Skip to content
2000
image of Rapamycin and Autophagy: Potential Therapeutic Approach for Parkinson's Disease Treatment

Abstract

Parkinson’s disease (PD) is a chronic, progressive neurodegenerative disorder marked by the degeneration of dopaminergic neurons in the substantia nigra, leading to characteristic motor symptoms such as bradykinesia, tremor, and rigidity, as well as a range of non-motor manifestations including cognitive impairment, mood disturbances and autonomic dysfunction. Among the multiple cellular mechanisms implicated in PD, the dysregulation of autophagy has gained significant attention in recent years. Autophagy is a crucial intracellular degradation pathway responsible for the removal of misfolded proteins and damaged organelles, processes that are particularly relevant in neurodegenerative diseases. Impairment of autophagic flux contributes to the accumulation of toxic protein aggregates and cellular stress in PD. Rapamycin, a compound originally isolated from , is a well-established inhibitor of the mechanistic target of rapamycin (mTOR), a central regulator of autophagy. Preclinical studies have shown that rapamycin can stimulate autophagic pathways by suppressing mTOR signalling, leading to increased expression of autophagy markers. These effects have been associated with reduced neuronal damage, improved motor performance and decreased accumulation of pathological proteins in PD models. This review provides an overview of current preclinical research on rapamycin’s neuroprotective potential in PD through autophagy enhancement. Although findings are promising, translating these outcomes into clinical practice necessitates a thorough understanding of rapamycin’s pharmacodynamics, optimal dosing strategies, potential side effects and long-term safety. Further research is essential to establish its therapeutic viability in human populations.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273401017250918141227
2025-10-14
2025-11-25
Loading full text...

Full text loading...

References

  1. Goyal A. Kumari A. Verma A. Chaudhary V. Agrawal V. Yadav H.N. Silent information regulator 1/peroxisome proliferator-activated receptor-γ coactivator-1α axis: A promising target for Parkinson’s and Alzheimer’s disease therapies. J. Biochem. Mol. Toxicol. 2024 38 12 e70078 10.1002/jbt.70078 39620434
    [Google Scholar]
  2. Verma A. Chaudhary S. Solanki K. Goyal A. Yadav H.N. Exendin‐4: A potential therapeutic strategy for Alzheimer’s disease and Parkinson’s disease. Chem. Biol. Drug Des. 2024 103 1 e14426 10.1111/cbdd.14426 38230775
    [Google Scholar]
  3. Tysnes O.B. Storstein A. Epidemiology of Parkinson’s disease. J. Neural Transm. 2017 124 8 901 905 10.1007/s00702‑017‑1686‑y 28150045
    [Google Scholar]
  4. Goyal A. Verma A. Agrawal A. Dubey N. Kumar A. Behl T. Therapeutic implications of crocin in Parkinson’s disease: A review of preclinical research. Chem. Biol. Drug Des. 2023 101 6 1229 1240 10.1111/cbdd.14210 36752710
    [Google Scholar]
  5. Karabiyik C. Lee M.J. Rubinsztein D.C. Autophagy impairment in Parkinson’s disease. Essays Biochem. 2017 61 6 711 720 10.1042/EBC20170023 29233880
    [Google Scholar]
  6. Deter R.L. de Duve C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J. Cell Biol. 1967 33 2 437 449 10.1083/jcb.33.2.437 4292315
    [Google Scholar]
  7. Yang Z. Klionsky D.J. An overview of the molecular mechanism of autophagy. Curr. Top. Microbiol. Immunol. 2009 335 1 32 10.1007/978‑3‑642‑00302‑8_1 19802558
    [Google Scholar]
  8. Glick D. Barth S. Macleod K.F. Autophagy: cellular and molecular mechanisms. J. Pathol. 2010 221 1 3 12 10.1002/path.2697 20225336
    [Google Scholar]
  9. Choi I. Heaton G.R. Lee Y.K. Yue Z. Regulation of α-synuclein homeostasis and inflammasome activation by microglial autophagy. Sci. Adv. 2022 8 43 eabn1298 10.1126/sciadv.abn1298 36288297
    [Google Scholar]
  10. Zhang K. Zhu S. Li J. Targeting autophagy using small-molecule compounds to improve potential therapy of Parkinson’s disease. Acta Pharm. Sin. B 2021 11 10 3015 3034 10.1016/j.apsb.2021.02.016 34729301
    [Google Scholar]
  11. Finkbeiner S. The autophagy lysosomal pathway and neurodegeneration. Cold Spring Harb. Perspect. Biol. 2020 12 3 a033993 10.1101/cshperspect.a033993 30936119
    [Google Scholar]
  12. Miller J.L. Sirolimus approved with renal transplant indication. Am. J. Health Syst. Pharm. 1999 56 21 2177 2178 10.1093/ajhp/56.21.2177 10565691
    [Google Scholar]
  13. Ruygrok P.N. Muller D.W. Serruys P.W. Rapamycin in cardiovascular medicine. Intern. Med. J. 2003 33 3 103 109 10.1046/j.1445‑5994.2003.00331.x 12603583
    [Google Scholar]
  14. Wojciechowski D. Wiseman A. Long-term immunosuppression management: opportunities and uncertainties. Clin. J. Am. Soc. Nephrol. 2021 16 8 1264 1271 10.2215/CJN.15040920 33853841
    [Google Scholar]
  15. Lupinacci S. Perri A. Toteda G. Rapamycin promotes autophagy cell death of Kaposi’s sarcoma cells through P75NTR activation. Exp. Dermatol. 2022 31 2 143 153 10.1111/exd.14438 34331820
    [Google Scholar]
  16. Sirolimus | C51H79NO13 | CID 5284616. 2024 Available from: https://pubchem.ncbi.nlm.nih.gov/compound/5284616
  17. Baker H. Sidorowicz A. Sehgal S.N. Vézina C. Rapamycin (AY-22,989), a new antifungal antibiotic. III. In vitro and in vivo evaluation. J. Antibiot. 1978 31 6 539 545 10.7164/antibiotics.31.539 28309
    [Google Scholar]
  18. Trepanier D.J. Gallant H. Legatt D.F. Yatscoff R.W. Rapamycin: distribution, pharmacokinetics and therapeutic range investigations: an update. Clin. Biochem. 1998 31 5 345 351 10.1016/S0009‑9120(98)00048‑4 9721433
    [Google Scholar]
  19. Zimmerman J.J. Kahan B.D. Pharmacokinetics of sirolimus in stable renal transplant patients after multiple oral dose administration. J. Clin. Pharmacol. 1997 37 5 405 415 10.1002/j.1552‑4604.1997.tb04318.x 9156373
    [Google Scholar]
  20. Eisenberg-Lerner A. Bialik S. Simon H-U. Kimchi A. Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ. 2009 16 7 966 975 10.1038/cdd.2009.33 19325568
    [Google Scholar]
  21. Mizushima N. Autophagy: process and function. Genes Dev. 2007 21 22 2861 2873 10.1101/gad.1599207 18006683
    [Google Scholar]
  22. Ross C.A. Poirier M.A. Protein aggregation and neurodegenerative disease. Nat. Med. 2004 10 S7 S10 S17 [Suppl. 10.1038/nm1066 15272267
    [Google Scholar]
  23. Yang Q. Wang R. Zhu L. Chaperone-Mediated Autophagy. Adv. Exp. Med. Biol. 2019 1206 435 452 10.1007/978‑981‑15‑0602‑4_20 31776997
    [Google Scholar]
  24. Wen X. Klionsky D.J. An overview of macroautophagy in yeast. J. Mol. Biol. 2016 428 9 1681 1699 10.1016/j.jmb.2016.02.021 26908221
    [Google Scholar]
  25. Wang L. Klionsky D.J. Shen H.M. The emerging mechanisms and functions of microautophagy. Nat. Rev. Mol. Cell Biol. 2023 24 3 186 203 10.1038/s41580‑022‑00529‑z 36097284
    [Google Scholar]
  26. Li W. Li J. Bao J. Microautophagy: lesser-known self-eating. Cell. Mol. Life Sci. 2012 69 7 1125 1136 10.1007/s00018‑011‑0865‑5 22080117
    [Google Scholar]
  27. Ravikumar B. Sarkar S. Davies J.E. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev. 2010 90 4 1383 1435 10.1152/physrev.00030.2009 20959619
    [Google Scholar]
  28. Maria Cuervo A. Autophagy: in sickness and in health. Trends Cell Biol. 2004 14 2 70 77 10.1016/j.tcb.2003.12.002 15102438
    [Google Scholar]
  29. Mizushima N. Levine B. Cuervo A.M. Klionsky D.J. Autophagy fights disease through cellular self-digestion. Nature 2008 451 7182 1069 1075 10.1038/nature06639 18305538
    [Google Scholar]
  30. Anglade P. Vyas S. Javoy-Agid F. Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol. Histopathol. 1997 12 1 25 31 [PMID: 9046040
    [Google Scholar]
  31. Zhu J.H. Guo F. Shelburne J. Watkins S. Chu C.T. Localization of phosphorylated ERK/MAP kinases to mitochondria and autophagosomes in Lewy body diseases. Brain Pathol. 2003 13 4 473 481 10.1111/j.1750‑3639.2003.tb00478.x 14655753
    [Google Scholar]
  32. Lizama B.N. Chu C.T. Neuronal autophagy and mitophagy in Parkinson’s disease. Mol. Aspects Med. 2021 82 100972 10.1016/j.mam.2021.100972 34130867
    [Google Scholar]
  33. Alvarez-Erviti L. Rodriguez-Oroz M.C. Cooper J.M. Chaperone-mediated autophagy markers in Parkinson disease brains. Arch. Neurol. 2010 67 12 1464 1472 10.1001/archneurol.2010.198 20697033
    [Google Scholar]
  34. Tanji K. Mori F. Kakita A. Takahashi H. Wakabayashi K. Alteration of autophagosomal proteins (LC3, GABARAP and GATE-16) in Lewy body disease. Neurobiol. Dis. 2011 43 3 690 697 10.1016/j.nbd.2011.05.022 21684337
    [Google Scholar]
  35. Sulzer D. Clues to how alpha‐synuclein damages neurons in Parkinson’s disease. Mov Disord 2010 25 S1 S27 31 (Suppl. 1) 10.1002/mds.22639 20187229
    [Google Scholar]
  36. Vekrellis K. Xilouri M. Emmanouilidou E. Rideout H.J. Stefanis L. Pathological roles of α-synuclein in neurological disorders. Lancet Neurol. 2011 10 11 1015 1025 10.1016/S1474‑4422(11)70213‑7 22014436
    [Google Scholar]
  37. Kim Y.C. Guan K.L. mTOR: a pharmacologic target for autophagy regulation. J. Clin. Invest. 2015 125 1 25 32 10.1172/JCI73939 25654547
    [Google Scholar]
  38. Laplante M. Sabatini D.M. mTOR signaling in growth control and disease. Cell 2012 149 2 274 293 10.1016/j.cell.2012.03.017 22500797
    [Google Scholar]
  39. Zoncu R. Efeyan A. Sabatini D.M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 2011 12 1 21 35 10.1038/nrm3025 21157483
    [Google Scholar]
  40. Ali S.M. Kim D-H. Guertin D.A. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 2004 14 14 1296 1302 10.1016/j.cub.2004.06.054 15268862
    [Google Scholar]
  41. Bockaert J. Marin P. mTOR in brain physiology and pathologies. Physiol. Rev. 2015 95 4 1157 1187 10.1152/physrev.00038.2014 26269525
    [Google Scholar]
  42. Dijkstra A.A. Ingrassia A. de Menezes R.X. Evidence for immune response, axonal dysfunction and reduced endocytosis in the substantia nigra in early stage Parkinson’s disease. PLoS One 2015 10 6 e0128651 10.1371/journal.pone.0128651 26087293
    [Google Scholar]
  43. Zhou Q. Liu C. Liu W. Rotenone induction of hydrogen peroxide inhibits mTOR-mediated S6K1 and 4E-BP1/eIF4E pathways, leading to neuronal apoptosis. Toxicol. Sci. 2015 143 1 81 96 10.1093/toxsci/kfu211 25304210
    [Google Scholar]
  44. Rieker C. Engblom D. Kreiner G. Nucleolar disruption in dopaminergic neurons leads to oxidative damage and parkinsonism through repression of mammalian target of rapamycin signaling. J. Neurosci. 2011 31 2 453 460 10.1523/JNEUROSCI.0590‑10.2011 21228155
    [Google Scholar]
  45. Xu Y. Liu C. Chen S. Activation of AMPK and inactivation of Akt result in suppression of mTOR-mediated S6K1 and 4E-BP1 pathways leading to neuronal cell death in in vitro models of Parkinson’s disease. Cell. Signal. 2014 26 8 1680 1689 10.1016/j.cellsig.2014.04.009 24726895
    [Google Scholar]
  46. Kim S.R. Chen X. Oo T.F. Dopaminergic pathway reconstruction by Akt/Rheb‐induced axon regeneration. Ann. Neurol. 2011 70 1 110 120 10.1002/ana.22383 21437936
    [Google Scholar]
  47. Decressac M. Björklund A. mTOR inhibition alleviates L-DOPA-induced dyskinesia in parkinsonian rats. J. Parkinsons Dis. 2013 3 1 13 17 10.3233/JPD‑120155 23938307
    [Google Scholar]
  48. Cullen V. Sardi S.P. Ng J. Acid β‐glucosidase mutants linked to gaucher disease, parkinson disease, and lewy body dementia alter α‐synuclein processing. Ann. Neurol. 2011 69 6 940 953 10.1002/ana.22400 21472771
    [Google Scholar]
  49. Pan T. Kondo S. Zhu W. Xie W. Jankovic J. Le W. Neuroprotection of rapamycin in lactacystin-induced neurodegeneration via autophagy enhancement. Neurobiol. Dis. 2008 32 1 16 25 10.1016/j.nbd.2008.06.003 18640276
    [Google Scholar]
  50. Tain L.S. Mortiboys H. Tao R.N. Ziviani E. Bandmann O. Whitworth A.J. Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nat. Neurosci. 2009 12 9 1129 1135 10.1038/nn.2372 19684592
    [Google Scholar]
  51. Santini E. Heiman M. Greengard P. Valjent E. Fisone G. Inhibition of mTOR signaling in Parkinson’s disease prevents L-DOPA-induced dyskinesia. Sci. Signal. 2009 2 80 ra36 10.1126/scisignal.2000308 19622833
    [Google Scholar]
  52. Subramaniam S. Napolitano F. Mealer R.G. Rhes, a striatal-enriched small G protein, mediates mTOR signaling and L-DOPA–induced dyskinesia. Nat. Neurosci. 2012 15 2 191 193 10.1038/nn.2994 22179112
    [Google Scholar]
  53. Malagelada C. Jin Z.H. Jackson-Lewis V. Przedborski S. Greene L.A. Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson’s disease. J. Neurosci. 2010 30 3 1166 1175 10.1523/JNEUROSCI.3944‑09.2010 20089925
    [Google Scholar]
  54. Zhang G. Yin L. Luo Z. Effects and potential mechanisms of rapamycin on MPTP-induced acute Parkinson’s disease in mice. Ann. Palliat. Med. 2021 10 3 2889 2897 10.21037/apm‑20‑1096 33549024
    [Google Scholar]
  55. Pupyshev A.B. Tikhonova M.A. Akopyan A.A. Tenditnik M.V. Dubrovina N.I. Korolenko T.A. Therapeutic activation of autophagy by combined treatment with rapamycin and trehalose in a mouse MPTP-induced model of Parkinson’s disease. Pharmacol. Biochem. Behav. 2019 177 1 11 10.1016/j.pbb.2018.12.005 30582934
    [Google Scholar]
  56. Hirschhorn T. Stockwell B.R. The development of the concept of ferroptosis. Free Radic. Biol. Med. 2019 133 130 143 10.1016/j.freeradbiomed.2018.09.043 30268886
    [Google Scholar]
  57. Park E. Chung S.W. ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Dis. 2019 10 11 822 10.1038/s41419‑019‑2064‑5 31659150
    [Google Scholar]
  58. Lee S. Hwang N. Seok B.G. Lee S. Lee S.J. Chung S.W. Autophagy mediates an amplification loop during ferroptosis. Cell Death Dis. 2023 14 7 464 10.1038/s41419‑023‑05978‑8 37491375
    [Google Scholar]
  59. Liu T. Wang P. Yin H. Rapamycin reverses ferroptosis by increasing autophagy in MPTP/MPP+-induced models of Parkinson’s disease. Neural Regen. Res. 2023 18 11 2514 2519 10.4103/1673‑5374.371381 37282484
    [Google Scholar]
  60. Liu K. Shi N. Sun Y. Zhang T. Sun X. Therapeutic effects of rapamycin on MPTP-induced Parkinsonism in mice. Neurochem. Res. 2013 38 1 201 207 10.1007/s11064‑012‑0909‑8 23117422
    [Google Scholar]
  61. Calabrese V. Di Maio A. Marino G. Rapamycin, by inhibiting mTORC1 signaling, prevents the loss of striatal bidirectional synaptic plasticity in a rat model of L-DOPA-induced dyskinesia. Front. Aging Neurosci. 2020 12 230 10.3389/fnagi.2020.00230 32848709
    [Google Scholar]
  62. Ding L. Nan W.H. Zhu X.B. Rapamycin and FK506 derivative TH2849 could ameliorate neurodegenerative diseases through autophagy with low immunosuppressive effect. CNS Neurosci. Ther. 2019 25 4 452 464 10.1111/cns.13062 30294901
    [Google Scholar]
  63. Kim C. Rockenstein E. Spencer B. Antagonizing neuronal toll-like receptor 2 prevents synucleinopathy by activating autophagy. Cell Rep. 2015 13 4 771 782 10.1016/j.celrep.2015.09.044 26489461
    [Google Scholar]
  64. Xie X. Su S. Huang Y. Cui Q. Zang W. Rapamycin protects dopaminergic neurons by suppressing TLR2 mediated neuroinflammation and enhancing autophagy in rotenone-induced PD mice. Research Square 2023
    [Google Scholar]
  65. Khan M.R. Yin X. Kang S.U. Enhanced mTORC1 signaling and protein synthesis in Parkinson’s disease pathogenesis. BioRxiv 2022 510455
    [Google Scholar]
  66. Sekiguchi A. Kanno H. Ozawa H. Yamaya S. Itoi E. Rapamycin promotes autophagy and reduces neural tissue damage and locomotor impairment after spinal cord injury in mice. J. Neurotrauma 2012 29 5 946 956 10.1089/neu.2011.1919 21806471
    [Google Scholar]
  67. Radad K. Moldzio R. Rausch W.D. Rapamycin protects dopaminergic neurons against rotenone-induced cell death in primary mesencephalic cell culture. Folia Neuropathol. 2015 3 3 250 261 10.5114/fn.2015.54426 26443316
    [Google Scholar]
  68. Pan T. Rawal P. Wu Y. Xie W. Jankovic J. Le W. Rapamycin protects against rotenone-induced apoptosis through autophagy induction. Neuroscience 2009 164 2 541 551 10.1016/j.neuroscience.2009.08.014 19682553
    [Google Scholar]
  69. Xiong N. Jia M. Chen C. Potential autophagy enhancers attenuate rotenone-induced toxicity in SH-SY5Y. Neuroscience 2011 199 292 302 10.1016/j.neuroscience.2011.10.031 22056603
    [Google Scholar]
  70. Pantazopoulou M. Brembati V. Kanellidi A. Bousset L. Melki R. Stefanis L. Distinct alpha‐Synuclein species induced by seeding are selectively cleared by the Lysosome or the Proteasome in neuronally differentiated SH‐SY5Y cells. J. Neurochem. 2021 156 6 880 896 10.1111/jnc.15174 32869336
    [Google Scholar]
  71. Liao Y.Z. Ma J. Dou J.Z. The role of TDP-43 in neurodegenerative disease. Mol. Neurobiol. 2022 59 7 4223 4241 10.1007/s12035‑022‑02847‑x 35499795
    [Google Scholar]
  72. Caccamo A. Majumder S. Deng J.J. Bai Y. Thornton F.B. Oddo S. Rapamycin rescues TDP-43 mislocalization and the associated low molecular mass neurofilament instability. J. Biol. Chem. 2009 284 40 27416 27424 10.1074/jbc.M109.031278 19651785
    [Google Scholar]
  73. Luo Q. Sun W. Wang Y.F. Li J. Li D.W. Association of p53 with Neurodegeneration in Parkinson’s Disease. Parkinsons Dis. 2022 6600944 10.1155/2022/6600944 35601652 9117072
    [Google Scholar]
  74. Du Y. Yang D. Li L. An insight into the mechanistic role of p53-mediated autophagy induction in response to proteasomal inhibition-induced neurotoxicity. Autophagy 2009 5 5 663 675 10.4161/auto.5.5.8377 19337030
    [Google Scholar]
  75. Xu H.D. Qin Z.H. Beclin 1, Bcl-2 and autophagy. Adv. Exp. Med. Biol. 2019 1206 109 126 10.1007/978‑981‑15‑0602‑4_5 31776982
    [Google Scholar]
  76. Spencer B. Potkar R. Trejo M. Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J. Neurosci. 2009 29 43 13578 13588 10.1523/JNEUROSCI.4390‑09.2009 19864570
    [Google Scholar]
  77. Li J. Kim S.G. Blenis J. Rapamycin: one drug, many effects. Cell Metab. 2014 19 3 373 379 10.1016/j.cmet.2014.01.001 24508508
    [Google Scholar]
  78. Sarkar S. Davies J.E. Huang Z. Tunnacliffe A. Rubinsztein D.C. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J. Biol. Chem. 2007 282 8 5641 5652 10.1074/jbc.M609532200 17182613
    [Google Scholar]
  79. Li N. Chang M. Zhou Q. Activation of AMPK signalling by Metformin: Implication an important molecular mechanism for protecting against mice silicosis via inhibited endothelial cell-to-mesenchymal transition by regulating oxidative stress and apoptosis. Int. Immunopharmacol. 2023 120 110321 10.1016/j.intimp.2023.110321 37192555
    [Google Scholar]
  80. Svensson J.E. Bolin M. Thor D. Evaluating the effect of rapamycin treatment in Alzheimer’s disease and aging using in vivo imaging: the ERAP phase IIa clinical study protocol. BMC Neurol. 2024 24 1 111 10.1186/s12883‑024‑03596‑1 38575854
    [Google Scholar]
  81. Bonazzi S. Goold C.P. Gray A. Discovery of a brain-penetrant ATP-competitive inhibitor of the mechanistic target of rapamycin (mTOR) for CNS disorders. J. Med. Chem. 2020 63 3 1068 1083 10.1021/acs.jmedchem.9b01398 31955578
    [Google Scholar]
  82. Wallgren H.A. Kivipelto M. Plavén-Sigray P. Svensson J.E. Pharmacokinetic analysis of intermittent rapamycin administration in early-stage Alzheimer’s disease. medRxiv 2025 10.1101/2025.03.18.25324017
    [Google Scholar]
  83. Fan Q. Aksoy O. Wong R.A. A kinase inhibitor targeted to mTORC1 drives regression in glioblastoma. Cancer Cell 2017 31 3 424 435 10.1016/j.ccell.2017.01.014 28292440
    [Google Scholar]
  84. Xu S. Yang P. Qian K. Modulating autophagic flux via ROS-responsive targeted micelles to restore neuronal proteostasis in Alzheimer’s disease. Bioact. Mater. 2022 11 300 316 10.1016/j.bioactmat.2021.09.017 34977433
    [Google Scholar]
  85. Wong Y.C. Krainc D. α-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat. Med. 2017 23 2 1 13 10.1038/nm.4269 28170377
    [Google Scholar]
  86. Hunn B.H.M. Vingill S. Threlfell S. Impairment of macroautophagy in dopamine neurons has opposing effects on Parkinsonian pathology and behavior. Cell Rep. 2019 29 4 920 931.e7 10.1016/j.celrep.2019.09.029 31644913
    [Google Scholar]
  87. Palmer J.E. Wilson N. Son S.M. Autophagy, aging, and age-related neurodegeneration. Neuron 2025 113 1 29 48 10.1016/j.neuron.2024.09.015 39406236
    [Google Scholar]
  88. Yousefi P. Ghadirian S. Mobedi M. Autophagy related genes polymorphisms in Parkinson’s Disease; A systematic review of literature. Clin Park Relat Disord 2025 12 100312 10.1016/j.prdoa.2025.100312 40093192
    [Google Scholar]
  89. Norradee C. Khwanraj K. Balit T. Dharmasaroja P. Evaluation of the combination of metformin and rapamycin in an MPP+-treated SH-SY5Y model of Parkinson’s disease. Adv. Pharmacol. Pharm. Sci. 2023 2023 1 8 10.1155/2023/3830861 36698448
    [Google Scholar]
  90. Siddiqui A. Hanson I. Andersen J.K. Mao-B elevation decreases parkin’s ability to efficiently clear damaged mitochondria: protective effects of rapamycin. Free Radic. Res. 2012 46 8 1011 1018 10.3109/10715762.2012.662277 22329629
    [Google Scholar]
  91. Park Y.S. Park J.H. Ko J. Shin I.C. Koh H.C. m TOR inhibition by rapamycin protects against deltamethrin‐induced apoptosis in PC 12 Cells. Environ. Toxicol. 2017 32 1 109 121 10.1002/tox.22216 26588882
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273401017250918141227
Loading
/content/journals/cnsnddt/10.2174/0118715273401017250918141227
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test