Skip to content
2000
image of Development of Ergosterol Nanoliposome-based Delivery System Pertaining Toxicity Evaluation and Therapeutic Potential for Alzheimer’s Disease

Abstract

Introduction

Alzheimer’s disease (AD), a debilitating neurodegenerative disorder, presents a growing global health challenge due to limited therapeutic options. Ergosterol, known for its neuroprotective and antioxidant properties, suffers from poor bioavailability. This study aimed to develop ergosterol-loaded nanoliposomes (ER-NL-2) and evaluate their safety, antioxidant potential, and therapeutic efficacy in animal models of AD.

Methods

ER-NL-2 was formulated using the ultrasonic thin-film dispersion method and characterized dynamic light scattering (DLS), zeta potential, and TEM. Acute oral toxicity was assessed in Wistar rats and Swiss mice (2000 mg/kg). Two AD models were employed: Streptozotocin (STZ)-induced in Swiss albino mice and AlCl-induced in Wistar albino rats. Behavioral studies included actophotometer and elevated plus maze tests. Antioxidant assays measured SOD, CAT, GSH, and LPO levels. Histopathological analysis of brain tissue was conducted.

Results

ER-NL-2 exhibited a mean droplet size of ~180 nm, PDI <0.3, and zeta potential of -27.9 mV. TEM confirmed spherical morphology. Toxicity studies showed no abnormalities. In both AD models, ER-NL-2 improved locomotor activity and reduced transfer latency. Biochemical analyses revealed elevated SOD, CAT, GSH and reduced LPO levels. Histopathology showed preserved neuronal integrity and reduced neurofibrillary tangles in treated groups.

Discussion

ER-NL-2 demonstrated neuroprotective efficacy through behavioral, biochemical, and histological endpoints, confirming its antioxidative mechanism and brain safety profile. It was comparable to standard therapy (donepezil).

Conclusion

ER-NL-2 is a safe and promising nanocarrier for Alzheimer’s treatment with significant neuroprotective and antioxidant properties. Further studies are warranted to explore its pharma-cokinetics and clinical applicability.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273388820250724174247
2025-08-12
2025-09-29
Loading full text...

Full text loading...

References

  1. Inamdar A. Gurupadayya B. Halagali P. Unraveling neurological drug delivery: Polymeric nanocarriers for enhanced blood-brain barrier penetration. Curr. Drug Targets 2024 26 4 243 266 10.2174/0113894501339455241101065040 39513304
    [Google Scholar]
  2. Nsairat H. Khater D. Sayed U. Odeh F. Al Bawab A. Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022 8 5 09394 10.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  3. Sharma H. Rachamalla H.K. Mishra N. Chandra P. Pathak R. Ashique S. Introduction to exosome and its role in brain disorders BT. Mishra N. Ashique S. Garg A. Chithravel V. Anand K. Exosomes Based Drug Delivery Strategies for Brain Disorders. Singapore Springer Nature Singapore 2024 1 35 10.1007/978‑981‑99‑8373‑5_1
    [Google Scholar]
  4. Kumar P. Sharma H. Singh A. Pandey S.N. Chandra P. Correlation between exosomes and neuro-inflammation in various brain disorders BT. Mishra N. Ashique S. Garg A. Chithravel V. Anand K. Exosomes Based Drug Delivery Strategies for Brain Disorders. Singapore Springer Nature Singapore 2024 273 302 10.1007/978‑981‑99‑8373‑5_11
    [Google Scholar]
  5. Chandra P. Sharma H. Sachan N. Explainable and responsible ai in neuroscience. In:Explainable and Responsible Artificial Intelligence in Healthcare. Internet 2025 27 63 10.1002/9781394302444.ch2
    [Google Scholar]
  6. Inamdar A. Gurupadayya B. Halagali P. Nandakumar S. Pathak R. Sharma H. Cutting-edge strategies for overcoming therapeutic barriers in Alzheimer’s disease. Curr. Pharm. Des. 2024 1 21
    [Google Scholar]
  7. Sharma H. Tyagi S.J. Chandra P. Verma A. Kumar P. Ashique S. Role of exosomes in Parkinson’s and Alzheimer’s diseases BT. Mishra N. Ashique S. Garg A. Chithravel V. Anand K. In: Exosomes based drug delivery strategies for brain disorders. Singapore Springer Nature Singapore 2024 147 182 10.1007/978‑981‑99‑8373‑5_6
    [Google Scholar]
  8. Guimarães D. Cavaco-Paulo A. Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm. 2021 601 120571 10.1016/j.ijpharm.2021.120571 33812967
    [Google Scholar]
  9. Sharma H. Chandra P. Challenges and future prospects: A benefaction of phytoconstituents on molecular targets pertaining to Alzheimer’s disease. Int. J. Pharm. Investig. 2023 14 1 117 126 10.5530/ijpi.14.1.15
    [Google Scholar]
  10. Chandra P. Sharma H. Phosphodiesterase inhibitors for treatment of Alzheimer’s Disease. Indian Drugs 2024 61 7 7 22 10.53879/id.61.07.14382
    [Google Scholar]
  11. Has C. Sunthar P. A comprehensive review on recent preparation techniques of liposomes. J. Liposome Res. 2020 30 4 336 365 10.1080/08982104.2019.1668010 31558079
    [Google Scholar]
  12. Sarkar S. Bhui U. Kumar B. Ashique S. Kumar P. Sharma H. Correlation between cognitive impairment and peripheral biomarkers - significance of phosphorylated tau and amyloid-β in Alzheimer’s disease: A new insight. Curr Psychiatry Res Rev 2024 1 25
    [Google Scholar]
  13. Sharma H. Chandra P. Verma A. Pandey S.N. Kumar P. Sigh A. Therapeutic approaches of nutraceuticals in the prevention of neurological disorders. Eur. Chem. Bull. 2023 12 5 1575 1596
    [Google Scholar]
  14. Shah S. Dhawan V. Holm R. Nagarsenker M.S. Perrie Y. Liposomes: Advancements and innovation in the manufacturing process. Adv. Drug Deliv. Rev. 2020 154-155 102 122 10.1016/j.addr.2020.07.002 32650041
    [Google Scholar]
  15. Müller L.K. Landfester K. Natural liposomes and synthetic polymeric structures for biomedical applications. Biochem. Biophys. Res. Commun. 2015 468 3 411 418 10.1016/j.bbrc.2015.08.088 26315266
    [Google Scholar]
  16. Liu P. Chen G. Zhang J. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules 2022 27 4 1372 10.3390/molecules27041372 35209162
    [Google Scholar]
  17. Datta D. Colaco V. Bandi S.P. Sharma H. Dhas N. Giram P.S. Classes/types of polymers used in oral delivery (natural, semisynthetic, synthetic), their chemical structure and general functionalities. In:Elsevier Ltd Series in Biomaterials. Elsevier Science Ltd 2025 266 333
    [Google Scholar]
  18. Crommelin D.J.A. van Hoogevest P. Storm G. The role of liposomes in clinical nanomedicine development. What now? Now what? J. Control. Release 2020 318 256 263 10.1016/j.jconrel.2019.12.023 31846618
    [Google Scholar]
  19. Li M. Du C. Guo N. Composition design and medical application of liposomes. Eur. J. Med. Chem. 2019 164 640 653 10.1016/j.ejmech.2019.01.007 30640028
    [Google Scholar]
  20. Liu X Yu S Lu X Optimization of preparation conditions for quercetin nanoliposomes using response surface methodology and evaluation of their stability. ACS Omega 2024 9 (15) acsomega.3c09892 10.1021/acsomega.3c09892 38645336
    [Google Scholar]
  21. Hao J. Guo B. Yu S. Encapsulation of the flavonoid quercetin with chitosan-coated nano-liposomes. Lebensm. Wiss. Technol. 2017 85 37 44 10.1016/j.lwt.2017.06.048
    [Google Scholar]
  22. Khot K.B. Gopan G. Bandiwadekar A. Jose J. Current advancements related to phytobioactive compounds based liposomal delivery for neurodegenerative diseases. Ageing Res. Rev. 2023 83 101806 10.1016/j.arr.2022.101806 36427765
    [Google Scholar]
  23. Danaei M. Dehghankhold M. Ataei S. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018 10 2 57 10.3390/pharmaceutics10020057 29783687
    [Google Scholar]
  24. Development O for EC operation and Test no 423: Acute oral toxicity-acute toxic class method OECD publishing 2002
    [Google Scholar]
  25. Haley T.J. McCORMICK WG. Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. Br. J. Pharmacol. Chemother. 1957 12 1 12 15 10.1111/j.1476‑5381.1957.tb01354.x 13413144
    [Google Scholar]
  26. Sakurada T. Sakurada S. Katsuyama S. Sakurada C. Tan-No K. Terenius L. Nociceptin (1–7) antagonizes nociceptin‐induced hyperalgesia in mice. Br. J. Pharmacol. 1999 128 5 941 944 10.1038/sj.bjp.0702898 10556929
    [Google Scholar]
  27. Kumar A. Dogra S. Prakash A. Protective effect of curcumin (Curcuma longa), against aluminium toxicity: Possible behavioral and biochemical alterations in rats. Behav. Brain Res. 2009 205 2 384 390 10.1016/j.bbr.2009.07.012 19616038
    [Google Scholar]
  28. Dews P.B. The measurement of the influence of drugs on voluntary activity in mice. Br. J. Pharmacol. Chemother. 1953 8 1 46 48 10.1111/j.1476‑5381.1953.tb00749.x 13066693
    [Google Scholar]
  29. Reddy D.S. Kulkarni S.K. Possible role of nitric oxide in the nootropic and antiamnesic effects of neurosteroids on aging- and dizocilpine-induced learning impairment. Brain Res. 1998 799 2 215 229 10.1016/S0006‑8993(98)00419‑3 9675286
    [Google Scholar]
  30. Mushtaq A. Anwar R. Ahmad M. Lavandula stoechas L alleviates dementia by preventing oxidative damage of cholinergic neurons in mice brain. Trop. J. Pharm. Res. 2018 17 8 1539 1547 10.4314/tjpr.v17i8.11
    [Google Scholar]
  31. Zhang J. Chen R. Yu Z. Xue L. Superoxide dismutase (SOD) and catalase (CAT) activity assay protocols for Caenorhabditis elegans. Bio Protoc. 2017 7 16 e2505 e5 10.21769/BioProtoc.2505 34541169
    [Google Scholar]
  32. Hadwan M.H. Simple spectrophotometric assay for measuring catalase activity in biological tissues. BMC Biochem. 2018 19 1 7 10.1186/s12858‑018‑0097‑5 30075706
    [Google Scholar]
  33. Casado Á. Encarnación López-Fernández M. Concepción Casado M. de La Torre R. Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochem. Res. 2008 33 3 450 458 10.1007/s11064‑007‑9453‑3 17721818
    [Google Scholar]
  34. Tipple T.E. Rogers L.K. Methods for the determination of plasma or tissue glutathione levels. Methods Mol. Biol. 2012 889 315 324 10.1007/978‑1‑61779‑867‑2_20
    [Google Scholar]
  35. Moreira-Silva D. Carrettiero D.C. Oliveira A.S.A. Anandamide effects in a streptozotocin-induced Alzheimer’s disease-like sporadic dementia in rats. Front. Neurosci. 2018 12 653 10.3389/fnins.2018.00653 30333717
    [Google Scholar]
  36. Kumar A. Lana E. Kumar R. Lithner C.U. Darreh-Shori T. Soluble Aβ42 acts as allosteric activator of the core cholinergic enzyme choline acetyltransferase. Front. Mol. Neurosci. 2018 11 327 10.3389/fnmol.2018.00327 30271321
    [Google Scholar]
  37. Wang Y. Huang Y. Ma A. You J. Miao J. Li J. Natural antioxidants: An effective strategy for the treatment of Alzheimer’s disease at the early stage. J. Agric. Food Chem. 2024 72 21 11854 11870 10.1021/acs.jafc.4c01323 38743017
    [Google Scholar]
  38. Jiang Y. Kang Y. Liu J. Yin S. Huang Z. Shao L. Nanomaterials alleviating redox stress in neurological diseases: Mechanisms and applications. J. Nanobiotechnology 2022 20 1 265 10.1186/s12951‑022‑01434‑5 35672765
    [Google Scholar]
  39. Marques C.F. Marques M.M. Justino G.C. Leukotrienes vs. Montelukast-activity, metabolism, and toxicity hints for repurposing. Pharmaceuticals 2022 15 9 1039 10.3390/ph15091039 36145259
    [Google Scholar]
  40. Mishra D.K. Awasthi H. Srivastava D. Fatima Z. Phytochemical: A treatment option for heavy metal induced neurotoxicity. J. Complement. Integr. Med. 2022 19 3 513 530 10.1515/jcim‑2020‑0325 35749142
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273388820250724174247
Loading
/content/journals/cnsnddt/10.2174/0118715273388820250724174247
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test