Skip to content
2000
image of From Anesthetic to Neuroprotector: Multi-Omics Reveals Ketamine’s Previously Unexplored Neuroprotective Role in Alzheimer’s Disease

Abstract

Introduction

Alzheimer's disease (AD) lacks effective biomarkers and disease-modifying therapies. This study explored transcriptomic dysregulation, immune-metabolic crosstalk, and drug repurposing opportunities in AD.

Methods

Transcriptomic datasets (GSE109887, GSE5281) were harmonized using batch correction. Differentially expressed genes (DEGs) were identified, and Weighted Gene Co-Expression Network Analysis (WGCNA) prioritized AD-associated modules. Machine learning (RF+LDA) validated diagnostic genes across external cohorts (GSE29378, GSE122063). Functional enrichment, immune infiltration (CIBERSORT), single-cell analysis (AlzData), Mendelian randomization (MR), and drug repurposing (DSigDB/CB-Dock2) were employed.

Results

WGCNA identified the yellow module as most AD-relevant. Machine learning prioritized 15 diagnostic genes (., , , ), achieving AUCs of 0.941 (training) and 0.715-0.910 (validation). Single-cell analysis confirmed their dysregulation in AD brains. MR revealed FIBP as a protective factor, inversely linked to AD risk. Immune profiling showed increased naive B cells and M1 macrophages in AD. Ketamine exhibited the high drug enrichment (fold enrichment = 49.12), with strong binding to CASP6 (−5.3 kcal/mol), CHRM1 (−7.8 kcal/mol), and LDHA (−6.7 kcal/mol).

Discussion

CASP6, LDHA, and CHRM1 underpin immune-metabolic dysregulation in AD. Ketamine targets these genes, suggesting therapeutic potential. FIBP’s protective role and naive B-cell shifts offer novel mechanistic insights.

Conclusion

This integrative study identifies robust diagnostic biomarkers and nominates ketamine for repurposing in AD. Experimental validation of ketamine’s neuroprotective effects and FIBP’s role is warranted.

© 2025 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273396403250825131703
2025-09-01
2025-11-13
Loading full text...

Full text loading...

/deliver/fulltext/cnsnddt/10.2174/0118715273396403250825131703/BMS-CNSNDDT-2025-HT38-7011-3.html?itemId=/content/journals/cnsnddt/10.2174/0118715273396403250825131703&mimeType=html&fmt=ahah

References

  1. 2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023 19 4 1598 1695 10.1002/alz.13016 36918389
    [Google Scholar]
  2. Long J.M. Holtzman D.M. Alzheimer disease: An update on pathobiology and treatment strategies. Cell 2019 179 2 312 339 10.1016/j.cell.2019.09.001 31564456
    [Google Scholar]
  3. Kunkle B.W. Grenier-Boley B. Sims R. Bis J.C. Damotte V. Naj A.C. Boland A. Vronskaya M. van der Lee S.J. Amlie-Wolf A. Bellenguez C. Frizatti A. Chouraki V. Martin E.R. Sleegers K. Badarinarayan N. Jakobsdottir J. Hamilton-Nelson K.L. Moreno-Grau S. Olaso R. Raybould R. Chen Y. Kuzma A.B. Hiltunen M. Morgan T. Ahmad S. Vardarajan B.N. Epelbaum J. Hoffmann P. Boada M. Beecham G.W. Garnier J.G. Harold D. Fitzpatrick A.L. Valladares O. Moutet M.L. Gerrish A. Smith A.V. Qu L. Bacq D. Denning N. Jian X. Zhao Y. Del Zompo M. Fox N.C. Choi S.H. Mateo I. Hughes J.T. Adams H.H. Malamon J. Sanchez-Garcia F. Patel Y. Brody J.A. Dombroski B.A. Naranjo M.C.D. Daniilidou M. Eiriksdottir G. Mukherjee S. Wallon D. Uphill J. Aspelund T. Cantwell L.B. Garzia F. Galimberti D. Hofer E. Butkiewicz M. Fin B. Scarpini E. Sarnowski C. Bush W.S. Meslage S. Kornhuber J. White C.C. Song Y. Barber R.C. Engelborghs S. Sordon S. Voijnovic D. Adams P.M. Vandenberghe R. Mayhaus M. Cupples L.A. Albert M.S. De Deyn P.P. Gu W. Himali J.J. Beekly D. Squassina A. Hartmann A.M. Orellana A. Blacker D. Rodriguez-Rodriguez E. Lovestone S. Garcia M.E. Doody R.S. Munoz-Fernadez C. Sussams R. Lin H. Fairchild T.J. Benito Y.A. Holmes C. Karamujić-Čomić H. Frosch M.P. Thonberg H. Maier W. Roshchupkin G. Ghetti B. Giedraitis V. Kawalia A. Li S. Huebinger R.M. Kilander L. Moebus S. Hernández I. Kamboh M.I. Brundin R. Turton J. Yang Q. Katz M.J. Concari L. Lord J. Beiser A.S. Keene C.D. Helisalmi S. Kloszewska I. Kukull W.A. Koivisto A.M. Lynch A. Tarraga L. Larson E.B. Haapasalo A. Lawlor B. Mosley T.H. Lipton R.B. Solfrizzi V. Gill M. Longstreth W.T. Jr Montine T.J. Frisardi V. Diez-Fairen M. Rivadeneira F. Petersen R.C. Deramecourt V. Alvarez I. Salani F. Ciaramella A. Boerwinkle E. Reiman E.M. Fievet N. Rotter J.I. Reisch J.S. Hanon O. Cupidi C. Andre Uitterlinden A.G. Royall D.R. Dufouil C. Maletta R.G. de Rojas I. Sano M. Brice A. Cecchetti R. George-Hyslop P.S. Ritchie K. Tsolaki M. Tsuang D.W. Dubois B. Craig D. Wu C.K. Soininen H. Avramidou D. Albin R.L. Fratiglioni L. Germanou A. Apostolova L.G. Keller L. Koutroumani M. Arnold S.E. Panza F. Gkatzima O. Asthana S. Hannequin D. Whitehead P. Atwood C.S. Caffarra P. Hampel H. Quintela I. Carracedo Á. Lannfelt L. Rubinsztein D.C. Barnes L.L. Pasquier F. Frölich L. Barral S. McGuinness B. Beach T.G. Johnston J.A. Becker J.T. Passmore P. Bigio E.H. Schott J.M. Bird T.D. Warren J.D. Boeve B.F. Lupton M.K. Bowen J.D. Proitsi P. Boxer A. Powell J.F. Burke J.R. Kauwe J.S.K. Burns J.M. Mancuso M. Buxbaum J.D. Bonuccelli U. Cairns N.J. McQuillin A. Cao C. Livingston G. Carlson C.S. Bass N.J. Carlsson C.M. Hardy J. Carney R.M. Bras J. Carrasquillo M.M. Guerreiro R. Allen M. Chui H.C. Fisher E. Masullo C. Crocco E.A. DeCarli C. Bisceglio G. Dick M. Ma L. Duara R. Graff-Radford N.R. Evans D.A. Hodges A. Faber K.M. Scherer M. Fallon K.B. Riemenschneider M. Fardo D.W. Heun R. Farlow M.R. Kölsch H. Ferris S. Leber M. Foroud T.M. Heuser I. Galasko D.R. Giegling I. Gearing M. Hüll M. Geschwind D.H. Gilbert J.R. Morris J. Green R.C. Mayo K. Growdon J.H. Feulner T. Hamilton R.L. Harrell L.E. Drichel D. Honig L.S. Cushion T.D. Huentelman M.J. Hollingworth P. Hulette C.M. Hyman B.T. Marshall R. Jarvik G.P. Meggy A. Abner E. Menzies G.E. Jin L.W. Leonenko G. Real L.M. Jun G.R. Baldwin C.T. Grozeva D. Karydas A. Russo G. Kaye J.A. Kim R. Jessen F. Kowall N.W. Vellas B. Kramer J.H. Vardy E. LaFerla F.M. Jöckel K.H. Lah J.J. Dichgans M. Leverenz J.B. Mann D. Levey A.I. Pickering-Brown S. Lieberman A.P. Klopp N. Lunetta K.L. Wichmann H.E. Lyketsos C.G. Morgan K. Marson D.C. Brown K. Martiniuk F. Medway C. Mash D.C. Nöthen M.M. Masliah E. Hooper N.M. McCormick W.C. Daniele A. McCurry S.M. Bayer A. McDavid A.N. Gallacher J. McKee A.C. van den Bussche H. Mesulam M. Brayne C. Miller B.L. Riedel-Heller S. Miller C.A. Miller J.W. Al-Chalabi A. Morris J.C. Shaw C.E. Myers A.J. Wiltfang J. O’Bryant S. Olichney J.M. Alvarez V. Parisi J.E. Singleton A.B. Paulson H.L. Collinge J. Perry W.R. Mead S. Peskind E. Cribbs D.H. Rossor M. Pierce A. Ryan N.S. Poon W.W. Nacmias B. Potter H. Sorbi S. Quinn J.F. Sacchinelli E. Raj A. Spalletta G. Raskind M. Caltagirone C. Bossù P. Orfei M.D. Reisberg B. Clarke R. Reitz C. Smith A.D. Ringman J.M. Warden D. Roberson E.D. Wilcock G. Rogaeva E. Bruni A.C. Rosen H.J. Gallo M. Rosenberg R.N. Ben-Shlomo Y. Sager M.A. Mecocci P. Saykin A.J. Pastor P. Cuccaro M.L. Vance J.M. Schneider J.A. Schneider L.S. Slifer S. Seeley W.W. Smith A.G. Sonnen J.A. Spina S. Stern R.A. Swerdlow R.H. Tang M. Tanzi R.E. Trojanowski J.Q. Troncoso J.C. Van Deerlin V.M. Van Eldik L.J. Vinters H.V. Vonsattel J.P. Weintraub S. Welsh-Bohmer K.A. Wilhelmsen K.C. Williamson J. Wingo T.S. Woltjer R.L. Wright C.B. Yu C.E. Yu L. Saba Y. Pilotto A. Bullido M.J. Peters O. Crane P.K. Bennett D. Bosco P. Coto E. Boccardi V. De Jager P.L. Lleo A. Warner N. Lopez O.L. Ingelsson M. Deloukas P. Cruchaga C. Graff C. Gwilliam R. Fornage M. Goate A.M. Sanchez-Juan P. Kehoe P.G. Amin N. Ertekin-Taner N. Berr C. Debette S. Love S. Launer L.J. Younkin S.G. Dartigues J.F. Corcoran C. Ikram M.A. Dickson D.W. Nicolas G. Campion D. Tschanz J. Schmidt H. Hakonarson H. Clarimon J. Munger R. Schmidt R. Farrer L.A. Van Broeckhoven C. C O’Donovan M. DeStefano A.L. Jones L. Haines J.L. Deleuze J.F. Owen M.J. Gudnason V. Mayeux R. Escott-Price V. Psaty B.M. Ramirez A. Wang L.S. Ruiz A. van Duijn C.M. Holmans P.A. Seshadri S. Williams J. Amouyel P. Schellenberg G.D. Lambert J.C. Pericak-Vance M.A. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 2019 51 3 414 430 10.1038/s41588‑019‑0358‑2 30820047
    [Google Scholar]
  4. De Jager P.L. Ma Y. McCabe C. Xu J. Vardarajan B.N. Felsky D. Klein H.U. White C.C. Peters M.A. Lodgson B. Nejad P. Tang A. Mangravite L.M. Yu L. Gaiteri C. Mostafavi S. Schneider J.A. Bennett D.A. A multi-omic atlas of the human frontal cortex for aging and Alzheimer’s disease research. Sci. Data 2018 5 1 180142 10.1038/sdata.2018.142 30084846
    [Google Scholar]
  5. Leng F. Edison P. Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here? Nat. Rev. Neurol. 2021 17 3 157 172 10.1038/s41582‑020‑00435‑y 33318676
    [Google Scholar]
  6. Zhang B. Gaiteri C. Bodea L.G. Wang Z. McElwee J. Podtelezhnikov A.A. Zhang C. Xie T. Tran L. Dobrin R. Fluder E. Clurman B. Melquist S. Narayanan M. Suver C. Shah H. Mahajan M. Gillis T. Mysore J. MacDonald M.E. Lamb J.R. Bennett D.A. Molony C. Stone D.J. Gudnason V. Myers A.J. Schadt E.E. Neumann H. Zhu J. Emilsson V. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell 2013 153 3 707 720 10.1016/j.cell.2013.03.030 23622250
    [Google Scholar]
  7. Mathys H. Davila-Velderrain J. Peng Z. Gao F. Mohammadi S. Young J.Z. Menon M. He L. Abdurrob F. Jiang X. Martorell A.J. Ransohoff R.M. Hafler B.P. Bennett D.A. Kellis M. Tsai L.H. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 2019 570 7761 332 337 10.1038/s41586‑019‑1195‑2 31042697
    [Google Scholar]
  8. Wan Y.W. Al-Ouran R. Mangleburg C.G. Perumal T.M. Lee T.V. Allison K. Swarup V. Funk C.C. Gaiteri C. Allen M. Wang M. Neuner S.M. Kaczorowski C.C. Philip V.M. Howell G.R. Martini-Stoica H. Zheng H. Mei H. Zhong X. Kim J.W. Dawson V.L. Dawson T.M. Pao P.C. Tsai L.H. Haure-Mirande J.V. Ehrlich M.E. Chakrabarty P. Levites Y. Wang X. Dammer E.B. Srivastava G. Mukherjee S. Sieberts S.K. Omberg L. Dang K.D. Eddy J.A. Snyder P. Chae Y. Amberkar S. Wei W. Hide W. Preuss C. Ergun A. Ebert P.J. Airey D.C. Mostafavi S. Yu L. Klein H.U. Carter G.W. Collier D.A. Golde T.E. Levey A.I. Bennett D.A. Estrada K. Townsend T.M. Zhang B. Schadt E. De Jager P.L. Price N.D. Ertekin-Taner N. Liu Z. Shulman J.M. Mangravite L.M. Logsdon B.A. Meta-analysis of the Alzheimer’s disease human brain transcriptome and functional dissection in mouse models. Cell Rep. 2020 32 2 107908 10.1016/j.celrep.2020.107908 32668255
    [Google Scholar]
  9. Langfelder P. Horvath S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics 2008 9 1 559 10.1186/1471‑2105‑9‑559 19114008
    [Google Scholar]
  10. Lv J.H. Hou A.J. Zhang S.H. Dong J.J. Kuang H.X. Yang L. Jiang H. WGCNA combined with machine learning to find potential biomarkers of liver cancer. Medicine 2023 102 50 e36536 10.1097/MD.0000000000036536 38115320
    [Google Scholar]
  11. Huang Y. Wang A. Wang F. Xu Y. Zhang W. Shi F. Wang S. Screening of key immune - related gene in Parkinson ' s disease based on WGCNA and machine learning. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2024 49 2 207 219 10.11817/j.issn.1672‑7347.2024.230307 38755717
    [Google Scholar]
  12. Gate D. Tapp E. Leventhal O. Shahid M. Nonninger T.J. Yang A.C. Strempfl K. Unger M.S. Fehlmann T. Oh H. Channappa D. Henderson V.W. Keller A. Aigner L. Galasko D.R. Davis M.M. Poston K.L. Wyss-Coray T. CD4 + T cells contribute to neurodegeneration in Lewy body dementia. Science 2021 374 6569 868 874 10.1126/science.abf7266 34648304
    [Google Scholar]
  13. Gerrits E. Giannini L.A.A. Brouwer N. Melhem S. Seilhean D. Le Ber I. Kamermans A. Kooij G. de Vries H.E. Boddeke E.W.G.M. Seelaar H. van Swieten J.C. Eggen B.J.L. Neurovascular dysfunction in GRN-associated frontotemporal dementia identified by single-nucleus RNA sequencing of human cerebral cortex. Nat. Neurosci. 2022 25 8 1034 1048 10.1038/s41593‑022‑01124‑3 35879464
    [Google Scholar]
  14. Porcu E. Rüeger S. Lepik K. Agbessi M. Ahsan H. Alves I. Andiappan A. Arindrarto W. Awadalla P. Battle A. Beutner F. Jan Bonder M. Boomsma D. Christiansen M. Claringbould A. Deelen P. Esko T. Favé M-J. Franke L. Frayling T. Gharib S.A. Gibson G. Heijmans B.T. Hemani G. Jansen R. Kähönen M. Kalnapenkis A. Kasela S. Kettunen J. Kim Y. Kirsten H. Kovacs P. Krohn K. Kronberg-Guzman J. Kukushkina V. Lee B. Lehtimäki T. Loeffler M. Marigorta U.M. Mei H. Milani L. Montgomery G.W. Müller-Nurasyid M. Nauck M. Nivard M. Penninx B. Perola M. Pervjakova N. Pierce B.L. Powell J. Prokisch H. Psaty B.M. Raitakari O.T. Ripatti S. Rotzschke O. Saha A. Scholz M. Schramm K. Seppälä I. Slagboom E.P. Stehouwer C.D.A. Stumvoll M. Sullivan P. ’t Hoen P.A.C. Teumer A. Thiery J. Tong L. Tönjes A. van Dongen J. van Iterson M. van Meurs J. Veldink J.H. Verlouw J. Visscher P.M. Völker U. Võsa U. Westra H-J. Wijmenga C. Yaghootkar H. Yang J. Zeng B. Zhang F. Arindrarto W. Beekman M. Boomsma D.I. Bot J. Deelen J. Deelen P. Franke L. Heijmans B.T. ’t Hoen P.A.C. Hofman B.A. Hottenga J.J. Isaacs A. Bonder M.J. Jhamai P.M. Jansen R. Kielbasa S.M. Lakenberg N. Luijk R. Mei H. Moed M. Nooren I. Pool R. Schalkwijk C.G. Slagboom P.E. Stehouwer C.D.A. Suchiman H.E.D. Swertz M.A. Tigchelaar E.F. Uitterlinden A.G. van den Berg L.H. van der Breggen R. van der Kallen C.J.H. van Dijk F. van Dongen J. van Duijn C.M. van Galen M. van Greevenbroek M.M.J. van Heemst D. van Iterson M. van Meurs J. van Rooij J. van’t Hof P. van Zwet E.W. Vermaat M. Veldink J.H. Verbiest M. Verkerk M. Wijmenga C. Zhernakova D.V. Zhernakova S. Santoni F.A. Reymond A. Kutalik Z. Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits. Nat. Commun. 2019 10 1 3300 10.1038/s41467‑019‑10936‑0 31341166
    [Google Scholar]
  15. Cummings J. Zhou Y. Lee G. Zhong K. Fonseca J. Cheng F. Alzheimer’s disease drug development pipeline: 2023. Alzheimers Dement. 2023 9 2 e12385 10.1002/trc2.12385 37251912
    [Google Scholar]
  16. Reardon S. FDA approves Alzheimer’s drug lecanemab amid safety concerns. Nature 2023 613 7943 227 228 10.1038/d41586‑023‑00030‑3 36627422
    [Google Scholar]
  17. Zanos P. Moaddel R. Morris P.J. Georgiou P. Fischell J. Elmer G.I. Alkondon M. Yuan P. Pribut H.J. Singh N.S. Dossou K.S.S. Fang Y. Huang X.P. Mayo C.L. Wainer I.W. Albuquerque E.X. Thompson S.M. Thomas C.J. Zarate C.A. Jr Gould T.D. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 2016 533 7604 481 486 10.1038/nature17998 27144355
    [Google Scholar]
  18. Fava M. Freeman M.P. Flynn M. Judge H. Hoeppner B.B. Cusin C. Ionescu D.F. Mathew S.J. Chang L.C. Iosifescu D.V. Murrough J. Debattista C. Schatzberg A.F. Trivedi M.H. Jha M.K. Sanacora G. Wilkinson S.T. Papakostas G.I. Double-blind, placebo-controlled, dose-ranging trial of intravenous ketamine as adjunctive therapy in treatment-resistant depression (TRD). Mol. Psychiatry 2020 25 7 1592 1603 10.1038/s41380‑018‑0256‑5 30283029
    [Google Scholar]
  19. Pinzi L. Rastelli G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci. 2019 20 18 4331 10.3390/ijms20184331 31487867
    [Google Scholar]
  20. Ritchie M.E. Phipson B. Wu D. Hu Y. Law C.W. Shi W. Smyth G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015 43 7 e47 10.1093/nar/gkv007 25605792
    [Google Scholar]
  21. Leek J.T. Johnson W.E. Parker H.S. Jaffe A.E. Storey J.D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 2012 28 6 882 883 10.1093/bioinformatics/bts034 22257669
    [Google Scholar]
  22. Zhou W. Li H. Zhang J. Liu C. Liu D. Chen X. Ouyang J. Zeng T. Peng S. Ouyang F. Long Y. Li Y. Identification and mechanism analysis of biomarkers related to butyrate metabolism in COVID-19 patients. Ann. Med. 2025 57 1 2477301 10.1080/07853890.2025.2477301 40074706
    [Google Scholar]
  23. Dreyer A. Masanta W.O. Lugert R. Bohne W. Groß U. Leha A. Dakna M. Lenz C. Zautner A.E. Proteome profiling of Campylobacter jejuni 81–176 at 37 °C and 42 °C by label-free mass spectrometry. BMC Microbiol. 2024 24 1 191 10.1186/s12866‑024‑03348‑8 38822261
    [Google Scholar]
  24. Zhang H. Zhang J. Xu Q. Wang D. Di H. Huang J. Yang X. Wang Z. Zhang L. Dong L. Wang Z. Zhou Y. Identification of candidate tolerance genes to low-temperature during maize germination by GWAS and RNA-seq approaches. BMC Plant Biol. 2020 20 1 333 10.1186/s12870‑020‑02543‑9 32664856
    [Google Scholar]
  25. Zhang X. Xu M. Cai S. Chen B. Lin H. Liu Z. Effects of astaxanthin on microRNA expression in a rat cardiomyocyte anoxia-reoxygenation model. Front. Pharmacol. 2023 14 1103971 10.3389/fphar.2023.1103971 36817156
    [Google Scholar]
  26. Zhang B Horvath S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 2005 4 Article17 10.2202/1544‑6115.1128 16646834
    [Google Scholar]
  27. Keefe M.S. Luk H.Y. Rolloque J.J. Jiwan N.C. Sekiguchi Y. Hydration assessment in males and females using the WUT (Weight, Urine Color, and Thirst) venn diagram compared to blood and urinary indices. Nutrients 2025 17 4 689 10.3390/nu17040689 40005016
    [Google Scholar]
  28. Zheng L. Wei Z. Ni X. Shang J. Liu F. Peng Y. Liu J. Li Y. Exploring the therapeutic potential of Xiangsha Liujunzi Wan in Crohn’s disease: From network pharmacology approach to experimental validation. J. Ethnopharmacol. 2025 337 Pt 2 118863 10.1016/j.jep.2024.118863 39343107
    [Google Scholar]
  29. Liu X. Zheng Y. Meng Z. Wang H. Zhang Y. Xue D. Gene regulation of neutrophils mediated liver and lung injury through NETosis in acute pancreatitis. Inflammation 2024 48 1 393 411 10.1007/s10753‑024‑02071‑w 38884700
    [Google Scholar]
  30. Wu Z. Dai Z. Feng Z. Qiu Y. Zhu Z. Xu L. Genome-wide methylation association study in monozygotic twins discordant for curve severity of adolescent idiopathic scoliosis. Spine J. 2025 25 4 785 796 10.1016/j.spinee.2024.10.015 39515527
    [Google Scholar]
  31. Yu G. Wang L.G. Han Y. He Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012 16 5 284 287 10.1089/omi.2011.0118 22455463
    [Google Scholar]
  32. Gu Z. Hübschmann D. SimplifyEnrichment: A bioconductor package for clustering and visualizing functional enrichment results. Genomics Proteomics Bioinform. 2023 21 1 190 202 10.1016/j.gpb.2022.04.008 35680096
    [Google Scholar]
  33. Sayols S. rrvgo: A Bioconductor package for interpreting lists of Gene Ontology terms. MicroPubl. Biol. 2023 Apr 18 2023 10.17912/micropub.biology.000811 10.17912/micropub.biology.000811 37151216
    [Google Scholar]
  34. Chen W. Miao J. Chen J. Chen J. Development of machine learning models for diagnostic biomarker identification and immune cell infiltration analysis in PCOS. J. Ovarian Res. 2025 18 1 1 10.1186/s13048‑024‑01583‑1 39754246
    [Google Scholar]
  35. Li P. Li M. Chen W.H. Best practices for developing microbiome-based disease diagnostic classifiers through machine learning. Gut Microbes 2025 17 1 2489074 10.1080/19490976.2025.2489074 40186338
    [Google Scholar]
  36. Charif D. Thioulouse J. Lobry J.R. Perrière G. Online synonymous codon usage analyses with the ade4 and seqinR packages. Bioinformatics 2005 21 4 545 547 10.1093/bioinformatics/bti037 15374859
    [Google Scholar]
  37. Yang L. Qu Q. Hao Z. Sha K. Li Z. Li S. Powerful identification of large quantitative trait loci using genome-Wide R/glmnet-based regression. J. Hered. 2022 113 4 472 478 10.1093/jhered/esac006 35134967
    [Google Scholar]
  38. Meng Q. Bao D. Liu S. Huang J. Guo M. Dai B. Ding L. Xie S. Meng M. Lv C. He W. Luo H. Zhu H. ADAM Metallopeptidase domain 19 promotes skin fibrosis in systemic sclerosis via neuregulin-1. Mol. Med. 2024 30 1 269 10.1186/s10020‑024‑01047‑8 39716051
    [Google Scholar]
  39. Wei C. Wei Y. Cheng J. Tan X. Zhou Z. Lin S. Pang L. Identification and verification of diagnostic biomarkers in recurrent pregnancy loss via machine learning algorithm and WGCNA. Front. Immunol. 2023 14 1241816 10.3389/fimmu.2023.1241816 37691920
    [Google Scholar]
  40. Robin X. Turck N. Hainard A. Tiberti N. Lisacek F. Sanchez J.C. Müller M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 2011 12 1 77 10.1186/1471‑2105‑12‑77 21414208
    [Google Scholar]
  41. Tang X. Zhang S. Wang Z. Liu J. Ying Z. ProcData: An R package for process data analysis. Psychometrika 2021 86 4 1058 1083 10.1007/s11336‑021‑09798‑7 34382131
    [Google Scholar]
  42. Luke A.M. Rezallah N.N.F. Accuracy of artificial intelligence in caries detection: A systematic review and meta-analysis. Head Face Med. 2025 21 1 24 10.1186/s13005‑025‑00496‑8 40181403
    [Google Scholar]
  43. Kruchten N. McNutt A.M. McGuffin M.J. Metrics-based evaluation and comparison of visualization notations. IEEE Trans. Vis. Comput. Graph. 2024 30 1 425 435 10.1109/TVCG.2023.3326907 37874719
    [Google Scholar]
  44. Janssen SMW Bouzembrak Y Yalcin N Tekinerdogan B Machine learning models for predicting malnutrition in NICU patients: A comprehensive benchmarking study. Comput. Biol. Med. 2025 192 Pt B 110326 10.1016/j.compbiomed.2025.110326 40339523
    [Google Scholar]
  45. Zhang K. Xie H. Zhao F. Huang Y. Identification of the gene signatures related to NK/T cell communication to evaluate the tumor microenvironment and prognostic outcomes of patients with prostate adenocarcinoma. Front. Immunol. 2025 16 1564784 10.3389/fimmu.2025.1564784 40308606
    [Google Scholar]
  46. Bian J. Xiong W. Yang Z. Li M. Song D. Zhang Y. Liu C. Identification and prognostic biomarkers among ZDHHC4/12/18/24, and APT2 in lung adenocarcinoma. Sci. Rep. 2024 14 1 522 10.1038/s41598‑024‑51182‑9 38177255
    [Google Scholar]
  47. Hu Y. Yu Y. Dong H. Jiang W. Identifying C1QB, ITGAM, and ITGB2 as potential diagnostic candidate genes for diabetic nephropathy using bioinformatics analysis. PeerJ 2023 11 e15437 10.7717/peerj.15437 37250717
    [Google Scholar]
  48. Wang X. Ning Y. Zhang P. Li C. Zhou R. Guo X. Hair multi-bioelement profile of Kashin-Beck disease in the endemic regions of China. J. Trace Elem. Med. Biol. 2019 54 79 97 10.1016/j.jtemb.2019.04.002 31109624
    [Google Scholar]
  49. Franz M. Rodriguez H. Lopes C. Zuberi K. Montojo J. Bader G.D. Morris Q. GeneMANIA update 2018. Nucleic Acids Res. 2018 46 W1 W60 W64 10.1093/nar/gky311 29912392
    [Google Scholar]
  50. Zhao F. Chen M. Wu T. Ji M. Li F. Integration of single-cell and bulk RNA sequencing to identify a distinct tumor stem cells and construct a novel prognostic signature for evaluating prognosis and immunotherapy in LUAD. J. Transl. Med. 2025 23 1 222 10.1186/s12967‑025‑06243‑6 39987127
    [Google Scholar]
  51. Izuka S. Komai T. Itamiya T. Ota M. Nagafuchi Y. Shoda H. Matsuki K. Yamamoto K. Okamura T. Fujio K. Machine learning–driven immunophenotypic stratification of mixed connective tissue disease, corroborating the clinical heterogeneity. Rheumatology 2025 64 3 1409 1416 10.1093/rheumatology/keae158 38479808
    [Google Scholar]
  52. Kiser J.N. Seabury C.M. Neupane M. Moraes J.G.N. Herrick A.L. Dalton J. Burns G.W. Spencer T.E. Neibergs H.L. Validation of loci and genes associated with fertility in Holstein cows using gene-set enrichment analysis-SNP and genotype-by-sequencing. BMC Genomics 2025 26 1 174 10.1186/s12864‑025‑11364‑9 39984840
    [Google Scholar]
  53. Zhang E. Ma Y. Liu Z. Zhang J. Liu W. Chen Y. Liu G. Liu X. Zhang F. Zhu Y. Yang Y. Tian X. Prognostic implications and characterization of tumor-associated tertiary lymphoid structures genes in pancreatic cancer. J. Transl. Med. 2025 23 1 301 10.1186/s12967‑025‑06152‑8 40065365
    [Google Scholar]
  54. Liao Y. Chen J. Yao H. Zheng T. Tu J. Chen W. Guo Z. Zou Y. Wen L. Xie X. Single-cell profiling of SLC family transporters: Uncovering the role of SLC7A1 in osteosarcoma. J. Transl. Med. 2025 23 1 103 10.1186/s12967‑025‑06086‑1 39844299
    [Google Scholar]
  55. Ding Y. Deng A. Yu H. Zhang H. Qi T. He J. He C. Jie H. Wang Z. Wu L. Integrative multi-omics analysis of Crohn’s disease and metabolic syndrome: Unveiling the underlying molecular mechanisms of comorbidity. Comput. Biol. Med. 2025 184 109365 10.1016/j.compbiomed.2024.109365 39541897
    [Google Scholar]
  56. Zhao Z. Chang T. Liu X. Zhang X. Liu X. Zhang Y. Chen J. Zhang Y. Lu M. Association between dietary intakes and pregnancy complications: A two-sample Mendelian randomization analysis. BMC Pregnancy Childbirth 2025 25 1 286 10.1186/s12884‑025‑07385‑7 40087593
    [Google Scholar]
  57. Shi C. Ou X. Lei X. Huang L. Xu S. Li W. Zhao X. Myeloid dendritic cells and periodontal disease association: Integrated study of single-cell sequencing and Mendelian randomization analysis. Front. Immunol. 2025 15 1522281 10.3389/fimmu.2024.1522281 39830509
    [Google Scholar]
  58. McCarthy D.J. Humburg P. Kanapin A. Rivas M.A. Gaulton K. Cazier J.B. Donnelly P. Choice of transcripts and software has a large effect on variant annotation. Genome Med. 2014 6 3 26 10.1186/gm543 24944579
    [Google Scholar]
  59. Wang E. Li S. Li Y. Zhou T. HMOX1 as a potential drug target for upper and lower airway diseases: Insights from multi-omics analysis. Respir. Res. 2025 26 1 41 10.1186/s12931‑025‑03124‑w 39871287
    [Google Scholar]
  60. Xu W. Zhang T. Zhu Z. Yang Y. The association between immune cells and breast cancer: Insights from Mendelian randomization and meta‐analysis. Int. J. Surg. 2025 111 1 230 241 10.1097/JS9.0000000000001840 38935111
    [Google Scholar]
  61. Zhou L. Gao H. Zhang J. Xu Q. Wang Q. Wang L. Tan Y. Luo Z. Zhou J. Shuai H. Cai X. Zheng Y. Wang S. Duan X. Wu T. Metabolic syndrome and cancer risk: A two-sample Mendelian randomization study of European ancestry. Int. J. Surg. 2025 111 1 311 321 10.1097/JS9.0000000000001926 39051916
    [Google Scholar]
  62. Sheng M. Cui X. A machine learning-based diagnostic model for myocardial infarction patients: Analysis of neutrophil extracellular traps-related genes and eQTL Mendelian randomization. Medicine 2024 103 12 e37363 10.1097/MD.0000000000037363 38518057
    [Google Scholar]
  63. Liu Y. Yang X. Gan J. Chen S. Xiao Z.X. Cao Y. CB-Dock2: Improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 2022 50 W1 W159 W164 10.1093/nar/gkac394 35609983
    [Google Scholar]
  64. Yang X. Liu Y. Gan J. Xiao Z.X. Cao Y. FitDock: Protein–ligand docking by template fitting. Brief. Bioinform. 2022 23 3 bbac087 10.1093/bib/bbac087 35289358
    [Google Scholar]
  65. Heneka M.T. van der Flier W.M. Jessen F. Hoozemanns J. Thal D.R. Boche D. Neuroinflammation in Alzheimer disease. Nat. Rev. Immunol. 2025 25 5 321 352 10.1038/s41577‑024‑01104‑7 39653749
    [Google Scholar]
  66. Wang X.J. Cao Q. Zhang Y. Su X.D. Activation and regulation of caspase-6 and its role in neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 2015 55 1 553 572 10.1146/annurev‑pharmtox‑010814‑124414 25340928
    [Google Scholar]
  67. Fu W. Jhamandas J.H. Role of astrocytic glycolytic metabolism in Alzheimer’s disease pathogenesis. Biogerontology 2014 15 6 579 586 10.1007/s10522‑014‑9525‑0 25106114
    [Google Scholar]
  68. Bennett F.C. Liddelow S.A. Microglia metabolic breakdown drives Alzheimer’s pathology. Cell Metab. 2019 30 3 405 406 10.1016/j.cmet.2019.08.017 31484050
    [Google Scholar]
  69. Miron V.V. Assmann C.E. Mostardeiro V.B. da Silveira M.V. Copetti P.M. Bissacotti B.F. Schirmann A.A. Castro M.F.V. Gutierres J.M. da Cruz Fernandes M. Viero F.T. Morsch V.M. Schetinger M.R.C. Cardoso A.M. Neuroprotective effect of long‐term resistance physical exercise against memory damage elicited by a lipopolysaccharide‐induced neuroinflammation model in male rats. J. Neurosci. Res. 2024 102 8 e25370 10.1002/jnr.25370 39158105
    [Google Scholar]
  70. Maeda Y. Hizawa N. Jinushi E. Honda A. Takahashi D. Fukui Y. Konno S. Shimizu T. Shimizu H. Yamaguchi E. Nishimura M. Polymorphisms in the muscarinic receptor 1 gene confer susceptibility to asthma in Japanese subjects. Am. J. Respir. Crit. Care Med. 2006 174 10 1119 1124 10.1164/rccm.200601‑081OC 16931638
    [Google Scholar]
  71. Wei J. Lei G. Chen Q. Huang W. Ning H. Yang M. Dong J. Hu L. Peng S. Gong H. Yuan M. Yuan P. Casticin inhibits proliferation of non-small cell lung cancer cells through regulating reprogramming of glucose metabolism. Phytomedicine 2025 136 156278 10.1016/j.phymed.2024.156278 39647464
    [Google Scholar]
  72. Hu Y. Tang S. Zhao W. Wang S. Sun C. Chen B. Zhu Y. Dietary ferulic acid improves growth performance of broilers via enhanced intestinal antioxidant capacity and barrier function. Anim. Biosci. 2025 38 1 106 116 10.5713/ab.23.0487 38665075
    [Google Scholar]
  73. Williams J.K. Ngo J.M. Lehman I.M. Schekman R. Annexin A6 mediates calcium-dependent exosome secretion during plasma membrane repair. eLife 2023 12 e86556 10.7554/eLife.86556 37204294
    [Google Scholar]
  74. Liu M. Wang C. Huo L. Cao J. Mao X. He Z. Hu C. Sun H. Deng W. He W. Chen Y. Gu M. Liao J. Guo N. He X. Wu Q. Chen J. Zhang L. Wang X. Shang C. Dong J. Complexin-1 enhances ultrasound neurotransmission in the mammalian auditory pathway. Nat. Genet. 2024 56 7 1503 1515 10.1038/s41588‑024‑01781‑z 38834904
    [Google Scholar]
  75. Li J. Liu C. Zhao B. Collapsin response mediator protein 1 (CRMP1) is required for high-frequency hearing. Am. J. Pathol. 2022 192 5 805 812 10.1016/j.ajpath.2022.01.011 35181334
    [Google Scholar]
  76. Mohammad Shehata I. Masood W. Nemr N. Anderson A. Bhusal K. Edinoff A.N. Cornett E.M. Kaye A.M. Kaye A.D. The possible application of ketamine in the treatment of depression in Alzheimer’s disease. Neurol. Int. 2022 14 2 310 321 10.3390/neurolint14020025 35466206
    [Google Scholar]
  77. Ribeiro F.C. Cozachenco D. Argyrousi E.K. Staniszewski A. Wiebe S. Calixtro J.D. Soares-Neto R. Al-Chami A. Sayegh F.E. Bermudez S. Arsenault E. Cossenza M. Lacaille J.C. Nader K. Sun H. De Felice F.G. Lourenco M.V. Arancio O. Aguilar-Valles A. Sonenberg N. Ferreira S.T. The ketamine metabolite ( 2R,6R )‐hydroxynorketamine rescues hippocampal mRNA translation, synaptic plasticity and memory in mouse models of Alzheimer’s disease. Alzheimers Dement. 2024 20 8 5398 5410 10.1002/alz.14034 38934107
    [Google Scholar]
  78. Smalheiser N.R. Ketamine: A neglected therapy for Alzheimer disease. Front. Aging Neurosci. 2019 11 186 10.3389/fnagi.2019.00186 31396078
    [Google Scholar]
  79. Wallings R. McFarland K. Staley H. Neighbarger N. Schaake S. Brueggemann N. The R1441C-LRRK2 mutation induces myeloid immune cell exhaustion in an age- and sex-dependent manner. bioRxiv 2024 10.1101/2023.10.12.562063
    [Google Scholar]
  80. Du W. Yu S. Liu R. Kong Q. Hao X. Liu Y. Precision prediction of Alzheimer’s disease: Integrating mitochondrial energy metabolism and immunological insights. J. Mol. Neurosci. 2025 75 1 5 10.1007/s12031‑024‑02291‑7 39806062
    [Google Scholar]
  81. Jung E.S. Suh K. Han J. Kim H. Kang H.S. Choi W.S. Mook-Jung I. Amyloid‐β activates NLRP3 inflammasomes by affecting microglial immunometabolism through the Syk‐AMPK pathway. Aging Cell 2022 21 5 e13623 10.1111/acel.13623 35474599
    [Google Scholar]
  82. Song T. Song X. Zhu C. Patrick R. Skurla M. Santangelo I. Green M. Harper D. Ren B. Forester B.P. Öngür D. Du F. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer’s disease: A meta-analysis of in vivo magnetic resonance spectroscopy studies. Ageing Res. Rev. 2021 72 101503 10.1016/j.arr.2021.101503 34751136
    [Google Scholar]
  83. Depp C. Sun T. Sasmita A.O. Spieth L. Berghoff S.A. Nazarenko T. Overhoff K. Steixner-Kumar A.A. Subramanian S. Arinrad S. Ruhwedel T. Möbius W. Göbbels S. Saher G. Werner H.B. Damkou A. Zampar S. Wirths O. Thalmann M. Simons M. Saito T. Saido T. Krueger-Burg D. Kawaguchi R. Willem M. Haass C. Geschwind D. Ehrenreich H. Stassart R. Nave K.A. Myelin dysfunction drives amyloid-β deposition in models of Alzheimer’s disease. Nature 2023 618 7964 349 357 10.1038/s41586‑023‑06120‑6 37258678
    [Google Scholar]
  84. Li T. Lu L. Pember E. Li X. Zhang B. Zhu Z. New insights into neuroinflammation involved in pathogenic mechanism of Alzheimer’s disease and its potential for therapeutic intervention. Cells 2022 11 12 1925 10.3390/cells11121925 35741054
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273396403250825131703
Loading
/content/journals/cnsnddt/10.2174/0118715273396403250825131703
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test