Hyperactivity Disorder.Clinical Handbook of ADHD Assessment and Treatment Across the Lifespan. Cham Springer International Publishing 2023 209 242 [Internet] 10.1007/978‑3‑031‑41709‑2_9
    [Google Scholar]
  152. Mahone E.M. Slomine B.S. Zabel T.A. Neurodevelopmental disorders Textbook of clinical neuropsychology. 2nd ed 2018 105 127 10.4324/9781315271743
    [Google Scholar]
  153. Accogli A. Addour-Boudrahem N. Srour M. Neurogenesis, neuronal migration, and axon guidance. Handb. Clin. Neurol. 2020 173 25 42 10.1016/B978‑0‑444‑64150‑2.00004‑6 32958178
    [Google Scholar]
  154. Evsyukova I. Plestant C. Anton E.S. Integrative mechanisms of oriented neuronal migration in the developing brain. Annu. Rev. Cell Dev. Biol. 2013 29 1 299 353 10.1146/annurev‑cellbio‑101512‑122400 23937349
    [Google Scholar]
  155. Guerrini R. Parrini E. Neuronal migration disorders. Neurobiol. Dis. 2010 38 2 154 166 10.1016/j.nbd.2009.02.008 19245832
    [Google Scholar]
  156. Sun X.Z. Takahashi S. Cui C. Normal and abnormal neuronal migration in the developing cerebral cortex. J. Med. Invest. 2002 49 3-4 97 110 12323012
    [Google Scholar]
  157. Liu J.S. Molecular genetics of neuronal migration disorders. Curr. Neurol. Neurosci. Rep. 2011 11 2 171 178 10.1007/s11910‑010‑0176‑5 21222180
    [Google Scholar]
  158. Lepeta K. Lourenco M.V. Schweitzer B.C. Synaptopathies: Synaptic dysfunction in neurological disorders - A review from students to students. J. Neurochem. 2016 138 6 785 805 10.1111/jnc.13713 27333343
    [Google Scholar]
  159. Paolicelli R.C. Ferretti M.T. Function and dysfunction of microglia during brain development: Consequences for synapses and neural circuits. Front. Synaptic Neurosci. 2017 9 9 10.3389/fnsyn.2017.00009 28539882
    [Google Scholar]
  160. Barateiro A. Brites D. Fernandes A. Oligodendrocyte development and myelination in neurodevelopment: Molecular mechanisms in health and disease. Curr. Pharm. Des. 2016 22 6 656 679 10.2174/1381612822666151204000636 26635271
    [Google Scholar]
  161. Nave K.A. Werner H.B. Myelination of the nervous system: Mechanisms and functions. Annu. Rev. Cell Dev. Biol. 2014 30 1 503 533 10.1146/annurev‑cellbio‑100913‑013101 25288117
    [Google Scholar]
  162. Simons M. Nave K.A. Oligodendrocytes: Myelination and axonal support. Cold Spring Harb. Perspect. Biol. 2016 8 1 a020479 10.1101/cshperspect.a020479 26101081
    [Google Scholar]
  163. Ryan S.G. Genetic susceptibility to neurodevelopmental disorders. J. Child Neurol. 1999 14 3 187 195 10.1177/088307389901400310 10190270
    [Google Scholar]
  164. Savatt J.M. Myers S.M. Genetic testing in neurodevelopmental disorders. Front Pediatr. 2021 9 526779 10.3389/fped.2021.526779 33681094
    [Google Scholar]
  165. Good K.V. Vincent J.B. Ausió J. MeCP2: The genetic driver of rett syndrome epigenetics. Front. Genet. 2021 12 620859 10.3389/fgene.2021.620859 33552148
    [Google Scholar]
  166. Francis-Williams J. Children with specific learning difficulties: The effect of neurodevelopmental learning disorders on children of normal intelligence. Amsterdam, Netherlands Elsevier 2014
    [Google Scholar]
  167. Bölte S. Neufeld J. Marschik P.B. Williams Z.J. Gallagher L. Lai M.C. Sex and gender in neurodevelopmental conditions. Nat. Rev. Neurol. 2023 19 3 136 159 10.1038/s41582‑023‑00774‑6 36747038
    [Google Scholar]
  168. Richter J.D. Zhao X. The molecular biology of FMRP: New insights into fragile X syndrome. Nat. Rev. Neurosci. 2021 22 4 209 222 10.1038/s41583‑021‑00432‑0 33608673
    [Google Scholar]
  169. Eid O.M. Eid M.M. The implications of genetic factors in autism spectrum disorder and Alzheimer’s disease. In: Neurological Disorders and Imaging Physics, Volume 3: Application to autism spectrum disorders and Alzheimer’s. Bristol, UK: IOP Publishing 2019 5 1
    [Google Scholar]
  170. Świtońska-Kurkowska K. Krist B. Delimata J. Figiel M. Juvenile huntington’s disease and other polyq diseases, update on neurodevelopmental character and comparative bioinformatic review of transcriptomic and proteomic data. Front. Cell Dev. Biol. 2021 9 642773 10.3389/fcell.2021.642773 34277598
    [Google Scholar]
  171. Veltman J.A. Brunner H.G. De novo mutations in human genetic disease. Nat. Rev. Genet. 2012 13 8 565 575 10.1038/nrg3241 22805709
    [Google Scholar]
  172. Shaikh T.H. Copy number variation disorders. Curr. Genet. Med. Rep. 2017 5 4 183 190 10.1007/s40142‑017‑0129‑2 29732242
    [Google Scholar]
  173. Srinath S. Kalal A. Anand P. Mohapatra S. Chakraborty P. Small SNPs, big effects: A review of single nucleotide variations and polymorphisms in key genes associated with autism spectrum disorder. Int. J. Dev. Neurosci. 2025 85 2 70016 10.1002/jdn.70016 40223535
    [Google Scholar]
  174. Martens G. van Loo K. Genetic and environmental factors in complex neurodevelopmental disorders. Curr. Genomics 2007 8 7 429 444 10.2174/138920207783591717 19412416
    [Google Scholar]
  175. Zinkstok J.R. Boot E. Bassett A.S. Neurobiological perspective of 22q11.2 deletion syndrome. Lancet Psychiatry 2019 6 11 951 960 10.1016/S2215‑0366(19)30076‑8 31395526
    [Google Scholar]
  176. McDonald-McGinn D.M. Sullivan K.E. Chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Medicine 2011 90 1 1 18 10.1097/MD.0b013e3182060469 21200182
    [Google Scholar]
  177. Jonas R.K. Montojo C.A. Bearden C.E. The 22q11.2 deletion syndrome as a window into complex neuropsychiatric disorders over the lifespan. Biol. Psychiatry 2014 75 5 351 360 10.1016/j.biopsych.2013.07.019 23992925
    [Google Scholar]
  178. Hanson E. Nasir R.H. Fong A. Cognitive and behavioral characterization of 16p11.2 deletion syndrome. J. Dev. Behav. Pediatr. 2010 31 8 649 657 10.1097/DBP.0b013e3181ea50ed 20613623
    [Google Scholar]
  179. Buiting K. Prader-Willi syndrome and Angelman syndrome. Am. J. Med. Genet. C. Semin. Med. Genet. 2010 154C 3 365 376 10.1002/ajmg.c.30273 20803659
    [Google Scholar]
  180. Pena S.A. Iyengar R. Eshraghi R.S. Gene therapy for neurological disorders: Challenges and recent advancements. J. Drug Target. 2020 28 2 111 128 10.1080/1061186X.2019.1630415 31195838
    [Google Scholar]
  181. Graf W.D. Kekatpure M.V. Kosofsky B.E. Prenatal-onset neurodevelopmental disorders secondary to toxins, nutritional deficiencies, and maternal illness. Handb. Clin. Neurol. 2013 111 143 159 10.1016/B978‑0‑444‑52891‑9.00014‑2 23622159
    [Google Scholar]
  182. Marques A.H. O’Connor T.G. Roth C. Susser E. Bjørke-Monsen A.L. The influence of maternal prenatal and early childhood nutrition and maternal prenatal stress on offspring immune system development and neurodevelopmental disorders. Front. Neurosci. 2013 7 120 10.3389/fnins.2013.00120 23914151
    [Google Scholar]
  183. Lomanowska A.M. Boivin M. Hertzman C. Fleming A.S. Parenting begets parenting: A neurobiological perspective on early adversity and the transmission of parenting styles across generations. Neuroscience 2017 342 120 139 10.1016/j.neuroscience.2015.09.029 26386294
    [Google Scholar]
  184. Catalan A. Angosto V. Díaz A. Relation between psychotic symptoms, parental care and childhood trauma in severe mental disorders. Psychiatry Res. 2017 251 78 84 10.1016/j.psychres.2017.02.017 28189941
    [Google Scholar]
  185. Oldenburg K.S. O’Shea T.M. Fry R.C. Genetic and epigenetic factors and early life inflammation as predictors of neurodevelopmental outcomes. Semin. Fetal Neonatal Med. 2020 25 3 101115 10.1016/j.siny.2020.101115 32444251
    [Google Scholar]
  186. Bure I.V. Nemtsova M.V. Kuznetsova E.B. Histone modifications and non-coding rnas: Mutual epigenetic regulation and role in pathogenesis. Int. J. Mol. Sci. 2022 23 10 5801 10.3390/ijms23105801 35628612
    [Google Scholar]
  187. McGowan P.O. Matthews S.G. Prenatal stress, glucocorticoids, and developmental programming of the stress response. Endocrinology 2018 159 1 69 82 10.1210/en.2017‑00896 29136116
    [Google Scholar]
  188. Lintas C. Linking genetics to epigenetics: The role of folate and folate‐related pathways in neurodevelopmental disorders. Clin. Genet. 2019 95 2 241 252 10.1111/cge.13421 30047142
    [Google Scholar]
  189. Connors S.L. Levitt P. Matthews S.G. Fetal mechanisms in neurodevelopmental disorders. Pediatr. Neurol. 2008 38 3 163 176 10.1016/j.pediatrneurol.2007.10.009 18279750
    [Google Scholar]
  190. Finnell R. Teratology: General considerations and principles. J. Allergy Clin. Immunol. 1999 103 2 S337 S342 10.1016/S0091‑6749(99)70259‑9 9949334
    [Google Scholar]
  191. Bölte S. Girdler S. Marschik P.B. The contribution of environmental exposure to the etiology of autism spectrum disorder. Cell. Mol. Life Sci. 2019 76 7 1275 1297 10.1007/s00018‑018‑2988‑4 30570672
    [Google Scholar]
  192. Banik A. Kandilya D. Ramya S. Stünkel W. Chong Y. Dheen S. Maternal factors that induce epigenetic changes contribute to neurological disorders in offspring. Genes 2017 8 6 150 10.3390/genes8060150 28538662
    [Google Scholar]
  193. Little C.M. Fetal development: Environmental influences and critical periods. Cham Springer 2018 10.1891/9780826109767.0001
    [Google Scholar]
  194. Nilsson E.E. Sadler-Riggleman I. Skinner M.K. Environmentally induced epigenetic transgenerational inheritance of disease. Environ. Epigenet. 2018 4 2 dvy016 10.1093/eep/dvy016 30038800
    [Google Scholar]
  195. Ambeskovic M. Roseboom T.J. Metz G.A.S. Transgenerational effects of early environmental insults on aging and disease incidence. Neurosci. Biobehav. Rev. 2020 117 297 316 10.1016/j.neubiorev.2017.08.002 28807754
    [Google Scholar]
  196. Armstrong F.D. Neurodevelopment and chronic illness: Mechanisms of disease and treatment. Ment. Retard. Dev. Disabil. Res. Rev. 2006 12 3 168 173 10.1002/mrdd.20114 17061286
    [Google Scholar]
  197. Khan T.A. Hassan I. Ahmad A. Recent updates on the dynamic association between oxidative stress and neurodegenerative disorders. CNS Neurol. Disord. Drug Targets 2016 15 3 310 320 10.2174/1871527315666160202124518 26831262
    [Google Scholar]
  198. Agarwal V. Jindal D. Agarwal S. Mani S. Singh M. Initiation of neurodegenerative disorders (NDDs) through metal toxicity generated oxidative stress. In: Kesari KK, Jha NK, Eds Free Radical Biology and Environmental Toxicity. Kesari K.K. Jha N.K. Cham Springer International Publishing 2021 263 277 10.1007/978‑3‑030‑83446‑3_12
    [Google Scholar]
  199. Holliday R. Epigenetics: A historical overview. Epigenetics 2006 1 2 76 80 10.4161/epi.1.2.2762 17998809
    [Google Scholar]
  200. De Felice A. Ricceri L. Venerosi A. Chiarotti F. Calamandrei G. Multifactorial origin of neurodevelopmental disorders: Approaches to understanding complex etiologies. Toxics 2015 3 1 89 129 10.3390/toxics3010089 29056653
    [Google Scholar]
  201. Kappil M. Chen J. Environmental exposures in utero and microRNA. Curr. Opin. Pediatr. 2014 26 2 243 251 10.1097/MOP.0000000000000073 24632543
    [Google Scholar]
  202. Kappil M.A. Li Q. Li A. In utero exposures to environmental organic pollutants disrupt epigenetic marks linked to fetoplacental development. Environ. Epigenet. 2016 2 1 dvv013 10.1093/eep/dvv013 27308065
    [Google Scholar]
  203. Boivin M.J. Kakooza A.M. Warf B.C. Davidson L.L. Grigorenko E.L. Reducing neurodevelopmental disorders and disability through research and interventions. Nature 2015 527 7578 S155 S160 10.1038/nature16029 26580321
    [Google Scholar]
  204. Sherr E.H. Chapter 36 neurodevelopmental disorders, causes, and consequences. In: Lehner T, Miller BL, State MW, Eds. Genomics, Circuits, and Pathways in Clinical Neuropsychiatry. San Diego: Academic Press 2016 587 99 10.1016/B978‑0‑12‑800105‑9.00036‑6
    [Google Scholar]
  205. Levitt P. Veenstra-VanderWeele J. Neurodevelopment and the origins of brain disorders. Neuropsychopharmacology 2015 40 1 1 3 10.1038/npp.2014.237 25482168
    [Google Scholar]
  206. Gasser T. Wichmann T. Parkinson disease and other synucleinopathies. In: Neurobiology of Brain Disorders. 2nd ed San Diego Academic Press 2023 253 274 10.1016/B978‑0‑323‑85654‑6.00015‑0
    [Google Scholar]
  207. Bhat S. Acharya U.R. Hagiwara Y. Dadmehr N. Adeli H. Parkinson’s disease: Cause factors, measurable indicators, and early diagnosis. Comput. Biol. Med. 2018 102 234 241 10.1016/j.compbiomed.2018.09.008 30253869
    [Google Scholar]
  208. Lenze E.J. Nicol G.E. Barbour D.L. Precision clinical trials: A framework for getting to precision medicine for neurobehavioural disorders. J. Psychiatry Neurosci. 2021 46 1 E97 E110 10.1503/jpn.200042 33206039
    [Google Scholar]
  209. Bertogliat M.J. Morris-Blanco K.C. Vemuganti R. Epigenetic mechanisms of neurodegenerative diseases and acute brain injury. Neurochem. Int. 2020 133 104642 10.1016/j.neuint.2019.104642 31838024
    [Google Scholar]
  210. Xu Y. Chen Y. Xing J. Yao J. Relationship between enriched environment and neurodegeneration: A review from mechanism to therapy. Clin. Epigenetics 2025 17 1 13 10.1186/s13148‑025‑01820‑4 39849536
    [Google Scholar]
  211. Saeed S. Bonnefond A. Froguel P. Obesity: Exploring its connection to brain function through genetic and genomic perspectives. Mol. Psychiatry 2025 30 2 651 658 10.1038/s41380‑024‑02737‑9 39237720
    [Google Scholar]
  212. MacDougall G. Brown L.Y. Kantor B. Chiba-Falek O. The path to progress preclinical studies of age-related neurodegenerative diseases: A perspective on rodent and hiPSC- derived models. Mol. Ther. 2021 29 3 949 972 10.1016/j.ymthe.2021.01.001 33429080
    [Google Scholar]
  213. Sanfeliu C. Bartra C. Suñol C. Rodríguez-Farré E. New insights in animal models of neurotoxicity-induced neurodegeneration. Front. Neurosci. 2024 17 1248727 10.3389/fnins.2023.1248727 38260026
    [Google Scholar]
  214. Van Norman G.A. Phase II trials in drug development and adaptive trial design. JACC Basic Transl. Sci. 2019 4 3 428 437 10.1016/j.jacbts.2019.02.005 31312766
    [Google Scholar]
  215. Lee C.T. Bendriem R.M. Wu W.W. Shen R.F. 3D brain Organoids derived from pluripotent stem cells: Promising experimental models for brain development and neurodegenerative disorders. J. Biomed. Sci. 2017 24 1 59 10.1186/s12929‑017‑0362‑8 28822354
    [Google Scholar]
  216. Cummings J. The role of biomarkers in Alzheimer’s disease drug development. Adv. Exp. Med. Biol. 2019 1118 29 61 10.1007/978‑3‑030‑05542‑4_2 30747416
    [Google Scholar]
  217. Omar S.H. Preddy J. Advantages and pitfalls in fluid biomarkers for diagnosis of Alzheimer’s disease. J. Pers. Med. 2020 10 3 63 10.3390/jpm10030063 32708853
    [Google Scholar]
  218. Alkhalifa A.E. Al-Ghraiybah N.F. Odum J. Shunnarah J.G. Austin N. Kaddoumi A. Blood-brain barrier breakdown in Alzheimer’s disease: Mechanisms and targeted strategies. Int. J. Mol. Sci. 2023 24 22 16288 10.3390/ijms242216288 38003477
    [Google Scholar]
  219. López-Ornelas A. Jiménez A. Pérez-Sánchez G. The impairment of blood-brain barrier in Alzheimer’s disease: Challenges and opportunities with stem cells. Int. J. Mol. Sci. 2022 23 17 10136 10.3390/ijms231710136 36077533
    [Google Scholar]
  220. Niazi S.K. Non-invasive drug delivery across the blood-brain barrier: A prospective analysis. Pharmaceutics 2023 15 11 2599 10.3390/pharmaceutics15112599 38004577
    [Google Scholar]
  221. Nouri Nojadeh J. Bildiren Eryilmaz N.S. Ergüder B.I. CRISPR/Cas9 genome editing for neurodegenerative diseases. EXCLI J. 2023 22 567 582 37636024
    [Google Scholar]
  222. Bonnerjee D. Bagh S. Application of CRISPR-Cas systems in neuroscience. Prog. Mol. Biol. Transl. Sci. 2021 178 231 264 10.1016/bs.pmbts.2020.12.010 33685599
    [Google Scholar]
  223. Das B. Yan R. A close look at BACE1 inhibitors for Alzheimer’s disease treatment. CNS Drugs 2019 33 3 251 263 10.1007/s40263‑019‑00613‑7 30830576
    [Google Scholar]
  224. Hu S. Ueda M. Stetson L. A novel glycogen synthase kinase-3 inhibitor optimized for acute myeloid leukemia differentiation activity. Mol. Cancer Ther. 2016 15 7 1485 1494 10.1158/1535‑7163.MCT‑15‑0566 27196775
    [Google Scholar]
  225. Thapa R. Gupta G. Bhat A.A. A review of glycogen synthase kinase-3 (GSK3) inhibitors for cancers therapies. Int. J. Biol. Macromol. 2023 253 Pt 7 127375 10.1016/j.ijbiomac.2023.127375 37839597
    [Google Scholar]
  226. Zhao L. Zhao J. Zhong K. Tong A. Jia D. Targeted protein degradation: Mechanisms, strategies and application. Signal Transduct. Target. Ther. 2022 7 1 113 10.1038/s41392‑022‑00966‑4 35379777
    [Google Scholar]
  227. Xiao M. Zhao J. Wang Q. Liu J. Ma L. Recent advances of degradation technologies based on PROTAC mechanism. Biomolecules 2022 12 9 1257 10.3390/biom12091257 36139095
    [Google Scholar]
  228. Cummings J.L. Morstorf T. Zhong K. Alzheimer’s disease drug-development pipeline: Few candidates, frequent failures. Alzheimers Res. Ther. 2014 6 4 37 10.1186/alzrt269 25024750
    [Google Scholar]
  229. Mullard A. 2020 FDA drug approvals. Nat. Rev. Drug Discov. 2021 20 2 85 90 10.1038/d41573‑021‑00002‑0 33402709
    [Google Scholar]
  230. Torkamani A. Andersen K.G. Steinhubl S.R. Topol E.J. High-definition medicine. Cell 2017 170 5 828 843 10.1016/j.cell.2017.08.007 28841416
    [Google Scholar]
  231. Sanderson S.C. Brothers K.B. Knowledge is power? Rethinking genomic literacy in the era of personalized medicine. Genet. Med. 2020 22 6 995 1003
    [Google Scholar]
  232. Quadri M. Fang M. Current trends in neurodegenerative drug discovery and the role of artificial intelligence. J. Pharmacol. Exp. Ther. 2021 379 3 423 436
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273402657250905055635
Loading
/content/journals/cnsnddt/10.2174/0118715273402657250905055635
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test