Skip to content
2000
image of Organosulfur Compounds: Potential Therapeutics for Parkinson's Disease

Abstract

Several organosulfur compounds exhibit anti-Parkinson's disease (PD) activities. PD is a progressive and chronic neurodegenerative condition that causes motor and non-motor symptoms that severely reduce quality of life. A selective loss of dopaminergic neurons in the substantia nigra, in addition to several neuropathological mechanisms, has been implicated in PD. The present therapeutic techniques are mostly focused on providing symptomatic relief and frequently have significant side effects, which underscores the pressing need for innovative medicines that address the underlying causes of disease. Several organosulfur compounds, both synthesized and naturally occurring analogues, have gained attention as potential anti-PD molecules because of their wide range of biological activities, which include anti-inflammatory, neuroprotective, and antioxidant capabilities. Several organosulfur compounds have been shown to have potential neuroprotective benefits in preclinical research on PD. Their ability to attenuate neuroinflammation, oxidative stress, apoptosis, and mitochondrial dysfunction, which are central to PD pathogenesis modulation of cellular pathways and endogenous antioxidant defenses, provides multifaceted approaches to neuroprotection in PD. Thus, the current review provides the state of the art on the potential therapeutic effects of organosulfur compounds in PD. The natural and synthetic sources of anti-PD organosulfur compounds, including their physical properties, chemical properties, structure-activity relationship (SAR), and therapeutic effects in PD, were discussed. The challenges and future directions of organosulfur compounds as potential anti-PD drugs and their clinical trial prospects were also highlighted. This is aimed at paving the way for the development of more effective and sustainable treatment strategies for PD.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273386239250706125440
2025-07-29
2025-10-11
Loading full text...

Full text loading...

References

  1. Li X. Chen C. Pan T. Zhou X. Sun X. Zhang Z. Wu D. Chen X. Trends and hotspots in non-motor symptoms of Parkinson’s disease: A 10-year bibliometric analysis. Front. Aging Neurosci. 2024 16 1335550 10.3389/fnagi.2024.1335550 38298610
    [Google Scholar]
  2. Kwon K.Y. Park S. Kim R.O. Lee E.J. Lee M. Associations of cognitive dysfunction with motor and non-motor symptoms in patients with de novo Parkinson’s disease. Sci. Rep. 2022 12 1 11461 10.1038/s41598‑022‑15630‑8 35794147
    [Google Scholar]
  3. Aarsland D. Batzu L. Halliday G.M. Geurtsen G.J. Ballard C. Ray Chaudhuri K. Weintraub D. Parkinson disease-associated cognitive impairment. Nat. Rev. Dis. Primers 2021 7 1 47 10.1038/s41572‑021‑00280‑3 34210995
    [Google Scholar]
  4. Gandhi K.R. Saadabadi A. Levodopa (L-Dopa). StatPearls Publishing Treasure Island, FL 2024
    [Google Scholar]
  5. Pandey S. Srivanitchapoom P. Levodopa-induced dyskinesia: Clinical features, pathophysiology, and medical management. Ann. Indian Acad. Neurol. 2017 20 3 190 198 10.4103/aian.AIAN_239_17 28904447
    [Google Scholar]
  6. Ruhee R.T. Roberts L.A. Ma S. Suzuki K. Organosulfur compounds: A review of their anti-inflammatory effects in human health. Front. Nutr. 2020 7 64 10.3389/fnut.2020.00064 32582751
    [Google Scholar]
  7. Wei Z.Z. Zhou T.Q. Xia Z.M. Liu S.F. Li M. Zhang G.J. Tian Y. Li B. Wang L. Four organosulfur compounds from the seeds of Capsella bursa-pastoris and their anti-inflammatory activities. Nat. Prod. Res. 2023 37 16 2688 2696 10.1080/14786419.2022.2130307 36200729
    [Google Scholar]
  8. Egbujor M.C. Tucci P. Buttari B. Nwobodo D.C. Marini P. Saso L. Phenothiazines: Nrf2 activation and antioxidant effects. J. Biochem. Mol. Toxicol. 2024 38 3 e23661 10.1002/jbt.23661 38369721
    [Google Scholar]
  9. Egbujor M.C. Sulfonamide derivatives: Recent compounds with potent anti-alzheimer’s disease activity. Cent. Nerv. Syst. Agents Med. Chem. 2024 24 1 82 104 10.2174/0118715249278489231128042135 38275073
    [Google Scholar]
  10. Pandey P. Khan F. Alshammari N. Saeed A. Aqil F. Saeed M. Updates on the anticancer potential of garlic organosulfur compounds and their nanoformulations: Plant therapeutics in cancer management. Front. Pharmacol. 2023 14 1154034 10.3389/fphar.2023.1154034 37021043
    [Google Scholar]
  11. Egbujor M.C. Okoro U.C. Okafor S.N. Amasiatu I.S. Amadi U.B. Egwuatu P.I. Synthesis, molecular docking and pharmacological investigation of some 4-methylphenylsulphamoyl carboxylic acid analogs. Int. J. Res. Pharm. Sci. 2020 11 4 5357 5366 10.26452/ijrps.v11i4.3157
    [Google Scholar]
  12. Egbujor M.C. Okoro U.C. Nwobodo D.C. Ezeagu C.U. Amadi U.B. Okenwa-Ani C.G. Ugwu J.I. Okoye I.G. Abu I.P. Egwuatu P.I. Design, synthesis, antimicrobial and antioxidant activities of novel threonine-based sulfonamide derivatives. J. Pharm. Res. Int. 2020 32 51 61 10.9734/jpri/2020/v32i830470
    [Google Scholar]
  13. Egbujor M.C. Okoro U.C. Okafor S.N. Egu S.A. Amasiatu I.S. Egwuatu P.I. Umeh O.R. Ibo E.M. Design, synthesis, and molecular docking of cysteine-based sulphonamide derivatives as antimicrobial agents. Res. Pharm. Sci. 2022 c 17 1 99 110 10.4103/1735‑5362.329930 34909048
    [Google Scholar]
  14. Egbujor M.C. Petrosino M. Zuhra K. Saso L. The role of organosulfur compounds as Nrf2 activators and their antioxidant effects. Antioxidants 2022 11 7 1255 10.3390/antiox11071255 35883746
    [Google Scholar]
  15. Kouli A. Torsney K.M. Kuan W.L. Parkinson’s disease: Etiology, neuropathology, and pathogenesis. Parkinson’s Disease: Pathogenesis and Clinical Aspects Codon Publications Brisbane (AU) 2018 10.15586/codonpublications.parkinsonsdisease.2018.ch1
    [Google Scholar]
  16. Pajares M. I Rojo A. Manda G. Boscá L. Cuadrado A. Inflammation in Parkinson’s disease: Mechanisms and therapeutic implications. Cells 2020 9 7 1687 10.3390/cells9071687 32674367
    [Google Scholar]
  17. Jankovic J. Tan E.K. Parkinson’s disease: Etiopathogenesis and treatment. J. Neurol. Neurosurg. Psychiatry 2020 91 8 795 808 10.1136/jnnp‑2019‑322338 32576618
    [Google Scholar]
  18. Gagnon D. Eid L. Coudé D. Whissel C. Di Paolo T. Parent A. Parent M. Evidence for sprouting of dopamine and serotonin axons in the Pallidum of Parkinsonian monkeys. Front. Neuroanat. 2018 12 38 10.3389/fnana.2018.00038 29867377
    [Google Scholar]
  19. Surmeier D.J. Determinants of dopaminergic neuron loss in Parkinson’s disease. FEBS J. 2018 285 19 3657 3668 10.1111/febs.14607 30028088
    [Google Scholar]
  20. Stefanis L. α-Synuclein in Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2012 2 2 a009399 10.1101/cshperspect.a009399 22355802
    [Google Scholar]
  21. Srinivasan E. Chandrasekhar G. Chandrasekar P. Anbarasu K. Vickram A.S. Karunakaran R. Rajasekaran R. Srikumar P.S. Alpha-synuclein aggregation in Parkinson’s disease. Front. Med. 2021 8 736978 10.3389/fmed.2021.736978 34733860
    [Google Scholar]
  22. Zhou C. Huang Y. Przedborski S. Oxidative stress in Parkinson’s disease: A mechanism of pathogenic and therapeutic significance. Ann. N. Y. Acad. Sci. 2008 1147 1 93 104 10.1196/annals.1427.023 19076434
    [Google Scholar]
  23. Onoabedje E.A. Ibezim A. Okoro U.C. Batra S. New sulphonamide pyrolidine carboxamide derivatives: Synthesis, molecular docking, antiplasmodial and antioxidant activities. PLoS One 2021 16 2 e0243305 10.1371/journal.pone.0243305 33626047
    [Google Scholar]
  24. Egbujor M.C. Okoro U.C. Emeruwa C.N. Umeh O.R. Eziafakaego M.I. Egwuatu P.I. Synthesis of sulphonamides using threonine, and evaluation of their biological activities. Challeng. Adv. Pharma. Res. 2022 2 95 107 10.9734/bpi/capr/v2/2274E
    [Google Scholar]
  25. Moon H.E. Paek S.H. Mitochondrial dysfunction in Parkinson’s disease. Exp. Neurobiol. 2015 24 2 103 116 10.5607/en.2015.24.2.103 26113789
    [Google Scholar]
  26. Ilesanmi O.B. Akinmoladun A.C. Josiah S.S. Olaleye M.T. Akindahunsi A.A. Modulation of key enzymes linked to Parkinsonism and neurologic disorders by Antiaris africana in rotenone-toxified rats. J. Basic Clin. Physiol. Pharmacol. 2020 31 3 20190014 10.1515/jbcpp‑2019‑0014 31800394
    [Google Scholar]
  27. Gao X.Y. Yang T. Gu Y. Sun X.H. Mitochondrial dysfunction in Parkinson’s disease: From mechanistic insights to therapy. Front. Aging Neurosci. 2022 14 885500 10.3389/fnagi.2022.885500 35795234
    [Google Scholar]
  28. Zhang W. Xiao D. Mao Q. Role of neuroinflammation in neurodegeneration development. Sig. Transduct. Target Ther. 2023 8 1 267 10.1038/s41392‑023‑01486‑5
    [Google Scholar]
  29. Tansey M.G. Wallings R.L. Houser M.C. Herrick M.K. Keating C.E. Joers V. Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol. 2022 22 11 657 673 10.1038/s41577‑022‑00684‑6 35246670
    [Google Scholar]
  30. Adamu A. Li S. Gao F. Xue G. The role of neuroinflammation in neurodegenerative diseases: Current understanding and future therapeutic targets. Front. Aging Neurosci. 2024 16 1347987 10.3389/fnagi.2024.1347987 38681666
    [Google Scholar]
  31. Martin I. Dawson V.L. Dawson T.M. Recent advances in the genetics of Parkinson’s disease. Annu. Rev. Genomics Hum. Genet. 2011 12 1 301 325 10.1146/annurev‑genom‑082410‑101440 21639795
    [Google Scholar]
  32. Day J.O. Mullin S. The genetics of Parkinson’s disease and implications for clinical practice. Genes 2021 12 7 1006 10.3390/genes12071006 34208795
    [Google Scholar]
  33. Huang M. Bargues-Carot A. Riaz Z. Wickham H. Zenitsky G. Jin H. Anantharam V. Kanthasamy A. Kanthasamy A.G. Impact of environmental risk factors on mitochondrial dysfunction, neuroinflammation, protein misfolding, and oxidative stress in the etiopathogenesis of Parkinson’s disease. Int. J. Mol. Sci. 2022 23 18 10808 10.3390/ijms231810808 36142718
    [Google Scholar]
  34. Cook C. Stetler C. Petrucelli L. Disruption of protein quality control in Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2012 2 5 a009423 10.1101/cshperspect.a009423 22553500
    [Google Scholar]
  35. Eriksen J.L. Wszolek Z. Petrucelli L. Molecular pathogenesis of Parkinson disease. Arch. Neurol. 2005 62 3 353 357 10.1001/archneur.62.3.353 15767499
    [Google Scholar]
  36. Cheng H. Yang B. Ke T. Li S. Yang X. Aschner M. Chen P. Mechanisms of metal-induced mitochondrial dysfunction in neurological disorders. Toxics 2021 9 6 142 10.3390/toxics9060142 34204190
    [Google Scholar]
  37. Chen L. Shen Q. Liu Y. Zhang Y. Sun L. Ma X. Song N. Xie J. Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases. Signal Transduct. Target. Ther. 2025 10 1 31 10.1038/s41392‑024‑02071‑0 39894843
    [Google Scholar]
  38. Zhou Z.D. Yi L.X. Wang D.Q. Lim T.M. Tan E.K. Role of dopamine in the pathophysiology of Parkinson’s disease. Transl. Neurodegener. 2023 12 1 44 10.1186/s40035‑023‑00378‑6 37718439
    [Google Scholar]
  39. Grosch J. Winkler J. Kohl Z. Early degeneration of both dopaminergic and serotonergic axons – A common mechanism in Parkinson’s disease. Front. Cell. Neurosci. 2016 10 293 10.3389/fncel.2016.00293 28066188
    [Google Scholar]
  40. Egbujor M.C. Egu S.A. Okonkwo V.I. Jacob A.D. Egwuatu P.I. Amasiatu I.S. Antioxidant drug design: Historical and recent developments. J. Pharm. Res. Int. 2021 32 41 36 56 10.9734/jpri/2020/v32i4131042
    [Google Scholar]
  41. Egbujor M.C. Garrido J. Borges F. Saso L. Sulfonamide, a valid scaffold for antioxidant drug development. Mini Rev. Org. Chem. 2023 20 2 190 209 10.2174/1570193X19666220411134006
    [Google Scholar]
  42. Egbujor M.C. Tucci P. Onyeije U.C. Emeruwa C.N. Saso L. NRF2 activation by nitrogen heterocycles: A review. Molecules 2023 28 6 2751 10.3390/molecules28062751 36985723
    [Google Scholar]
  43. El Kebbaj R. Bouchab H. Tahri-Joutey M. Rabbaa S. Limami Y. Nasser B. Egbujor M.C. Tucci P. Andreoletti P. Saso L. Cherkaoui-Malki M. The potential role of major argan oil compounds as Nrf2 regulators and their antioxidant effects. Antioxidants 2024 13 3 344 10.3390/antiox13030344 38539877
    [Google Scholar]
  44. Egbujor M.C. Saha S. Buttari B. Profumo E. Saso L. Activation of Nrf2 signaling pathway by natural and synthetic chalcones: A therapeutic road map for oxidative stress. Expert Rev. Clin. Pharmacol. 2021 14 4 465 480 10.1080/17512433.2021.1901578 33691555
    [Google Scholar]
  45. Egbujor M.C. Buttari B. Profumo E. Telkoparan-Akillilar P. Saso L. An overview of NRF2-activating compounds bearing α,β-unsaturated moiety and their antioxidant effects. Int. J. Mol. Sci. 2022 23 15 8466 10.3390/ijms23158466 35955599
    [Google Scholar]
  46. Çınar E. Tel B.C. Şahin G. Neuroinflammation in Parkinson"s disease and its treatment opportunities. Balkan Med. J. 2022 39 5 318 333 10.4274/balkanmedj.galenos.2022.2022‑7‑100 36036436
    [Google Scholar]
  47. Garrido-Mesa N. Zarzuelo A. Gálvez J. Minocycline: Far beyond an antibiotic. Br. J. Pharmacol. 2013 169 2 337 352 10.1111/bph.12139 23441623
    [Google Scholar]
  48. Clemens V. Regen F. Le Bret N. Heuser I. Hellmann-Regen J. Anti-inflammatory effects of minocycline are mediated by retinoid signaling. BMC Neurosci. 2018 19 1 58 10.1186/s12868‑018‑0460‑x 30241502
    [Google Scholar]
  49. Qin J. Ma Z. Chen X. Shu S. Microglia activation in central nervous system disorders: A review of recent mechanistic investigations and development efforts. Front. Neurol. 2023 14 1103416 10.3389/fneur.2023.1103416 36959826
    [Google Scholar]
  50. Squillace S. Salvemini D. Toll-like receptor-mediated neuroinflammation: Relevance for cognitive dysfunctions. Trends Pharmacol. Sci. 2022 43 9 726 739 10.1016/j.tips.2022.05.004 35753845
    [Google Scholar]
  51. Wang J. Wang L. Wu Q. Cai Y. Cui C. Yang M. Sun B. Mao L. Wang Y. Interleukin-4 modulates neuroinflammation by inducing phenotypic transformation of microglia following subarachnoid hemorrhage. Inflammation 2024 47 1 390 403 10.1007/s10753‑023‑01917‑z 37898992
    [Google Scholar]
  52. Nguyen L.T.N. Nguyen H.D. Kim Y.J. Nguyen T.T. Lai T.T. Lee Y.K. Ma H. Kim Y.E. Role of NLRP3 inflammasome in Parkinson’s disease and therapeutic considerations. J. Parkinsons Dis. 2022 12 7 2117 2133 10.3233/JPD‑223290 35988226
    [Google Scholar]
  53. Wu D. Chen Y. Sun Y. Gao Q. Li H. Yang Z. Wang Y. Jiang X. Yu B. Target of MCC950 in inhibition of NLRP3 inflammasome activation: A literature review. Inflammation 2020 43 1 17 23 10.1007/s10753‑019‑01098‑8 31646445
    [Google Scholar]
  54. Chen H. Zhang S.M. Hernán M.A. Schwarzschild M.A. Willett W.C. Colditz G.A. Speizer F.E. Ascherio A. Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch. Neurol. 2003 60 8 1059 1064 10.1001/archneur.60.8.1059 12925360
    [Google Scholar]
  55. Liu T. Zhang L. Joo D. Sun S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017 2 1 17023 10.1038/sigtrans.2017.23 29158945
    [Google Scholar]
  56. Egbujor M.C. Carboxylic acids as activators of nrf2: Antioxidant and antiinflammatory effects. Med. Chem. 2024 21 e15734064335901 10.2174/0115734064335901241101025220
    [Google Scholar]
  57. Bohush A. Niewiadomska G. Filipek A. Role of mitogen activated protein kinase signaling in Parkinson’s disease. Int. J. Mol. Sci. 2018 19 10 2973 10.3390/ijms19102973 30274251
    [Google Scholar]
  58. Sarkar S. Raymick J. Imam S. Neuroprotective and therapeutic strategies against Parkinson’s disease: Recent perspectives. Int. J. Mol. Sci. 2016 17 6 904 10.3390/ijms17060904 27338353
    [Google Scholar]
  59. Ramesh S. Arachchige A.S.P.M. Depletion of dopamine in Parkinson’s disease and relevant therapeutic options: A review of the literature. AIMS Neurosci. 2023 10 3 200 231 10.3934/Neuroscience.2023017 37841347
    [Google Scholar]
  60. Maiti P. Manna J. Dunbar G.L. Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments. Transl. Neurodegener. 2017 6 1 28 10.1186/s40035‑017‑0099‑z 29090092
    [Google Scholar]
  61. Han D. Zheng W. Wang X. Chen Z. Proteostasis of α-synuclein and its role in the pathogenesis of Parkinson’s disease. Front. Cell. Neurosci. 2020 14 45 10.3389/fncel.2020.00045 32210767
    [Google Scholar]
  62. Lee J. Sung K.W. Bae E.J. Yoon D. Kim D. Lee J.S. Park D. Park D.Y. Mun S.R. Kwon S.C. Kim H.Y. Min J.O. Lee S.J. Suh Y.H. Kwon Y.T. Targeted degradation of ⍺-synuclein aggregates in Parkinson’s disease using the AUTOTAC technology. Mol. Neurodegener. 2023 18 1 41 10.1186/s13024‑023‑00630‑7 37355598
    [Google Scholar]
  63. Gómez-Virgilio L. Silva-Lucero M.C. Flores-Morelos D.S. Gallardo-Nieto J. Lopez-Toledo G. Abarca-Fernandez A.M. Zacapala-Gómez A.E. Luna-Muñoz J. Montiel-Sosa F. Soto-Rojas L.O. Pacheco-Herrero M. Cardenas-Aguayo M.C. Autophagy: A key regulator of homeostasis and disease: An overview of molecular mechanisms and modulators. Cells 2022 11 15 2262 10.3390/cells11152262 35892559
    [Google Scholar]
  64. Ryter S.W. Cloonan S.M. Choi A.M.K. Autophagy: A critical regulator of cellular metabolism and homeostasis. Mol. Cells 2013 36 1 7 16 10.1007/s10059‑013‑0140‑8 23708729
    [Google Scholar]
  65. Henrich M.T. Oertel W.H. Surmeier D.J. Geibl F.F. Mitochondrial dysfunction in Parkinson’s disease – A key disease hallmark with therapeutic potential. Mol. Neurodegener. 2023 18 1 83 10.1186/s13024‑023‑00676‑7 37951933
    [Google Scholar]
  66. Zong Y. Li H. Liao P. Chen L. Pan Y. Zheng Y. Zhang C. Liu D. Zheng M. Gao J. Mitochondrial dysfunction: Mechanisms and advances in therapy. Signal Transduct. Target. Ther. 2024 9 1 124 10.1038/s41392‑024‑01839‑8 38744846
    [Google Scholar]
  67. Abu Shelbayeh O. Arroum T. Morris S. Busch K.B. PGC-1α is a master regulator of mitochondrial lifecycle and ROS stress response. Antioxidants 2023 12 5 1075 10.3390/antiox12051075 37237941
    [Google Scholar]
  68. Chen L. Qin Y. Liu B. Gao M. Li A. Li X. Gong G. PGC-1α-Mediated mitochondrial quality control: Molecular mechanisms and implications for heart failure. Front. Cell Dev. Biol. 2022 10 871357 10.3389/fcell.2022.871357 35721484
    [Google Scholar]
  69. Cen X. Zhang M. Zhou M. Ye L. Xia H. Mitophagy regulates neurodegenerative diseases. Cells 2021 10 8 1876 10.3390/cells10081876 34440645
    [Google Scholar]
  70. Wang S. Long H. Hou L. Feng B. Ma Z. Wu Y. Zeng Y. Cai J. Zhang D. Zhao G. The mitophagy pathway and its implications in human diseases. Signal Transduct. Target. Ther. 2023 8 1 304 10.1038/s41392‑023‑01503‑7 37582956
    [Google Scholar]
  71. Mura A. Jackson D. Manley M.S. Young S.J. Groves P.M. Aromaticl-amino acid decarboxylase immunoreactive cells in the rat striatum: A possible site for the conversion of exogenousl-DOPA to dopamine. Brain Res. 1995 704 1 51 60 10.1016/0006‑8993(95)01104‑8 8750961
    [Google Scholar]
  72. Lopez A. Muñoz A. Guerra M.J. Labandeira-Garcia J.L. Mechanisms of the effects of exogenous levodopa on the dopamine-denervated striatum. Neuroscience 2001 103 3 639 651 10.1016/S0306‑4522(00)00588‑1 11274784
    [Google Scholar]
  73. Kwon D.K. Kwatra M. Wang J. Ko H.S. Levodopa-induced dyskinesia in Parkinson’s disease: Pathogenesis and emerging treatment strategies. Cells 2022 11 23 3736 10.3390/cells11233736 36496996
    [Google Scholar]
  74. Aradi S.D. Hauser R.A. Medical management and prevention of motor complications in Parkinson’s disease. Neurotherapeutics 2020 17 4 1339 1365 10.1007/s13311‑020‑00889‑4 32761324
    [Google Scholar]
  75. Jonkers N. Sarre S. Ebinger G. Michotte Y. Benserazide decreases central AADC activity, extracellular dopamine levels and levodopa decarboxylation in striatum of the rat. J. Neural Transm. 2001 108 5 559 570 10.1007/s007020170056 11459076
    [Google Scholar]
  76. Beckers M. Bloem B.R. Verbeek M.M. Mechanisms of peripheral levodopa resistance in Parkinson’s disease. NPJ Parkinsons Dis. 2022 8 1 56 10.1038/s41531‑022‑00321‑y 35546556
    [Google Scholar]
  77. Isaacson S.H. Hauser R.A. Pahwa R. Gray D. Duvvuri S. Dopamine agonists in Parkinson’s disease: Impact of D1-like or D2-like dopamine receptor subtype selectivity and avenues for future treatment. Clin. Park. Relat. Disord. 2023 9 100212 10.1016/j.prdoa.2023.100212 37497384
    [Google Scholar]
  78. Wood M. Dubois V. Scheller D. Gillard M. Rotigotine is a potent agonist at dopamine D 1 receptors as well as at dopamine D 2 and D 3 receptors. Br. J. Pharmacol. 2015 172 4 1124 1135 10.1111/bph.12988 25339241
    [Google Scholar]
  79. Zhang Q. Chen X. Chen F. Wen S. Zhou C. Dopamine agonists versus levodopa monotherapy in early Parkinson’s disease for the potential risks of motor complications: A network meta-analysis. Eur. J. Pharmacol. 2023 954 175884 10.1016/j.ejphar.2023.175884 37385577
    [Google Scholar]
  80. Tan Y.Y. Jenner P. Chen S.D. Monoamine Oxidase-B inhibitors for the treatment of Parkinson’s disease: Past, present, and future. J. Parkinsons Dis. 2022 12 2 477 493 10.3233/JPD‑212976 34957948
    [Google Scholar]
  81. Teo K.C. Ho S.L. Monoamine oxidase-B (MAO-B) inhibitors: Implications for disease-modification in Parkinson’s disease. Transl. Neurodegener. 2013 2 1 19 10.1186/2047‑9158‑2‑19 24011391
    [Google Scholar]
  82. Cao Z. Wang X. Zhang T. Fu X. Zhang F. Zhu J. Discovery of novel 2-(4-(benzyloxy)-5-(hydroxyl) phenyl) benzothiazole derivatives as multifunctional MAO-B inhibitors for the treatment of Parkinson’s disease. J. Enzyme Inhib. Med. Chem. 2023 38 1 2159957 10.1080/14756366.2022.2159957 36728713
    [Google Scholar]
  83. Cao Z. Zhang T. Fu X. Wang X. Xia Q. Zhong L. Zhu J. 2‐Hydroxy‐4‐benzyloxylimine resveratrol derivatives as potential multifunctional agents for the treatment of Parkinson’s disease. ChemMedChem 2023 18 6 e202200629 10.1002/cmdc.202200629 36622947
    [Google Scholar]
  84. Waters C. Catechol-O-methyltransferase (COMT) inhibitors in Parkinson’s disease. J. Am. Geriatr. Soc. 2000 48 6 692 698 10.1111/j.1532‑5415.2000.tb04732.x 10855610
    [Google Scholar]
  85. Bonifácio M.J. Palma P.N. Almeida L. Soares-da-Silva P. Catechol-O-methyltransferase and its inhibitors in Parkinson’s disease. CNS Drug Rev. 2007 13 3 352 379 10.1111/j.1527‑3458.2007.00020.x 17894650
    [Google Scholar]
  86. Müller T. Catechol-O-methyltransferase inhibitors in Parkinson’s disease. Drugs 2015 75 2 157 174 10.1007/s40265‑014‑0343‑0 25559423
    [Google Scholar]
  87. Salamon A. Zádori D. Szpisjak L. Klivényi P. Vécsei L. What is the impact of catechol-O-methyltransferase (COMT) on Parkinson’s disease treatment? Expert Opin. Pharmacother. 2022 23 10 1123 1128 10.1080/14656566.2022.2060738 35373688
    [Google Scholar]
  88. Ghossein N. Kang M. Lakhkar A.D. Anticholinergic Medications. StatPearls Publishing Treasure Island, FL 2024
    [Google Scholar]
  89. Vanegas-Arroyave N. Caroff S.N. Citrome L. Crasta J. McIntyre R.S. Meyer J.M. Patel A. Smith J.M. Farahmand K. Manahan R. Lundt L. Cicero S.A. An evidence-based update on anticholinergic use for drug-induced movement disorders. CNS Drugs 2024 38 4 239 254 10.1007/s40263‑024‑01078‑z 38502289
    [Google Scholar]
  90. Lester D.B. Rogers T.D. Blaha C.D. Acetylcholine-dopamine interactions in the pathophysiology and treatment of CNS disorders. CNS Neurosci. Ther. 2010 16 3 137 162 10.1111/j.1755‑5949.2010.00142.x 20370804
    [Google Scholar]
  91. Jewett B.E. Thapa B. Physiology, NMDA Receptor. StatPearls Publishing Treasure Island, FL 2024
    [Google Scholar]
  92. Vanle B. Olcott W. Jimenez J. Bashmi L. Danovitch I. IsHak W.W. NMDA antagonists for treating the non-motor symptoms in Parkinson’s disease. Transl. Psychiatry 2018 8 1 117 10.1038/s41398‑018‑0162‑2 29907742
    [Google Scholar]
  93. Pinna A. Adenosine A2A receptor antagonists in Parkinson’s disease: Progress in clinical trials from the newly approved istradefylline to drugs in early development and those already discontinued. CNS Drugs 2014 28 5 455 474 10.1007/s40263‑014‑0161‑7 24687255
    [Google Scholar]
  94. Cerri S. Levandis G. Ambrosi G. Montepeloso E. Antoninetti G.F. Franco R. Lanciego J.L. Baqi Y. Müller C.E. Pinna A. Blandini F. Armentero M.T. Neuroprotective potential of adenosine A2A and cannabinoid CB1 receptor antagonists in an animal model of Parkinson disease. J. Neuropathol. Exp. Neurol. 2014 73 5 414 424 10.1097/NEN.0000000000000064 24709676
    [Google Scholar]
  95. Tosato M. Di Marco V. Metal chelation therapy and Parkinson’s disease: A critical review on the thermodynamics of complex formation between relevant metal ions and promising or established drugs. Biomolecules 2019 9 7 269 10.3390/biom9070269 31324037
    [Google Scholar]
  96. Negida A. Hassan N.M. Aboeldahab H. Zain Y.E. Negida Y. Cadri S. Cadri N. Cloud L.J. Barrett M.J. Berman B. Efficacy of the iron‐chelating agent, deferiprone, in patients with Parkinson’s disease: A systematic review and meta‐analysis. CNS Neurosci. Ther. 2024 30 2 e14607 10.1111/cns.14607 38334258
    [Google Scholar]
  97. Finkelstein D.I. Hare D.J. Billings J.L. Sedjahtera A. Nurjono M. Arthofer E. George S. Culvenor J.G. Bush A.I. Adlard P.A. Clioquinol improves cognitive, motor function, and microanatomy of the Alpha-Synuclein hA53T transgenic mice. ACS Chem. Neurosci. 2016 7 1 119 129 10.1021/acschemneuro.5b00253 26481462
    [Google Scholar]
  98. Finkelstein D.I. Billings J.L. Adlard P.A. Ayton S. Sedjahtera A. Masters C.L. Wilkins S. Shackleford D.M. Charman S.A. Bal W. Zawisza I.A. Kurowska E. Gundlach A.L. Ma S. Bush A.I. Hare D.J. Doble P.A. Crawford S. Gautier E.C.L. Parsons J. Huggins P. Barnham K.J. Cherny R.A. Correction to: The novel compound PBT434 prevents iron mediated neurodegeneration and alpha-synuclein toxicity in multiple models of Parkinson’s disease. Acta Neuropathol. Commun. 2021 9 1 161 10.1186/s40478‑021‑01258‑8 34588001
    [Google Scholar]
  99. Ashok A. Andrabi S.S. Mansoor S. Kuang Y. Kwon B.K. Labhasetwar V. Antioxidant therapy in oxidative stress-induced neurodegenerative diseases: Role of nanoparticle-based drug delivery systems in clinical translation. Antioxidants 2022 11 2 408 10.3390/antiox11020408 35204290
    [Google Scholar]
  100. Barker R.A. Björklund A. Gash D.M. Whone A. Van Laar A. Kordower J.H. Bankiewicz K. Kieburtz K. Saarma M. Booms S. Huttunen H.J. Kells A.P. Fiandaca M.S. Stoessl A.J. Eidelberg D. Federoff H. Voutilainen M.H. Dexter D.T. Eberling J. Brundin P. Isaacs L. Mursaleen L. Bresolin E. Carroll C. Coles A. Fiske B. Matthews H. Lungu C. Wyse R.K. Stott S. Lang A.E. GDNF and Parkinson’s disease: Where next? a summary from a recent workshop. J. Parkinsons Dis. 2020 10 3 875 891 10.3233/JPD‑202004 32508331
    [Google Scholar]
  101. Mahato A.K. Kopra J. Renko J.M. Visnapuu T. Korhonen I. Pulkkinen N. Bespalov M.M. Domanskyi A. Ronken E. Piepponen T.P. Voutilainen M.H. Tuominen R.K. Karelson M. Sidorova Y.A. Saarma M. Glial cell line-derived neurotrophic factor receptor Rearranged during transfection agonist supports dopamine neurons in vitro and enhances dopamine release in vivo. Mov. Disord. 2020 35 2 245 255 10.1002/mds.27943 31840869
    [Google Scholar]
  102. Borrione P. Tranchita E. Sansone P. Parisi A. Effects of physical activity in Parkinson’s disease: A new tool for rehabilitation. World J. Methodol. 2014 4 3 133 143 10.5662/wjm.v4.i3.133 25332912
    [Google Scholar]
  103. Ellis T.D. Colón-Semenza C. DeAngelis T.R. Thomas C.A. Hilaire M.H.S. Earhart G.M. Dibble L.E. Evidence for early and regular physical therapy and exercise in Parkinson’s disease. Semin. Neurol. 2021 41 2 189 205 10.1055/s‑0041‑1725133 33742432
    [Google Scholar]
  104. Boelens Keun J.T. Arnoldussen I.A. Vriend C. van de Rest O. Dietary approaches to improve efficacy and control side effects of levodopa therapy in Parkinson’s disease: A systematic review. Adv. Nutr. 2021 12 6 2265 2287 10.1093/advances/nmab060 34113965
    [Google Scholar]
  105. Acoba E.F. Social support and mental health: The mediating role of perceived stress. Front. Psychol. 2024 15 1330720 10.3389/fpsyg.2024.1330720 38449744
    [Google Scholar]
  106. Calhoun C.D. Stone K.J. Cobb A.R. Patterson M.W. Danielson C.K. Bendezú J.J. The role of social support in coping with psychological trauma: An integrated biopsychosocial model for posttraumatic stress recovery. Psychiatr. Q. 2022 93 4 949 970 10.1007/s11126‑022‑10003‑w 36199000
    [Google Scholar]
  107. Press release details. 2024 Available from: https://investors.amneal.com/news/press-releases/press-release-details/2024/Amneal-Receives-U.S.-FDA-Approval-for-IPX203-for-Treatment-of-Parkinsons-Disease-to-Be-Launched-as-CREXONT-Carbidopa-and-Levodopa-Extended-Release-Capsules/default.aspx
  108. Hauser R.A. Espay A.J. Ellenbogen A.L. Fernandez H.H. Isaacson S.H. LeWitt P.A. Ondo W.G. Pahwa R. Schwarz J. Stocchi F. Zeitlin L. Banisadr G. Fisher S. Visser H. D’Souza R. IPX203 vs immediate-release carbidopa-levodopa for the treatment of motor fluctuations in Parkinson disease: The RISE-PD randomized clinical trial. JAMA Neurol. 2023 80 10 1062 1069 10.1001/jamaneurol.2023.2679 37578800
    [Google Scholar]
  109. Summary of product characteristics. 2023 Available from: https://www.ema.europa.eu/en/glossary-terms/summary-product-characteristics
  110. Soileau M.J. Aldred J. Budur K. Fisseha N. Fung V.S.C. Jeong A. Kimber T.E. Klos K. Litvan I. O’Neill D. Robieson W.Z. Spindler M.A. Standaert D.G. Talapala S. Vaou E.O. Zheng H. Facheris M.F. Hauser R.A. Safety and efficacy of continuous subcutaneous foslevodopa-foscarbidopa in patients with advanced Parkinson’s disease: A randomised, double-blind, active-controlled, phase 3 trial. Lancet Neurol. 2022 21 12 1099 1109 10.1016/S1474‑4422(22)00400‑8 36402160
    [Google Scholar]
  111. Alhassen S. Hogenkamp D. Nguyen H.A. Al Masri S. Abbott G.W. Civelli O. Alachkar A. Ophthalmate is a new regulator of motor functions via CaSR: Implications for movement disorders. Brain 2024 147 10 3379 3394 10.1093/brain/awae097 38537648
    [Google Scholar]
  112. Gonçalves G.A.R. Paiva R.M.A. Gene therapy: Advances, challenges and perspectives. Einstein 2017 15 3 369 375 10.1590/s1679‑45082017rb4024 29091160
    [Google Scholar]
  113. Gray S.J. Woodard K.T. Samulski R.J. Viral vectors and delivery strategies for CNS gene therapy. Ther. Deliv. 2010 1 4 517 534 10.4155/tde.10.50 22833965
    [Google Scholar]
  114. Lentz T.B. Gray S.J. Samulski R.J. Viral vectors for gene delivery to the central nervous system. Neurobiol. Dis. 2012 48 2 179 188 10.1016/j.nbd.2011.09.014 22001604
    [Google Scholar]
  115. Badin R.A. Binley K. Van Camp N. Jan C. Gourlay J. Robert C. Gipchtein P. Fayard A. Stewart H. Ralph G.S. Lad Y. Kelleher M. Loader J. Hosomi K. Palfi S. Mitrophanous K.A. Hantraye P. Gene therapy for Parkinson’s disease: Preclinical evaluation of optimally configured th:ch1 fusion for maximal dopamine synthesis. Mol. Ther. Methods Clin. Dev. 2019 14 206 216 10.1016/j.omtm.2019.07.002 31406701
    [Google Scholar]
  116. Kim J. Chang M.Y. Gene therapy for Parkinson’s disease using midbrain developmental genes to regulate dopaminergic neuronal maintenance. Int. J. Mol. Sci. 2024 25 22 12369 10.3390/ijms252212369 39596436
    [Google Scholar]
  117. National research council (US) and institute of medicine. 2002 Available from: https://www.ncbi.nlm.nih.gov/books/NBK223690/
  118. Grealish S. Diguet E. Kirkeby A. Mattsson B. Heuer A. Bramoulle Y. Van Camp N. Perrier A.L. Hantraye P. Björklund A. Parmar M. Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell 2014 15 5 653 665 10.1016/j.stem.2014.09.017 25517469
    [Google Scholar]
  119. Ye L. Swingen C. Zhang J. Induced pluripotent stem cells and their potential for basic and clinical sciences. Curr. Cardiol. Rev. 2013 9 1 63 72 10.2174/157340313805076278 22935022
    [Google Scholar]
  120. Al Abbar A. Ngai S.C. Nograles N. Alhaji S.Y. Abdullah S. Induced pluripotent stem cells: Reprogramming platforms and applications in cell replacement therapy. Biores. Open Access 2020 9 1 121 136 10.1089/biores.2019.0046 32368414
    [Google Scholar]
  121. Ullah I. Subbarao R.B. Rho G.J. Human mesenchymal stem cells - Current trends and future prospective. Biosci. Rep. 2015 35 2 e00191 10.1042/BSR20150025 25797907
    [Google Scholar]
  122. Hmadcha A. Martin-Montalvo A. Gauthier B.R. Soria B. Capilla-Gonzalez V. Therapeutic potential of mesenchymal stem cells for cancer therapy. Front. Bioeng. Biotechnol. 2020 8 43 10.3389/fbioe.2020.00043 32117924
    [Google Scholar]
  123. El Ouaamari Y. Van den Bos J. Willekens B. Cools N. Wens I. Neurotrophic factors as regenerative therapy for neurodegenerative diseases: Current status, challenges and future perspectives. Int. J. Mol. Sci. 2023 24 4 3866 10.3390/ijms24043866 36835277
    [Google Scholar]
  124. Jamal F. Immunotherapies targeting α -Synuclein in Parkinson disease. Fed. Pract. 2020 37 8 375 379 10.12788/fp.0026 32908345
    [Google Scholar]
  125. Henriquez G. Narayan M. Targeting α-synuclein aggregation with immunotherapy: A promising therapeutic approach for Parkinson’s disease. Explor. Neuroprotective Ther. 2023 3 207 234 10.37349/ent.2023.00048
    [Google Scholar]
  126. Kuchimanchi M. Monine M. Kandadi Muralidharan K. Woodward C. Penner N. Phase I.I. Phase II dose selection for alpha synuclein–targeting antibody Cinpanemab (BIIB054) based on target protein binding levels in the brain. CPT Pharmacometrics Syst. Pharmacol. 2020 9 9 515 522 10.1002/psp4.12538 32613752
    [Google Scholar]
  127. Meissner W.G. Traon A.P.L. Foubert-Samier A. Galabova G. Galitzky M. Kutzelnigg A. Laurens B. Lührs P. Medori R. Péran P. Sabatini U. Vergnet S. Volc D. Poewe W. Schneeberger A. Staffler G. Rascol O. A phase 1 randomized trial of specific active α‐Synuclein immunotherapies PD01A and PD03A in multiple system atrophy. Mov. Disord. 2020 35 11 1957 1965 10.1002/mds.28218 32882100
    [Google Scholar]
  128. Rakshit D. Nayak S. Kundu S. Angelopoulou E. Pyrgelis E.S. Piperi C. Mishra A. The pharmacological activity of garlic ( Allium sativum ) in Parkinson’s disease: From molecular mechanisms to the therapeutic potential. ACS Chem. Neurosci. 2023 14 6 1033 1044 10.1021/acschemneuro.2c00789 36861262
    [Google Scholar]
  129. Mathew B. Biju R. Neuroprotective effects of garlic a review. Libyan J. Med. 2008 3 1 23 33 10.4176/071110 21499478
    [Google Scholar]
  130. Ahangar-Sirous R. Poudineh M. Ansari A. Nili A. Dana S.M.M.A. Nasiri Z. Hosseini Z. Karami D. Mokhtari M. Deravi N. Pharmacotherapeutic potential of garlic in age-related neurological disorders. CNS Neurol. Disord. Drug Targets 2022 21 5 377 398 10.2174/1871527320666210927101257 34579639
    [Google Scholar]
  131. Farooqui A.A. Beneficial Effects of Garlic Components on Neurological Disorders. Phytochemicals, Signal Transduction, and Neurological Disorders. Springer New York, NY 2013 10.1007/978‑1‑4614‑3804‑5_9
    [Google Scholar]
  132. Nadeem M.S. Kazmi I. Ullah I. Muhammad K. Anwar F. Allicin, an antioxidant and neuroprotective agent, ameliorates cognitive impairment. Antioxidants 2021 11 1 87 10.3390/antiox11010087 35052591
    [Google Scholar]
  133. Bayan L. Koulivand P.H. Gorji A. Garlic: A review of potential therapeutic effects. Avicenna J. Phytomed. 2014 4 1 1 14 25050296
    [Google Scholar]
  134. Savairam V.D. Patil N.A. Borate S.R. Ghaisas M.M. Shete R.V. Allicin: A review of its important pharmacological activities. Pharmacol. Res. Mod. Chin. Med. 2023 8 100283 10.1016/j.prmcm.2023.100283
    [Google Scholar]
  135. Iranshahy M. Javadi B. Sahebkar A. Protective effects of functional foods against Parkinson’s disease: A narrative review on pharmacology, phytochemistry, and molecular mechanisms. Phytother. Res. 2022 36 5 1952 1989 10.1002/ptr.7425 35244296
    [Google Scholar]
  136. Liu H. Mao P. Wang J. Wang T. Xie C.H. Allicin protects PC12 cells against 6-OHDA-induced oxidative stress and mitochondrial dysfunction via regulating mitochondrial dynamics. Cell. Physiol. Biochem. 2015 36 3 966 979 10.1159/000430271 26087780
    [Google Scholar]
  137. Bigham M. Mohammadipour A. Hosseini M. Malvandi A.M. Ebrahimzadeh-Bideskan A. Neuroprotective effects of garlic extract on dopaminergic neurons of substantia nigra in a rat model of Parkinson’s disease: Motor and non‐motor outcomes. Metab. Brain Dis. 2021 36 5 927 937 10.1007/s11011‑021‑00705‑8 33656625
    [Google Scholar]
  138. Attri P Deshmukh R.R. Allicin prevents mptp‐induced motor dysfunction and biochemical abnormalities in wistar rats. Basic Sci. Pathog. 2023 19 S13 e077674 10.1002/alz.077674
    [Google Scholar]
  139. Singh S. Neuroprotective effects of allicin microemulsion against intrastriatal rotenone and manganese induced Parkinsonism in rats. 2020 Available from: https://www.mdsabstracts.org/abstract/neuroprotective-effects-of-allicin-microemulsion-against-intrastriatal-rotenone-and-manganese-induced-parkinsonism-in-rats/
  140. Erekat N.S. Al-Jarrah M.D. Association of Parkinson disease induction with cardiac upregulation of apoptotic mediators P53 and active Caspase-3: An immunohistochemistry study. Med. Sci. Monit. Basic Res. 2018 24 120 126 10.12659/MSMBR.910307 30135418
    [Google Scholar]
  141. Somade O.T. Adedokun A.H. Adeleke I.K. Taiwo M.A. Oyeniran M.O. Diallyl disulfide, a garlic-rich compound ameliorates trichloromethane-induced renal oxidative stress, NFkB activation and apoptosis in rats. Clin. Nutr. Exp. 2019 23 44 59 10.1016/j.yclnex.2018.10.007
    [Google Scholar]
  142. Patel M. Goyal L. Raj K. Singh S. Chapter 62 - Neuroprotective role of garlic constituents against neurological disorders. Natural Molecules in Neuroprotection and Neurotoxicity Academic Press United States 2024 1507 1523 10.1016/B978‑0‑443‑23763‑8.00038‑5
    [Google Scholar]
  143. Liu R. Yang Y.N. Yi L. Qing J. Li Q.Y. Wang W.S. Wang J. Tang Y.X. Tan H. Diallyl disulfide effect on the invasion and migration ability of HL-60 cells with a high expression of DJ-1 in the nucleus through the suppression of the Src signaling pathway. Oncol. Lett. 2018 15 5 6377 6385 10.3892/ol.2018.8139 29725397
    [Google Scholar]
  144. Koh S.H. Kwon H. Park K.H. Ko J.K. Kim J.H. Hwang M.S. Yum Y.N. Kim O.H. Kim J. Kim H.T. Do B.R. Kim K.S. Kim H. Roh H. Yu H.J. Jung H.K. Kim S.H. Protective effect of diallyl disulfide on oxidative stress-injured neuronally differentiated PC12 cells. Brain Res. Mol. Brain Res. 2005 133 2 176 186 10.1016/j.molbrainres.2004.10.006 15710234
    [Google Scholar]
  145. Kim G-Y Koh S.H Lee Y.J Lee K.Y Kim Y Kim S Lee M.K Kim S Differential effects of diallyl disulfide on neuronal cells depend on its concentration. Toxicology 2019 11 1-2 86 96 10.1016/j.tox.2005.02.011
    [Google Scholar]
  146. Kosuge Y. Neuroprotective mechanisms of S-allyl-L-cysteine in neurological disease (Review). Exp. Ther. Med. 2019 19 2 1565 1569 10.3892/etm.2019.8391 32010340
    [Google Scholar]
  147. Colín-González A.L. Santana R.A. Silva-Islas C.A. Chánez-Cárdenas M.E. Santamaría A. Maldonado P.D. The antioxidant mechanisms underlying the aged garlic extract- and S-allylcysteine-induced protection. Oxid. Med. Cell. Longev. 2012 2012 1 16 10.1155/2012/907162 22685624
    [Google Scholar]
  148. Orozco-Ibarra M. Muñoz-Sánchez J. Zavala-Medina M.E. Pineda B. Magaña-Maldonado R. Vázquez-Contreras E. Maldonado P.D. Pedraza-Chaverri J. Chánez-Cárdenas M.E. Aged garlic extract and S-allylcysteine prevent apoptotic cell death in a chemical hypoxia model. Biol. Res. 2016 49 1 7 10.1186/s40659‑016‑0067‑6 26830333
    [Google Scholar]
  149. Rojas P. Serrano-García N. Medina-Campos O.N. Pedraza-Chaverri J. Maldonado P.D. Ruiz-Sánchez E. S-Allylcysteine, a garlic compound, protects against oxidative stress in 1-methyl-4-phenylpyridinium-induced parkinsonism in mice. J. Nutr. Biochem. 2011 22 10 937 944 10.1016/j.jnutbio.2010.08.005 21190833
    [Google Scholar]
  150. García E. Santana-Martínez R. Silva-Islas C.A. Colín-González A.L. Galván-Arzate S. Heras Y. Maldonado P.D. Sotelo J. Santamaría A. S-allyl cysteine protects against MPTP-induced striatal and nigral oxidative neurotoxicity in mice: Participation of Nrf2. Free Radic. Res. 2014 48 2 159 167 10.3109/10715762.2013.857019 24147739
    [Google Scholar]
  151. Panjwani A.A. Liu H. Fahey J.W. Crucifers and related vegetables and supplements for neurologic disorders. Curr. Opin. Clin. Nutr. Metab. Care 2018 21 6 451 457 10.1097/MCO.0000000000000511 30199394
    [Google Scholar]
  152. Tresserra-Rimbau A. Thompson A.S. Bondonno N. Jennings A. Kühn T. Cassidy A. Plant‐based dietary patterns and Parkinson’s disease: A prospective analysis of the UK biobank. Mov. Disord. 2023 38 11 1994 2004 10.1002/mds.29580 37602951
    [Google Scholar]
  153. Cannas C. Lostia G. Serra P.A. Peana A.T. Migheli R. Food and food waste antioxidants: Could they be a potent defence against Parkinson’s disease? Antioxidants 2024 13 6 645 10.3390/antiox13060645 38929084
    [Google Scholar]
  154. Angeloni C. Hrelia S. Malaguti M. Mérillon J.M. Ramawat K. Neuroprotective Effects of Glucosinolates. Glucosinolates. Reference Series in Phytochemistry. Springer Cham 2017 10.1007/978‑3‑319‑25462‑3_20
    [Google Scholar]
  155. Connolly E.L. Sim M. Travica N. Marx W. Beasy G. Lynch G.S. Bondonno C.P. Lewis J.R. Hodgson J.M. Blekkenhorst L.C. Glucosinolates from cruciferous vegetables and their potential role in chronic disease: Investigating the preclinical and clinical evidence. Front. Pharmacol. 2021 12 767975 10.3389/fphar.2021.767975 34764875
    [Google Scholar]
  156. Lucarini E. Micheli L. Di Cesare Mannelli L. Ghelardini C. Naturally occurring glucosinolates and isothiocyanates as a weapon against chronic pain: Potentials and limits. Phytochem. Rev. 2022 21 2 647 665 10.1007/s11101‑022‑09809‑0
    [Google Scholar]
  157. Pu Y. Qu Y. Chang L. Wang S. Zhang K. Ushida Y. Suganuma H. Hashimoto K. Dietary intake of glucoraphanin prevents the reduction of dopamine transporter in the mouse striatum after repeated administration of MPTP. Neuropsychopharmacol. Rep. 2019 39 3 247 251 10.1002/npr2.12060 31132231
    [Google Scholar]
  158. Galuppo M. Iori R. De Nicola G.R. Bramanti P. Mazzon E. Anti-inflammatory and anti-apoptotic effects of (RS)-glucoraphanin bioactivated with myrosinase in murine sub-acute and acute MPTP-induced Parkinson’s disease. Bioorg. Med. Chem. 2013 21 17 5532 5547 10.1016/j.bmc.2013.05.065 23810671
    [Google Scholar]
  159. Sita G. Hrelia P. Tarozzi A. Morroni F. Isothiocyanates are promising compounds against oxidative stress, neuroinflammation and cell death that may benefit neurodegeneration in Parkinson’s disease. Int. J. Mol. Sci. 2016 17 9 1454 10.3390/ijms17091454 27598127
    [Google Scholar]
  160. Giacoppo S. Galuppo M. Montaut S. Iori R. Rollin P. Bramanti P. Mazzon E. An overview on neuroprotective effects of isothiocyanates for the treatment of neurodegenerative diseases. Fitoterapia 2015 106 12 21 10.1016/j.fitote.2015.08.001 26254971
    [Google Scholar]
  161. Olayanju J.B. Bozic D. Naidoo U. Sadik O.A. A comparative review of key isothiocyanates and their health benefits. Nutrients 2024 16 6 757 10.3390/nu16060757 38542669
    [Google Scholar]
  162. Wang Y-M. Current progress on the neuroprotective effects of isothiocyanates in the treatment for experimental Parkinson’s disease. Chung Kuo Yao Hsueh Tsa Chih 2018 24 325 329
    [Google Scholar]
  163. Giacoppo S. Rajan T.S. De Nicola G.R. Iori R. Rollin P. Bramanti P. Mazzon E. The isothiocyanate isolated from Moringa oleifera shows potent anti-inflammatory activity in the treatment of murine subacute Parkinson’s disease. Rejuvenation Res. 2017 20 1 50 63 10.1089/rej.2016.1828 27245199
    [Google Scholar]
  164. Giacoppo S. Galuppo M. De Nicola G.R. Iori R. Bramanti P. Mazzon E. 4(α-l-Rhamnosyloxy)-benzyl isothiocyanate, a bioactive phytochemical that attenuates secondary damage in an experimental model of spinal cord injury. Bioorg. Med. Chem. 2015 23 1 80 88 10.1016/j.bmc.2014.11.022 25497964
    [Google Scholar]
  165. Latronico T. Larocca M. Milella S. Fasano A. Rossano R. Liuzzi G.M. Neuroprotective potential of isothiocyanates in an in vitro model of neuroinflammation. Inflammopharmacology 2021 29 2 561 571 10.1007/s10787‑020‑00772‑w 33196947
    [Google Scholar]
  166. Subedi L. Venkatesan R. Kim S. Neuroprotective and anti-inflammatory activities of Allyl isothiocyanate through attenuation of JNK/NF-κB/TNF-α signaling. Int. J. Mol. Sci. 2017 18 7 1423 10.3390/ijms18071423 28671636
    [Google Scholar]
  167. Kim J. Jeong Y.H. Lee E.J. Park J.S. Seo H. Kim H.S. Suppression of neuroinflammation by matrix metalloproteinase-8 inhibitor in aged normal and LRRK2 G2019S Parkinson’s disease model mice challenged with lipopolysaccharide. Biochem. Biophys. Res. Commun. 2017 493 2 879 886 10.1016/j.bbrc.2017.09.129 28958936
    [Google Scholar]
  168. Morroni F. Sita G. Tarozzi A. Cantelli-Forti G. Hrelia P. Neuroprotection by 6-(methylsulfinyl)hexyl isothiocyanate in a 6-hydroxydopamine mouse model of Parkinson׳s disease. Brain Res. 2014 1589 93 104 10.1016/j.brainres.2014.09.033 25257035
    [Google Scholar]
  169. Seidl S.E. Santiago J.A. Bilyk H. Potashkin J.A. The emerging role of nutrition in Parkinson’s disease. Front. Aging Neurosci. 2014 6 36 10.3389/fnagi.2014.00036 24639650
    [Google Scholar]
  170. Kaur P Singh D Bhardwaj N Bedi N Arora S. Modulatory effect of erucin and its polymeric mixed micelles on 3-nitropropionic acid-induced neurodegeneration (P10-3.009). Neurology 2024 102 17_supplement_1 1 8 10.1212/WNL.0000000000206379
    [Google Scholar]
  171. Tarozzi A. Morroni F. Bolondi C. Sita G. Hrelia P. Djemil A. Cantelli-Forti G. Neuroprotective effects of erucin against 6-hydroxydopamine-induced oxidative damage in a dopaminergic-like neuroblastoma cell line. Int. J. Mol. Sci. 2012 13 9 10899 10910 10.3390/ijms130910899 23109827
    [Google Scholar]
  172. Morroni F. Sita G. Djemil A. D’Amico M. Pruccoli L. Cantelli-Forti G. Hrelia P. Tarozzi A. Comparison of adaptive neuroprotective mechanisms of sulforaphane and its interconversion product erucin in in vitro and in vivo models of Parkinson’s disease. J. Agric. Food Chem. 2018 66 4 856 865 10.1021/acs.jafc.7b04641 29307179
    [Google Scholar]
  173. Tarozzi A. Angeloni C. Malaguti M. Morroni F. Hrelia S. Hrelia P. Sulforaphane as a potential protective phytochemical against neurodegenerative diseases. Oxid. Med. Cell. Longev. 2013 2013 1 10 10.1155/2013/415078 23983898
    [Google Scholar]
  174. Schepici G. Bramanti P. Mazzon E. Efficacy of sulforaphane in neurodegenerative diseases. Int. J. Mol. Sci. 2020 21 22 8637 10.3390/ijms21228637 33207780
    [Google Scholar]
  175. Ding Y. Klomparens E.A. The neuroprotective mechanisms and effects of sulforaphane. Brain Circ. 2019 5 2 74 83 10.4103/bc.bc_7_19 31334360
    [Google Scholar]
  176. Morroni F. Tarozzi A. Sita G. Bolondi C. Zolezzi Moraga J.M. Cantelli-Forti G. Hrelia P. Neuroprotective effect of sulforaphane in 6-hydroxydopamine-lesioned mouse model of Parkinson’s disease. Neurotoxicology 2013 36 63 71 10.1016/j.neuro.2013.03.004 23518299
    [Google Scholar]
  177. Zhou Q. Chen B. Wang X. Wu L. Yang Y. Cheng X. Hu Z. Cai X. Yang J. Sun X. Lu W. Yan H. Chen J. Ye J. Shen J. Cao P. Sulforaphane protects against rotenone-induced neurotoxicity in vivo: Involvement of the mTOR, Nrf2 and autophagy pathways. Sci. Rep. 2016 6 1 32206 10.1038/srep32206 27553905
    [Google Scholar]
  178. Reynolds W.F. Malle E. Maki R.A. Thiocyanate reduces motor impairment in the hMPO-A53T PD mouse model while reducing mpo-oxidation of alpha synuclein in enlarged LYVE1/AQP4 positive periventricular glymphatic vessels. Antioxidants 2022 11 12 2342 10.3390/antiox11122342 36552550
    [Google Scholar]
  179. Egbujor M.C. Olaniyan O.T. Emeruwa C.N. Saha S. Saso L. Tucci P. An insight into role of amino acids as antioxidants via NRF2 activation. Amino Acids 2024 56 1 23 10.1007/s00726‑024‑03384‑8 38506925
    [Google Scholar]
  180. Egbujor M.C. Okoro U.C. New methionine-based p-toluenesulphamoyl carboxamide derivatives. LAP LAMBERT Academic Publishing Germany 2019
    [Google Scholar]
  181. Townsend D.M. Tew K.D. Tapiero H. Sulfur containing amino acids and human disease. Biomed. Pharmacother. 2004 58 1 47 55 10.1016/j.biopha.2003.11.005 14739061
    [Google Scholar]
  182. Rassin D.K. Lajtha A. Perez-Polo J.R. Rossner S. Sulfur-Containing Amino Acids in the CNS: Homocysteine. Handbook of Neurochemistry and Molecular Neurobiology. Springer Boston, MA 2008 10.1007/978‑0‑387‑32671‑9_4
    [Google Scholar]
  183. Grimble R.F. The effects of sulfur amino acid intake on immune function in humans. J. Nutr. 2006 136 6 1660S 1665S 10.1093/jn/136.6.1660S 16702336
    [Google Scholar]
  184. Meininger V. Flamier A. Phan T. Ferris O. Uzan A. Lefur G. L-Methionine treatment of Parkinson's disease: Preliminary results. Rev. Neurol. 1982 138 4 297 303 7134722
    [Google Scholar]
  185. Catanesi M. Brandolini L. d’Angelo M. Benedetti E. Tupone M.G. Alfonsetti M. Cabri E. Iaconis D. Fratelli M. Cimini A. Castelli V. Allegretti M. L-Methionine protects against oxidative stress and mitochondrial dysfunction in an in vitro model of Parkinson’s disease. Antioxidants 2021 10 9 1467 10.3390/antiox10091467 34573099
    [Google Scholar]
  186. Jalgaonkar S. Gajbhiye S. Sayyed M. Tripathi R. Khatri N. Parmar U. Shankar A. S‐adenosyl methionine improves motor co‐ordination with reduced oxidative stress, dopaminergic neuronal loss, and DNA methylation in the brain striatum of 6‐hydroxydopamine‐induced neurodegeneration in rats. Anat. Rec. 2023 306 4 820 830 10.1002/ar.24948 35476228
    [Google Scholar]
  187. Di Rocco A. Rogers J.D. Brown R. Werner P. Bottiglieri T. S-adenosyl-methionine improves depression in patients with Parkinson’s disease in an open-label clinical trial. Mov. Disord. 2000 15 6 1225 1229 10.1002/1531‑8257(200011)15:6<1225::AID‑MDS1025>3.0.CO;2‑A 11104210
    [Google Scholar]
  188. Jangra A. Gola P. Singh J. Gond P. Ghosh S. Rachamalla M. Dey A. Iqbal D. Kamal M. Sachdeva P. Jha S.K. Ojha S. Kumar D. Jha N.K. Chopra H. Tan S.C. Emergence of taurine as a therapeutic agent for neurological disorders. Neural Regen. Res. 2024 19 1 62 68 10.4103/1673‑5374.374139 37488845
    [Google Scholar]
  189. Che Y. Hou L. Sun F. Zhang C. Liu X. Piao F. Zhang D. Li H. Wang Q. Taurine protects dopaminergic neurons in a mouse Parkinson’s disease model through inhibition of microglial M1 polarization. Cell Death Dis. 2018 9 4 435 10.1038/s41419‑018‑0468‑2 29568078
    [Google Scholar]
  190. Wang K. Shi Y. Liu W. Liu S. Sun M.Z. Taurine improves neuron injuries and cognitive impairment in a mouse Parkinson’s disease model through inhibition of microglial activation. Neurotoxicology 2021 83 129 136 10.1016/j.neuro.2021.01.002 33450328
    [Google Scholar]
  191. Cui C. Song H. Han Y. Yu H. Li H. Yang Y. Zhang B. Gut microbiota-associated taurine metabolism dysregulation in a mouse model of Parkinson’s disease. MSphere 2023 8 6 e00431-23 10.1128/msphere.00431‑23 37819112
    [Google Scholar]
  192. Wang K. Zhang B. Tian T. Zhang B. Shi G. Zhang C. Li G. Huang M. Taurine protects dopaminergic neurons in paraquat-induced Parkinson’s disease mouse model through PI3K/Akt signaling pathways. Amino Acids 2022 54 1 1 11 10.1007/s00726‑021‑03104‑6 34837554
    [Google Scholar]
  193. Abuirmeileh A.N. Abuhamdah S.M. Ashraf A. Alzoubi K.H. Protective effect of caffeine and/or taurine on the 6-hydroxydopamine-induced rat model of Parkinson’s disease: Behavioral and neurochemical evidence. Restor. Neurol. Neurosci. 2021 39 2 149 157 10.3233/RNN‑201131 33998560
    [Google Scholar]
  194. Halliwell B. Cheah I. Are age-related neurodegenerative diseases caused by a lack of the diet-derived compound ergothioneine? Free Radic. Biol. Med. 2024 217 60 67 10.1016/j.freeradbiomed.2024.03.009 38492784
    [Google Scholar]
  195. Wu L.Y. Cheah I.K. Chong J.R. Chai Y.L. Tan J.Y. Hilal S. Vrooman H. Chen C.P. Halliwell B. Lai M.K.P. Low plasma ergothioneine levels are associated with neurodegeneration and cerebrovascular disease in dementia. Free Radic. Biol. Med. 2021 177 201 211 10.1016/j.freeradbiomed.2021.10.019 34673145
    [Google Scholar]
  196. Nakamichi N. Tsuzuku S. Shibagaki F. Ergothioneine and central nervous system diseases. Neurochem. Res. 2022 47 9 2513 2521 10.1007/s11064‑022‑03665‑2 35788879
    [Google Scholar]
  197. Yuzawa S. Nakashio M. Ichimura S. Shimoda M. Nakashima A. Marukawa-Hashimoto Y. Kawano Y. Suzuki K. Yoshitomi K. Kawahara M. Tanaka K. Ergothioneine prevents neuronal cell death caused by the neurotoxin 6-Hydroxydopamine. Cells 2024 13 3 230 10.3390/cells13030230 38334622
    [Google Scholar]
  198. Leow D.M.K. Cheah I.K.M. Chen L. Ng Y.K. Yeo C.J.J. Halliwell B. Ong W.Y. Ergothioneine-mediated neuroprotection of human iPSC-derived dopaminergic neurons. Antioxidants 2024 13 6 693 10.3390/antiox13060693 38929132
    [Google Scholar]
  199. Meng X. Meng H. Hou S. L-Ergothioneine ameliorates MPTP-induced Parkinson’s disease in C57BL/6J mice by activating DJ-1. Food Sci. Hum. Wellness 2024 14 3 9250068 10.26599/FSHW.2024.9250068
    [Google Scholar]
  200. Hornberger C.S. Heitmiller R.F. Gunsalus I.C. Schnakenberg G.H.F. Reed L.J. Synthetic preparation of lipoic acid. J. Am. Chem. Soc. 1952 74 9 2382 10.1021/ja01129a511
    [Google Scholar]
  201. Tai S. Zheng Q. Zhai S. Cai T. Xu L. Yang L. Jiao L. Zhang C. Alpha-lipoic acid mediates clearance of iron accumulation by regulating iron metabolism in a Parkinson’s disease model induced by 6-OHDA. Front. Neurosci. 2020 14 612 10.3389/fnins.2020.00612 32670009
    [Google Scholar]
  202. Zheng Q. Ma P. Yang P. Zhai S. He M. Zhang X. Tu Q. Jiao L. Ye L. Feng Z. Zhang C. Alpha lipoic acid ameliorates motor deficits by inhibiting ferroptosis in Parkinson’s disease. Neurosci. Lett. 2023 810 137346 10.1016/j.neulet.2023.137346 37308056
    [Google Scholar]
  203. Zhang S.F. Xie C.L. Lin J.Y. Wang M.H. Wang X.J. Liu Z.G. Lipoic acid alleviates L‑DOPA‑induced dyskinesia in 6‑OHDA parkinsonian rats via anti‑oxidative stress. Mol. Med. Rep. 2018 17 1 1118 1124 10.3892/mmr.2017.7974 29115484
    [Google Scholar]
  204. Marković A. Živković A. Atanasova M. Doytchinova I. Hofmann B. George S. Kretschmer S. Rödl C. Steinhilber D. Stark H. Šmelcerović A. Thiazole derivatives as dual inhibitors of deoxyribonuclease I and 5-lipoxygenase: A promising scaffold for the development of neuroprotective drugs. Chem. Biol. Interact. 2023 381 110542 10.1016/j.cbi.2023.110542 37224992
    [Google Scholar]
  205. Abdollahi Z. Nejabat M. Abnous K. Hadizadeh F. The therapeutic value of thiazole and thiazolidine derivatives in Alzheimer’s disease: A systematic literature review. Res. Pharm. Sci. 2024 19 1 1 12 10.4103/1735‑5362.394816 39006977
    [Google Scholar]
  206. Chaudhary J. Jain A. Dhingra A. Chopra B. Sharma V. Gupta J. Kaushik A. 1,3-thiazole derivatives: A scaffold with considerable potential in the treatment of neurodegenerative diseases. Curr. Top. Med. Chem. 2023 23 23 2185 2196 10.2174/1568026623666230719124850 37469159
    [Google Scholar]
  207. Masih A. Singh S. Agnihotri A.K. Giri S. Shrivastava J.K. Pandey N. Bhat H.R. Singh U.P. Design and development of 1,3,5-triazine-thiadiazole hybrids as potent adenosine A2A receptor (A2AR) antagonist for benefit in Parkinson’s disease. Neurosci. Lett. 2020 735 135222 10.1016/j.neulet.2020.135222 32619652
    [Google Scholar]
  208. Sağlık B.N. Kaya Çavuşoğlu B. Acar Çevik U. Osmaniye D. Levent S. Özkay Y. Kaplancıklı Z.A. Novel 1,3,4-thiadiazole compounds as potential MAO-A inhibitors – Design, synthesis, biological evaluation and molecular modelling. RSC Med. Chem. 2020 11 9 1063 1074 10.1039/D0MD00150C 33479699
    [Google Scholar]
  209. Lühr S. Vilches-Herrera M. Fierro A. Ramsay R.R. Edmondson D.E. Reyes-Parada M. Cassels B.K. Iturriaga-Vásquez P. 2-Arylthiomorpholine derivatives as potent and selective monoamine oxidase B inhibitors. Bioorg. Med. Chem. 2010 18 4 1388 1395 10.1016/j.bmc.2010.01.029 20123154
    [Google Scholar]
  210. Drukarch B. Flier J. Jongenelen C.A.M. Andringa G. Schoffelmeer A.N.M. The antioxidant anethole dithiolethione inhibits monoamine oxidase-B but not monoamine oxidase A activity in extracts of cultured astrocytes. J. Neural Transm. 2006 113 5 593 598 10.1007/s00702‑005‑0350‑0 16252076
    [Google Scholar]
  211. Egbujor M.C. Nwobodo D.C. Egwuatu P.I. Abu I.P. Ezeagu C.U. Sulphonamide drugs and Pseudomonas aeruginosa resistance: A review. Int. J. Med. Pharm. Res. 2020 4 78 83
    [Google Scholar]
  212. Egbujor M.C. Okoro U.C. Egu S.A. Egwuatu P.I. Eze F.U. Amasiatu I.S. Design, synthesis and biological evaluation of alanine-based sulphonamide derivatives. Int. J. Res. Pharm. Sci. 2020 11 6449 6458 10.26452/ijrps.v11i4.3440
    [Google Scholar]
  213. Egbujor M.C. Okoro U.C. Okafor S. Novel alanine-based antimicrobial and antioxidant agents: Synthesis and molecular docking. Indian J. Sci. Technol. 2020 13 9 1003 1014 10.17485/ijst/2020/v013i09/146687
    [Google Scholar]
  214. Chen X. Hussain S. Parveen S. Zhang S. Yang Y. Zhu C. Sulfonyl group-containing compounds in the design of potential drugs for the treatment of diabetes and its complications. Curr. Med. Chem. 2012 19 21 3578 3604 10.2174/092986712801323225 22664250
    [Google Scholar]
  215. Bharti R. Yamini Bhardwaj V.K. Bal Reddy C. Purohit R. Das P. Benzosuberene-sulfone analogues synthesis from Cedrus deodara oil and their therapeutic evaluation by computational analysis to treat type 2 diabetes. Bioorg. Chem. 2021 112 104860 10.1016/j.bioorg.2021.104860 33839462
    [Google Scholar]
  216. Egbujor M.C. Okoro U.C. Okafor S. Design, synthesis, molecular docking, antimicrobial, and antioxidant activities of new phenylsulfamoyl carboxylic acids of pharmacological interest. Med. Chem. Res. 2019 28 12 2118 2127 10.1007/s00044‑019‑02440‑3
    [Google Scholar]
  217. Egbujor M.C. Okoro U.C. Okafor S. Nwankwo N.E. Design, synthesis and molecular docking of novel serine-based sulphonamide bioactive compounds as potential antioxidant and antimicrobial agents. Indo Am. J. Pharm. Sci. 2019 6 12232 12240
    [Google Scholar]
  218. Egbujor M.C. Okoro U.C. New methionine-based p-toluenesulphonamoyl carboxamide derivatives as antimicrobial and antioxidant agents: Design, synthesis. J. Pharm. Res. Int. 2019 28 1 12 10.9734/jpri/2019/v28i130192
    [Google Scholar]
  219. Bachovchin D.A. Zuhl A.M. Speers A.E. Wolfe M.R. Weerapana E. Brown S.J. Rosen H. Cravatt B.F. Discovery and optimization of sulfonyl acrylonitriles as selective, covalent inhibitors of protein phosphatase methylesterase-1. J. Med. Chem. 2011 54 14 5229 5236 10.1021/jm200502u 21639134
    [Google Scholar]
  220. Alqasoumi S.I. Al-Taweel A.M. Alafeefy A.M. Ghorab M.M. Noaman E. Discovering some novel tetrahydroquinoline derivatives bearing the biologically active sulfonamide moiety as a new class of antitumor agents. Eur. J. Med. Chem. 2010 45 5 1849 1853 10.1016/j.ejmech.2010.01.022 20149941
    [Google Scholar]
  221. Egbujor M.C. Okoro U.C. Okafor S. Nwankwo N.E. Synthesis, characterization and in silico studies of novel alkanoylated 4-methylphenyl sulphonamoyl carboxylic acids as potential antimicrobial and antioxidant agents. Int. J. Pharm. Phytopharm. Res. 2019 9 89 97
    [Google Scholar]
  222. Egbujor M.C. Synthesis and biological evaluation of proline derived sulphonamides. J Res Pharm Sci 2023 9 19 26
    [Google Scholar]
  223. Lu M.C. Shao H.L. Liu T. You Q.D. Jiang Z.Y. Discovery of 2-oxy-2-phenylacetic acid substituted naphthalene sulfonamide derivatives as potent KEAP1-NRF2 protein-protein interaction inhibitors for inflammatory conditions. Eur. J. Med. Chem. 2020 207 112734 10.1016/j.ejmech.2020.112734 32866756
    [Google Scholar]
  224. Guo Y. Ma Z. Ning X. Chen Y. Tian C. Wang X. Zhang Z. Liu J. A novel synthetic precursor of styryl sulfone neuroprotective agents inhibits neuroinflammatory responses and oxidative stress damage through the P38 signaling pathway in the cell and animal model of Parkinson’s disease. Molecules 2021 26 17 5371 10.3390/molecules26175371 34500807
    [Google Scholar]
  225. Sammi S.R. Foguth R.M. Nieves C.S. De Perre C. Wipf P. McMurray C.T. Lee L.S. Cannon J.R. Perfluorooctane sulfonate (PFOS) produces dopaminergic neuropathology in caenorhabditis elegans. Toxicol. Sci. 2019 172 2 417 434 10.1093/toxsci/kfz191 31428778
    [Google Scholar]
  226. Woo S.Y. Kim J.H. Moon M.K. Han S.H. Yeon S.K. Choi J.W. Jang B.K. Song H.J. Kang Y.G. Kim J.W. Lee J. Kim D.J. Hwang O. Park K.D. Discovery of vinyl sulfones as a novel class of neuroprotective agents toward Parkinson’s disease therapy. J. Med. Chem. 2014 57 4 1473 1487 10.1021/jm401788m 24467268
    [Google Scholar]
  227. Choi J.W. Kim S. Park J.H. Kim H.J. Shin S.J. Kim J.W. Woo S.Y. Lee C. Han S.M. Lee J. Pae A.N. Han G. Park K.D. Optimization of vinyl sulfone derivatives as potent nuclear factor erythroid 2-related factor 2 (Nrf2) activators for Parkinson’s disease therapy. J. Med. Chem. 2019 62 2 811 830 10.1021/acs.jmedchem.8b01527 30540174
    [Google Scholar]
  228. Choi J.W. Kim S. Yoo J.S. Kim H.J. Kim H.J. Kim B.E. Lee E.H. Lee Y.S. Park J.H. Park K.D. Development and optimization of halogenated vinyl sulfones as Nrf2 activators for the treatment of Parkinson’s disease. Eur. J. Med. Chem. 2021 212 113103 10.1016/j.ejmech.2020.113103 33387904
    [Google Scholar]
  229. Palmer J.T. Rasnick D. Klaus J.L. Brömme D. Vinyl sulfones as mechanism-based cysteine protease inhibitors. J. Med. Chem. 1995 38 17 3193 3196 10.1021/jm00017a002 7650671
    [Google Scholar]
  230. Egbujor M. C. Okoro UC Udeh CM Synthesis and characterization of benzoylated sulfamoyl carboxylic acids. MOJ. Biorg. Org. Chem. 2020 22 25 10.15406/mojboc.2020.04.00106
    [Google Scholar]
  231. Ekoh O.C. Okoro U. Ugwu D. Ali R. Okafor S. Ugwuja D. Attah S. Novel dipeptides bearing sulfonamide as antimalarial and antitrypanosomal agents: Synthesis and molecular docking. Med. Chem. 2022 18 3 394 405 10.2174/1573406417666210604101201 34097595
    [Google Scholar]
  232. Scarim C.B. Pavan F.R. An overview of sulfonamide‐based conjugates: Recent advances for tuberculosis treatment. Drug Dev. Res. 2022 83 3 ddr.21913 10.1002/ddr.21913 35040503
    [Google Scholar]
  233. Egbujor M. Okonkwo V. Onyeije U. Emeruwa C. Nkuzinna O. Egwuatu P. Amasiatu I. Onyemeziri A. Okoro U. Design, synthesis, molecular docking and biological evaluation of novel leucine derived sulfamoyl pentanamides as antimicrobial and antioxidant agents. Jordan J. Pharm. Sci. 2024 17 4 687 705 10.35516/jjps.v17i4.2467
    [Google Scholar]
  234. Moskalik M.Y. Sulfonamides with heterocyclic periphery as antiviral agents. Molecules 2022 28 1 51 10.3390/molecules28010051 36615245
    [Google Scholar]
  235. Egbujor M.C. Tucci P. Saso L. Bioactive sulfonamides derived from amino acids: Their synthesis and pharmacological activities. Mini Rev. Med. Chem. 2025 25 10.2174/0113895575353663241129064820 39812049
    [Google Scholar]
  236. Onyeije U.C. Onugha C.F. Egbujor M.C. Emeruwa C.N. Amasiatu I.S. Synthesis, characterisation and antimicrobial activities of sulphonamides from branched chain amino acids. IRE Journals 2023 6 297 302
    [Google Scholar]
  237. Bi T. Cui Y. Liu S. Yu H. Qiu W. Hou K.Q. Zou J. Yu Z. Zhang F. Xu Z. Zhang J. Xu X. Yang W. Ligand‐Enabled pd‐catalyzed SP 3 C−H Macrocyclization: Synthesis and evaluation of macrocyclic sulfonamide for the treatment of Parkinson’s disease. Angew. Chem. Int. Ed. 2024 63 45 e202412296 10.1002/anie.202412296 39078406
    [Google Scholar]
  238. Apiraksattayakul S. Pingaew R. Prachayasittikul V. Ruankham W. Jongwachirachai P. Songtawee N. Suwanjang W. Tantimongcolwat T. Prachayasittikul S. Prachayasittikul V. Phopin K. Neuroprotective properties of Bis-sulfonamide derivatives against 6-OHDA-induced Parkinson’s model via Sirtuin 1 activity and in silico pharmacokinetic properties. Front. Mol. Neurosci. 2022 15 890838 10.3389/fnmol.2022.890838 35935335
    [Google Scholar]
  239. Gilchrist T.L. Comprehensive Organic Functional Group Transformations, Synthesis: Carbon with Three or Four Attached Heteroatoms. Elsevier Science Oxford, UK 2017 Vol. 6
    [Google Scholar]
  240. Otocka S. Kwiatkowska M. Madalińska L. Kiełbasiński P. Chiral organosulfur ligands/catalysts with a stereogenic sulfur atom: Applications in asymmetric synthesis. Chem. Rev. 2017 117 5 4147 4181 10.1021/acs.chemrev.6b00517 28191933
    [Google Scholar]
  241. Liang C. Xue Z. Cang J. Wang H. Li P. Dimethyl sulfoxide induces heme oxygenase-1 expression via JNKs and Nrf2 pathways in human umbilical vein endothelial cells. Mol. Cell. Biochem. 2011 355 1-2 109 115 10.1007/s11010‑011‑0844‑z 21533649
    [Google Scholar]
  242. Darbinyan L. Simonyan K. Manukyan L. Hambardzumyan L. effects of dimethyl sulfoxide on hippocampal activity in a rotenone-induced rat model of parkinson’s disease. Georgian Med. News 2023 339 52 56 37522774
    [Google Scholar]
  243. Reimer L. Haikal C. Gram H. Theologidis V. Kovacs G. Ruesink H. Baun A. Nielsen J. Otzen D.E. Li J.Y. Jensen P.H. Low dose DMSO treatment induces oligomerization and accelerates aggregation of α-synuclein. Sci. Rep. 2022 12 1 3737 10.1038/s41598‑022‑07706‑2 35260646
    [Google Scholar]
  244. Monti D.A. Zabrecky G. Kremens D. Liang T.W. Wintering N.A. Bazzan A.J. Zhong L. Bowens B.K. Chervoneva I. Intenzo C. Newberg A.B. N‐Acetyl cysteine is associated with dopaminergic improvement in Parkinson’s disease. Clin. Pharmacol. Ther. 2019 106 4 884 890 10.1002/cpt.1548 31206613
    [Google Scholar]
  245. El-Habta R. af Bjerkén S. Virel A. N -acetylcysteine increases dopamine release and prevents the deleterious effects of 6-OHDA on the expression of VMAT2, α-synuclein, and tyrosine hydroxylase. Neurol. Res. 2024 46 5 406 415 10.1080/01616412.2024.2325312 38498979
    [Google Scholar]
  246. Berman A.E. Chan W.Y. Brennan A.M. Reyes R.C. Adler B.L. Suh S.W. Kauppinen T.M. Edling Y. Swanson R.A. N‐acetylcysteine prevents loss of dopaminergic neurons in the EAAC1 −/− mouse. Ann. Neurol. 2011 69 3 509 520 10.1002/ana.22162 21446024
    [Google Scholar]
  247. Clark J. Clore E.L. Zheng K. Adame A. Masliah E. Simon D.K. Oral N-acetyl-cysteine attenuates loss of dopaminergic terminals in alpha-synuclein overexpressing mice. PLoS One 2010 5 8 e12333 10.1371/journal.pone.0012333 20808797
    [Google Scholar]
  248. Goldstein D.S. Jinsmaa Y. Sullivan P. Sharabi Y. N-acetylcysteine prevents the increase in spontaneous oxidation of dopamine during monoamine oxidase inhibition in PC12 cells. Neurochem. Res. 2017 42 11 3289 3295 10.1007/s11064‑017‑2371‑0 28840582
    [Google Scholar]
  249. Catanesi M. Brandolini L. d’Angelo M. Tupone M.G. Benedetti E. Alfonsetti M. Quintiliani M. Fratelli M. Iaconis D. Cimini A. Castelli V. Allegretti M. S-Carboxymethyl cysteine protects against oxidative stress and mitochondrial impairment in a Parkinson’s disease in vitro model. Biomedicines 2021 9 10 1467 10.3390/biomedicines9101467 34680584
    [Google Scholar]
  250. Wen Z.H. Chao C.H. Wu M.H. Sheu J.H. A neuroprotective sulfone of marine origin and the in vivo anti-inflammatory activity of an analogue. Eur. J. Med. Chem. 2010 45 12 5998 6004 10.1016/j.ejmech.2010.09.067 20980079
    [Google Scholar]
  251. Pakavathkumar P. Noël A. Lecrux C. Tubeleviciute-Aydin A. Hamel E. Ahlfors J.E. LeBlanc A.C. Caspase vinyl sulfone small molecule inhibitors prevent axonal degeneration in human neurons and reverse cognitive impairment in Caspase-6-overexpressing mice. Mol. Neurodegener. 2017 12 1 22 10.1186/s13024‑017‑0166‑z 28241839
    [Google Scholar]
  252. Ning X. Yuan M. Guo Y. Tian C. Wang X. Zhang Z. Liu J. Neuroprotective effects of ( E )-3,4-diacetoxystyryl sulfone and sulfoxide derivatives in vitro models of Parkinson’s disease. J. Enzyme Inhib. Med. Chem. 2015 31 3 1 6 10.3109/14756366.2015.1037750 26176683
    [Google Scholar]
  253. Courtois É. Nguyen T.T.H. Fournier A. Carcaillon-Bentata L. Moutengou É. Escolano S. Tubert-Bitter P. Elbaz A. Thiébaut A.C.M. Ahmed I. Identifying protective drugs for Parkinson’s disease in health‐care databases using Machine Learning. Mov. Disord. 2022 37 12 2376 2385 10.1002/mds.29205 36054665
    [Google Scholar]
  254. Pal G. Bennett L. Roy J. Nyandege A. Mouradian M.M. Gerhard T. Horton D.B. Effects of antimicrobial exposure on the risk of Parkinson’s disease. Parkinsonism Relat. Disord. 2024 127 107081 10.1016/j.parkreldis.2024.107081 39098264
    [Google Scholar]
  255. Fan X. Zhang L. Li H. Chen G. Qi G. Ma X. Jin Y. Role of homocysteine in the development and progression of Parkinson’s disease. Ann. Clin. Transl. Neurol. 2020 7 11 2332 2338 10.1002/acn3.51227 33085841
    [Google Scholar]
  256. Zhou L. Homocysteine and Parkinson's disease. CNS Neurosci. Ther. 2024 30 2 e14420 10.1111/cns.14420
    [Google Scholar]
  257. Charlton C.G. Crowell B. Parkinson’s disease-like effects of S-adenosyl-L-methionine: Effects of L-dopa. Pharmacol. Biochem. Behav. 1992 43 2 423 431 10.1016/0091‑3057(92)90172‑C 1359575
    [Google Scholar]
  258. Zhu H. Dronamraju V. Xie W. More S.S. Sulfur-containing therapeutics in the treatment of Alzheimer’s disease. Med. Chem. Res. 2021 30 2 305 352 10.1007/s00044‑020‑02687‑1 33613018
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273386239250706125440
Loading
/content/journals/cnsnddt/10.2174/0118715273386239250706125440
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test