Skip to content
2000
image of Nanoparticle-Based Approaches for Glioblastoma Treatment: Advances and Future Prospects

Abstract

CNS diseases have recently received a lot of focus. Glioblastoma multiforme (GBM) has the worst prognosis among various cancers. With its aggressive nature and potential for recurrence, GBM is a major concern in neuroscience. Radiotherapy, chemotherapy, and surgical removal are currently employed methods for treating GBM. The blood-brain barrier (BBB) is a major obstacle to effective medication delivery into the central nervous system (CNS), which is a major concern in the treatment of GBM. Nanotechnology helps transport active chemicals to brain tissue, a major glioma treatment challenge. Technology advancements in nanotechnology have the potential to facilitate the trans-BBB delivery of medicinal medications to the central nervous system. To treat illnesses associated with the central nervous system (CNS), it is possible to manage several types of nanoparticles (Nps). Novel therapeutic approaches are being explored, with NPs attracting interest as a potential tool for the targeted eradication of brain tumours. The review article reviewed the relevant literature on the utilisation of NPs for the treatment of Glioblastoma. The articles were obtained through various databases, including ScienceDirect, Scopus, PubMed and Google Scholar. It studies current treatment strategies for Glioblastoma, different NPs treating GBM with their mechanism by crossing the BBB, and various relevant patents of NPs drug delivery were analysed. This review article collects data about various nanoparticles used in GBM, with their mechanism of action. This review discusses the role of nanoparticulate systems in the effective treatment of GBM. It can be concluded from the literature that therapeutic agents can be delivered into the central nervous system through the blood-brain barrier with the use of nanotechnology, and so can be effectively used for the management of GBM.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273386112250912172648
2025-09-22
2025-11-13
Loading full text...

Full text loading...

References

  1. Zhang Y. Zhang X. Yang H. Advanced biotechnology-assisted precise sonodynamic therapy. Chem. Soc. Rev. 2021 50 20 11227 11248 10.1039/D1CS00403D 34661214
    [Google Scholar]
  2. Grochans S. Cybulska A.M. Simińska D. Epidemiology of glioblastoma multiforme–literature review. Cancers (Basel) 2022 14 10 2412 10.3390/cancers14102412 35626018
    [Google Scholar]
  3. Ostrom Q.T. Gittleman H. Liao P. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro-oncol. 2014 16 Suppl. 4 iv1 iv63 10.1093/neuonc/nou223 25304271
    [Google Scholar]
  4. Mehta M. Wen P. Nishikawa R. Reardon D. Peters K. Critical review of the addition of tumor treating fields (TTFields) to the existing standard of care for newly diagnosed glioblastoma patients. Crit. Rev. Oncol. Hematol. 2017 111 60 65 10.1016/j.critrevonc.2017.01.005 28259296
    [Google Scholar]
  5. Pardridge W.M. Blood-brain barrier and delivery of protein and gene therapeutics to brain. Front. Aging Neurosci. 2020 11 373 10.3389/fnagi.2019.00373 31998120
    [Google Scholar]
  6. Nowack B. Bucheli T.D. Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 2007 150 1 5 22 10.1016/j.envpol.2007.06.006 17658673
    [Google Scholar]
  7. Rajput S. Kumar Sharma P. Malviya R. Fluid mechanics in circulating tumour cells: Role in metastasis and treatment strategies. Med. Drug Discov. 2023 18 100158 10.1016/j.medidd.2023.100158
    [Google Scholar]
  8. Jain K.K. Nanobiotechnology and personalized medicine. Prog. Mol. Biol. Transl. Sci. 2011 104 325 354 10.1016/B978‑0‑12‑416020‑0.00008‑5 22093223
    [Google Scholar]
  9. Zottel A. Videtič Paska A. Jovčevska I. Nanotechnology meets oncology: Nanomaterials in brain cancer research, diagnosis and therapy. Materials (Basel) 2019 12 10 1588 10.3390/ma12101588 31096609
    [Google Scholar]
  10. Aly A. Singh P. Korytowsky B. Survival, costs, and health care resource use by line of therapy in US Medicare patients with newly diagnosed glioblastoma: A retrospective observational study. Neurooncol. Pract. 2020 7 2 164 175 32626585
    [Google Scholar]
  11. Kesari S. Understanding glioblastoma tumor biology: The potential to improve current diagnosis and treatments. Semin. Oncol. 2011 38 Suppl. 4 S2 S10 10.1053/j.seminoncol.2011.09.005 22078644
    [Google Scholar]
  12. Lima F.R. Kahn S.A. Soletti R.C. Glioblastoma: Therapeutic challenges, what lies ahead. Biochimica et Biophysica Acta (BBA)-. Revis. Cancer 2012 1826 2 338 349
    [Google Scholar]
  13. Lee J. Nicosia M. Lathia J.D. Antibody-cytokine fusion breathes new life into glioblastoma therapy. Sci. Transl. Med. 2023 15 697 eadh7674 10.1126/scitranslmed.adh7674 37224224
    [Google Scholar]
  14. Kumari S. Gupta R. Ambasta R.K. Kumar P. Multiple therapeutic approaches of glioblastoma multiforme: From terminal to therapy. Biochim. Biophys. Acta Rev. Cancer 2023 1878 4 188913 10.1016/j.bbcan.2023.188913 37182666
    [Google Scholar]
  15. Kuhnt D. Becker A. Ganslandt O. Bauer M. Buchfelder M. Nimsky C. Correlation of the extent of tumor volume resection and patient survival in surgery of glioblastoma multiforme with high-field intraoperative MRI guidance. Neuro-oncol. 2011 13 12 1339 1348 10.1093/neuonc/nor133 21914639
    [Google Scholar]
  16. Lacroix M. Abi-Said D. Fourney D.R. 6| TUMOR. In: Congress of Neurological Surgeons Essential Papers in Neurosurgery United States: Oxford University Press 2020 95 2 172
    [Google Scholar]
  17. Franceschi E. Bartolotti M. Tosoni A. The effect of re-operation on survival in patients with recurrent glioblastoma. Anticancer Res. 2015 35 3 1743 1748 25750337
    [Google Scholar]
  18. Dimou J. Beland B. Kelly J. Supramaximal resection: A systematic review of its safety, efficacy and feasibility in glioblastoma. J. Clin. Neurosci. 2020 72 328 334 10.1016/j.jocn.2019.12.021 31864830
    [Google Scholar]
  19. De Bonis P. Anile C. Pompucci A. The influence of surgery on recurrence pattern of glioblastoma. Clin. Neurol. Neurosurg. 2013 115 1 37 43 10.1016/j.clineuro.2012.04.005 22537870
    [Google Scholar]
  20. Oppenlander M.E. Wolf A.B. Snyder L.A. An extent of resection threshold for recurrent glioblastoma and its risk for neurological morbidity. J. Neurosurg. 2014 120 4 846 853 10.3171/2013.12.JNS13184 24484232
    [Google Scholar]
  21. De Barros A. Attal J. Roques M. Impact on survival of early tumor growth between surgery and radiotherapy in patients with de novo glioblastoma. J. Neurooncol. 2019 142 3 489 497 10.1007/s11060‑019‑03120‑3 30783874
    [Google Scholar]
  22. Pineda E. Domenech M. Hernández A. Comas S. Balaña C. Recurrent glioblastoma: Ongoing clinical challenges and future prospects. OncoTargets Ther. 2023 16 71 86 10.2147/OTT.S366371 36721854
    [Google Scholar]
  23. Rajput S. Malviya R. Uniyal P. Advancements in the diagnosis, prognosis, and treatment of retinoblastoma. Can. J. Ophthalmol. 2024 59 5 281 299 10.1016/j.jcjo.2024.01.018 38369298
    [Google Scholar]
  24. Baron R.B. Kessler R.A. Hadjipanayis C.G. Initial biopsy and early re-resection practices in the treatment of glioblastoma among AANS/CNS tumor section surgeons. J. Neurooncol. 2019 144 3 529 534 10.1007/s11060‑019‑03253‑5 31368054
    [Google Scholar]
  25. Hou L.C. Veeravagu A. Hsu A.R. Tse V.C.K. Recurrent glioblastoma multiforme: A review of natural history and management options. Neurosurg. Focus 2006 20 4 E3 10.3171/foc.2006.20.4.2 16709036
    [Google Scholar]
  26. Jung E.W. Choi J. Chao S.T. Murphy E.S. Suh J.H. Principles and tenets of radiation treatment in glioblastoma. Glioblastoma 2016 105 132 10.1016/b978‑0‑323‑47660‑7.00008‑2
    [Google Scholar]
  27. Rapp M. Baernreuther J. Turowski B. Steiger H.J. Sabel M. Kamp M.A. Recurrence pattern analysis of primary glioblastoma. World Neurosurg. 2017 103 733 740 10.1016/j.wneu.2017.04.053 28434963
    [Google Scholar]
  28. Müther M. Koch R. Weckesser M. Sporns P. Schwindt W. Stummer W. 5-Aminolevulinic acid fluorescence-guided resection of 18F-FET-PET positive tumor beyond gadolinium enhancing tumor improves survival in glioblastoma. Neurosurgery 2019 85 6 E1020 E1029 10.1093/neuros/nyz199 31215632
    [Google Scholar]
  29. Stummer W. Pichlmeier U. Meinel T. Wiestler O.D. Zanella F. Reulen H.J. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: A randomised controlled multicentre phase III trial. Lancet Oncol. 2006 7 5 392 401 10.1016/S1470‑2045(06)70665‑9 16648043
    [Google Scholar]
  30. Goryaynov S.A. Okhlopkov V.A. Golbin D.A. Fluorescence diagnosis in neurooncology: Retrospective analysis of 653 cases. Front. Oncol. 2019 9 830 10.3389/fonc.2019.00830 31552168
    [Google Scholar]
  31. Ampie L. Woolf E.C. Dardis C. Immunotherapeutic advancements for glioblastoma. Front. Oncol. 2015 5 12 10.3389/fonc.2015.00012 25688335
    [Google Scholar]
  32. Polyzoidis S. Ashkan K. Dendritic cell immunotherapy for glioblastoma. Expert Rev. Anticancer Ther. 2014 14 7 761 763 10.1586/14737140.2014.921571 24850137
    [Google Scholar]
  33. Field K.M. Jordan J.T. Wen P.Y. Rosenthal M.A. Reardon D.A. Bevacizumab and glioblastoma: Scientific review, newly reported updates, and ongoing controversies. Cancer 2015 121 7 997 1007 10.1002/cncr.28935 25263092
    [Google Scholar]
  34. Lou X. Chen T. Huang X. Radiotherapy plus chemotherapy in the treatment of malignant glioma: A systematic review and meta-analysis. Int. J. Clin. Exp. Med. 2016 9 11 20519 20530
    [Google Scholar]
  35. Wang J. Yan L. Ai P. Observation versus radiotherapy with or without temozolomide in postoperative WHO grade II high-risk low-grade glioma: A retrospective cohort study. Neurosurg. Rev. 2021 44 3 1447 1455 10.1007/s10143‑020‑01326‑y 32529528
    [Google Scholar]
  36. Piroth M.D. Gagel B. Pinkawa M. Stanzel S. Asadpour B. Eble M.J. Postoperative radiotherapy of glioblastoma multiforme: Analysis and critical assessment of different treatment strategies and predictive factors. Strahlenther. Onkol. 2007 183 12 695 702 10.1007/s00066‑007‑1739‑5 18040615
    [Google Scholar]
  37. Alifieris C. Trafalis D.T. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol. Ther. 2015 152 63 82 10.1016/j.pharmthera.2015.05.005 25944528
    [Google Scholar]
  38. Cohen M.H. Johnson J.R. Pazdur R. Food and drug administration drug approval summary: Temozolomide plus radiation therapy for the treatment of newly diagnosed glioblastoma multiforme. Clin. Cancer Res. 2005 11 19 6767 6771 10.1158/1078‑0432.CCR‑05‑0722 16203762
    [Google Scholar]
  39. Davis M. Glioblastoma: Overview of disease and treatment. Clin. J. Oncol. Nurs. 2016 20 5 S2 S8 10.1188/16.CJON.S1.2‑8 27668386
    [Google Scholar]
  40. Parisi S. Corsa P. Raguso A. Temozolomide and radiotherapy versus radiotherapy alone in high grade gliomas: A very long term comparative study and literature review. BioMed Res. Int. 2015 2015 1 1 7 10.1155/2015/620643 25815327
    [Google Scholar]
  41. Hart M.G. Garside R. Rogers G. Stein K. Grant R. Temozolomide for high grade glioma. Cochrane Database Syst. Rev. 2013 2013 4 CD007415 23633341
    [Google Scholar]
  42. Johnson D.R. O’Neill B.P. Glioblastoma survival in the United States before and during the temozolomide era. J. Neurooncol. 2012 107 2 359 364 10.1007/s11060‑011‑0749‑4 22045118
    [Google Scholar]
  43. Lee S.Y. Temozolomide resistance in glioblastoma multiforme. Genes Dis. 2016 3 3 198 210 10.1016/j.gendis.2016.04.007 30258889
    [Google Scholar]
  44. Zhang J. Stevens M.F. Bradshaw T.D. Temozolomide: Mechanisms of action, repair and resistance. Curr. Mol. Pharmacol. 2012 5 1 102 114 10.2174/1874467211205010102 22122467
    [Google Scholar]
  45. Levin V.A. Tonge P.J. Gallo J.M. CNS anticancer drug discovery and development conference white paper. Neuro-oncol. 2015 17 Suppl. 6 vi1 vi26 10.1093/neuonc/nov169 26403167
    [Google Scholar]
  46. Rivera A.L. Pelloski C.E. Gilbert M.R. MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro-oncol. 2010 12 2 116 121 10.1093/neuonc/nop020 20150378
    [Google Scholar]
  47. Nam L. Coll C. Erthal L. Drug delivery nanosystems for the localized treatment of glioblastoma multiforme. Materials 2018 11 5 779 10.3390/ma11050779 29751640
    [Google Scholar]
  48. Pereira D.Y. Yip A.T. Lee B.S. Kamei D.T. Modeling mass transfer from carmustine-loaded polymeric implants for malignant gliomas. SLAS Technol. 2014 19 1 19 34 10.1177/2211068213499157 23975389
    [Google Scholar]
  49. McGirt M.J. Than K.D. Weingart J.D. Gliadel (BCNU) wafer plus concomitant temozolomide therapy after primary resection of glioblastoma multiforme. J. Neurosurg. 2009 110 3 583 588 10.3171/2008.5.17557 19046047
    [Google Scholar]
  50. Attenello F.J. Mukherjee D. Datoo G. Use of gliadel (BCNU) wafer in the surgical treatment of malignant glioma: A 10-year institutional experience. Ann. Surg. Oncol. 2008 15 10 2887 2893 10.1245/s10434‑008‑0048‑2 18636295
    [Google Scholar]
  51. Brem H. Piantadosi S. Burger P.C. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. Lancet 1995 345 8956 1008 1012 10.1016/S0140‑6736(95)90755‑6 7723496
    [Google Scholar]
  52. Westphal M. Hilt D.C. Bortey E. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-oncol. 2003 5 2 79 88 10.1093/neuonc/5.2.79 12672279
    [Google Scholar]
  53. Champeaux C. Weller J. Implantation of carmustine wafers (Gliadel®) for high-grade glioma treatment. A 9-year nationwide retrospective study. J. Neurooncol. 2020 147 1 159 169 10.1007/s11060‑020‑03410‑1 31974802
    [Google Scholar]
  54. Ashby L.S. Smith K.A. Stea B. Gliadel wafer implantation combined with standard radiotherapy and concurrent followed by adjuvant temozolomide for treatment of newly diagnosed high-grade glioma: A systematic literature review. World J. Surg. Oncol. 2016 14 1 225 10.1186/s12957‑016‑0975‑5 27557526
    [Google Scholar]
  55. Sabel M. Giese A. Safety profile of carmustine wafers in malignant glioma: A review of controlled trials and a decade of clinical experience. Curr. Med. Res. Opin. 2008 24 11 3239 3257 10.1185/03007990802508180 18940042
    [Google Scholar]
  56. Perry J. Chambers A. Spithoff K. Laperriere N. Gliadel wafers in the treatment of malignant glioma: A systematic review. Curr. Oncol. 2007 14 5 189 194 10.3747/co.2007.147 17938702
    [Google Scholar]
  57. Bastiancich C. Danhier P. Préat V. Danhier F. Anticancer drug-loaded hydrogels as drug delivery systems for the local treatment of glioblastoma. J. Control. Release 2016 243 29 42 10.1016/j.jconrel.2016.09.034 27693428
    [Google Scholar]
  58. Fu M. Zhou Z. Huang X. Use of Bevacizumab in recurrent glioblastoma: A scoping review and evidence map. BMC Cancer 2023 23 1 544 10.1186/s12885‑023‑11043‑6 37316802
    [Google Scholar]
  59. Narita Y. Bevacizumab for glioblastoma. Ther. Clin. Risk Manag. 2015 11 1759 1765 10.2147/TCRM.S58289 26664126
    [Google Scholar]
  60. Chinot O.L. Wick W. Mason W. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N. Engl. J. Med. 2014 370 8 709 722 10.1056/NEJMoa1308345 24552318
    [Google Scholar]
  61. Gilbert M.R. Dignam J.J. Armstrong T.S. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl. J. Med. 2014 370 8 699 708 10.1056/NEJMoa1308573 24552317
    [Google Scholar]
  62. Gerstner E.R. Emblem K.E. Chang K. Bevacizumab reduces permeability and concurrent temozolomide delivery in a subset of patients with recurrent glioblastoma. Clin. Cancer Res. 2020 26 1 206 212 10.1158/1078‑0432.CCR‑19‑1739 31558474
    [Google Scholar]
  63. Verma J. Lal S. Van Noorden C.J. Nanoparticles for hyperthermic therapy: Synthesis strategies and applications in glioblastoma. Int. J. Nanomedicine 2014 9 2863 2877 24959075
    [Google Scholar]
  64. Baumann F. Bjeljac M. Kollias S.S. Combined thalidomide and temozolomide treatment in patients with glioblastoma multiforme. J. Neurooncol. 2004 67 1/2 191 200 10.1023/B:NEON.0000021803.01170.03 15072467
    [Google Scholar]
  65. Wong H. Bendayan R. Rauth A. Li Y. Wu X. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv. Drug Deliv. Rev. 2007 59 6 491 504 10.1016/j.addr.2007.04.008 17532091
    [Google Scholar]
  66. Rajput S. Malviya R. Uniyal P. Advances in the treatment of kidney disorders using mesenchymal stem cells. Curr. Pharm. Des. 2024 30 11 825 840 10.2174/0113816128296105240305110312 38482624
    [Google Scholar]
  67. Sok J.C. Coppelli F.M. Thomas S.M. Mutant epidermal growth factor receptor (EGFRvIII) contributes to head and neck cancer growth and resistance to EGFR targeting. Clin. Cancer Res. 2006 12 17 5064 5073 10.1158/1078‑0432.CCR‑06‑0913 16951222
    [Google Scholar]
  68. Dumont F. Altmeyer A. Bischoff P. Radiosensitising agents for the radiotherapy of cancer: Novel molecularly targeted approaches. Expert Opin. Ther. Pat. 2009 19 6 775 799 10.1517/13543770902967666 19456277
    [Google Scholar]
  69. Charnley N. West C. Price P. Assessment of drug resistance in anticancer therapy by nuclear imaging. Drug Resist Can Cells 2009 295 313 10.1007/978‑0‑387‑89445‑4_13
    [Google Scholar]
  70. Messaoudi K. Clavreul A. Lagarce F. Toward an effective strategy in glioblastoma treatment. Part I: Resistance mechanisms and strategies to overcome resistance of glioblastoma to temozolomide. Drug Discov. Today 2015 20 7 899 905 10.1016/j.drudis.2015.02.011 25744176
    [Google Scholar]
  71. Gong W. Wang Z. Liu N. Improving efficiency of adriamycin crossing blood brain barrier by combination of thermosensitive liposomes and hyperthermia. Biol. Pharm. Bull. 2011 34 7 1058 1064 10.1248/bpb.34.1058 21720013
    [Google Scholar]
  72. Baronzio G. Parmar G. Ballerini M. Szasz A. Baronzio M. Cassutti V. A brief overview of hyperthermia in cancer treatment. J. Integr. Oncol. 2014 3 1 2 10.4172/2329‑6771.1000115
    [Google Scholar]
  73. Gilchrist R.K. Medal R. Shorey W.D. Hanselman R.C. Parrott J.C. Taylor C.B. Selective inductive heating of lymph nodes. Ann. Surg. 1957 146 4 596 606 10.1097/00000658‑195710000‑00007 13470751
    [Google Scholar]
  74. Lynch I. Dawson K.A. Linse S. Detecting cryptic epitopes created by nanoparticles. Sci. STKE 2006 2006 327 pe14 10.1126/stke.3272006pe14 16552091
    [Google Scholar]
  75. Kaur I.P. Bhandari R. Bhandari S. Kakkar V. Potential of solid lipid nanoparticles in brain targeting. J. Control. Release 2008 127 2 97 109 10.1016/j.jconrel.2007.12.018 18313785
    [Google Scholar]
  76. Rasheed A. Theja I. Silparani G. Lavanya Y. Kumar C.A. CNS targeted drug delivery: Current perspectives. JITPS 2010 1 1 9 18
    [Google Scholar]
  77. Letchford K. Burt H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: Micelles, nanospheres, nanocapsules and polymersomes. Eur. J. Pharm. Biopharm. 2007 65 3 259 269 10.1016/j.ejpb.2006.11.009 17196803
    [Google Scholar]
  78. Pinto Reis C. Neufeld R.J. Ribeiro A.J. Veiga F. Nanoencapsulation I. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2006 2 1 8 21 10.1016/j.nano.2005.12.003 17292111
    [Google Scholar]
  79. Simonoska Crcarevska M. Geskovski N. Calis S. Definition of formulation design space, in vitro bioactivity and in vivo biodistribution for hydrophilic drug loaded PLGA/PEO–PPO–PEO nanoparticles using OFAT experiments. Eur. J. Pharm. Sci. 2013 49 1 65 80 10.1016/j.ejps.2013.02.004 23439240
    [Google Scholar]
  80. Chen Y. Liu L. Modern methods for delivery of drugs across the blood–brain barrier. Adv. Drug Deliv. Rev. 2012 64 7 640 665 10.1016/j.addr.2011.11.010 22154620
    [Google Scholar]
  81. Maletínská L. Blakely E.A. Bjornstad K.A. Deen D.F. Knoff L.J. Forte T.M. Human glioblastoma cell lines: Levels of low-density lipoprotein receptor and low-density lipoprotein receptor-related protein. Cancer Res. 2000 60 8 2300 2303 10786698
    [Google Scholar]
  82. Sorrentino V. Zelcer N. Post-transcriptional regulation of lipoprotein receptors by the E3-ubiquitin ligase inducible degrader of the low-density lipoprotein receptor. Curr. Opin. Lipidol. 2012 23 3 213 219 10.1097/MOL.0b013e3283532947 22510808
    [Google Scholar]
  83. Rensen P.C.N. de Vrueh R.L.A. Kuiper J. Bijsterbosch M.K. Biessen E.A.L. van Berkel T.J.C. Recombinant lipoproteins: Lipoprotein-like lipid particles for drug targeting. Adv. Drug Deliv. Rev. 2001 47 2-3 251 276 10.1016/S0169‑409X(01)00109‑0 11311995
    [Google Scholar]
  84. Zhang B. Sun X. Mei H. LDLR-mediated peptide-22-conjugated nanoparticles for dual-targeting therapy of brain glioma. Biomaterials 2013 34 36 9171 9182 10.1016/j.biomaterials.2013.08.039 24008043
    [Google Scholar]
  85. Hu Q. Gao X. Gu G. Glioma therapy using tumor homing and penetrating peptide-functionalized PEG–PLA nanoparticles loaded with paclitaxel. Biomaterials 2013 34 22 5640 5650 10.1016/j.biomaterials.2013.04.025 23639530
    [Google Scholar]
  86. Dilnawaz F. Singh A. Mewar S. Sharma U. Jagannathan N.R. Sahoo S.K. The transport of non-surfactant based paclitaxel loaded magnetic nanoparticles across the blood brain barrier in a rat model. Biomaterials 2012 33 10 2936 2951 10.1016/j.biomaterials.2011.12.046 22264522
    [Google Scholar]
  87. Suzuki K. Gerelchuluun A. Hong Z. Celecoxib enhances radiosensitivity of hypoxic glioblastoma cells through endoplasmic reticulum stress. Neuro-oncol. 2013 15 9 1186 1199 10.1093/neuonc/not062 23658321
    [Google Scholar]
  88. Yoo B. Ifediba M.A. Ghosh S. Medarova Z. Moore A. Combination treatment with theranostic nanoparticles for glioblastoma sensitization to TMZ. Mol. Imaging Biol. 2014 16 5 680 689 10.1007/s11307‑014‑0734‑3 24696184
    [Google Scholar]
  89. Xin H. Sha X. Jiang X. Zhang W. Chen L. Fang X. Anti-glioblastoma efficacy and safety of paclitaxel-loading Angiopep-conjugated dual targeting PEG-PCL nanoparticles. Biomaterials 2012 33 32 8167 8176 10.1016/j.biomaterials.2012.07.046 22889488
    [Google Scholar]
  90. Dilnawaz F. Sahoo S.K. Enhanced accumulation of curcumin and temozolomide loaded magnetic nanoparticles executes profound cytotoxic effect in glioblastoma spheroid model. Eur. J. Pharm. Biopharm. 2013 85 3 452 462 10.1016/j.ejpb.2013.07.013 23891772
    [Google Scholar]
  91. Siegal T. Horowitz A. Gabizon A. Doxorubicin encapsulated in sterically stabilized liposomes for the treatment of a brain tumor model: Biodistribution and therapeutic efficacy. J. Neurosurg. 1995 83 6 1029 1037 10.3171/jns.1995.83.6.1029 7490617
    [Google Scholar]
  92. Zhu Y. Liao L. Applications of nanoparticles for anticancer drug delivery: A review. J. Nanosci. Nanotechnol. 2015 15 7 4753 4773 10.1166/jnn.2015.10298 26373036
    [Google Scholar]
  93. Müller R.H. Mäder K. Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur. J. Pharm. Biopharm. 2000 50 1 161 177 10.1016/S0939‑6411(00)00087‑4 10840199
    [Google Scholar]
  94. Beutner C. Microglia derived from embryonic stem cells and its application in CNS diseases. Thesis, Doctoral dissertation, PhD Thesis University of Bonn 2012
    [Google Scholar]
  95. Mehra N.K. Jain N.K. One platform comparison of estrone and folic acid anchored surface engineered MWCNTs for doxorubicin delivery. Mol. Pharm. 2015 12 2 630 643 10.1021/mp500720a 25517904
    [Google Scholar]
  96. Rajput S. Sharma P.K. Malviya R. Biomarkers and treatment strategies for breast cancer recurrence. Curr. Drug Targets 2023 24 15 1209 1220 10.2174/0113894501258059231103072025 38164731
    [Google Scholar]
  97. Anu Mary Ealia S. Saravanakumar M.P. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf. Series Mater. Sci. Eng. 2017 263 3 032019 10.1088/1757‑899X/263/3/032019
    [Google Scholar]
  98. Tiwari D.K. Behari J. Prasenjit Sen P.S. Application of nanoparticles in waste water treatment. World Appl. Sci. J. 2008 3 3 1 6
    [Google Scholar]
  99. Sarangi M.K. Padhi S. Solid lipid nanoparticles–a review. Drugs 2016 5 7 1149
    [Google Scholar]
  100. Weinstein J.S. Varallyay C.G. Dosa E. Superparamagnetic iron oxide nanoparticles: Diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J. Cereb. Blood Flow Metab. 2010 30 1 15 35 10.1038/jcbfm.2009.192 19756021
    [Google Scholar]
  101. Pardeshi C. Rajput P. Belgamwar V. Solid lipid-based nanocarriers: A review. Acta Pharm. 2012 Dec 62 4 433 472
    [Google Scholar]
  102. Hu C.M.J. Aryal S. Zhang L. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther. Deliv. 2010 1 2 323 334 10.4155/tde.10.13 22816135
    [Google Scholar]
  103. Üner M. Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int. J. Nanomed 2007 2 3 289 300 18019829
    [Google Scholar]
  104. Beg S. Rizwan M. Sheikh A.M. Hasnain M.S. Anwer K. Kohli K. Advancement in carbon nanotubes: Basics, biomedical applications and toxicity. J. Pharm. Pharmacol. 2011 63 2 141 163 10.1111/j.2042‑7158.2010.01167.x 21235578
    [Google Scholar]
  105. Dahman Y. Biomaterials science and technology: Fundamentals and developments. Boca Raton, Florida CRC Press 2019 10.1201/9780429465345
    [Google Scholar]
  106. Khan I. Saeed K. Khan I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019 12 7 908 931 10.1016/j.arabjc.2017.05.011
    [Google Scholar]
  107. Isakovski M.K. Beljin J. Tričković J. Rončević S. Maletić S. Current state and future perspectives of Carbon-based materials in the environment: Fate and application. Recent Pat. Nanotechnol. 2021 15 3 183 196 10.2174/1872210514666201217150323 33334300
    [Google Scholar]
  108. Mochalin V. Shenderova O. Ho D. Gogotsi Y. The properties and applications of nanodiamonds. New York Jenny Stanford Publishing 2020 10.1201/9780429399039‑11
    [Google Scholar]
  109. Ahlawat J. Masoudi Asil S. Guillama Barroso G. Nurunnabi M. Narayan M. Application of carbon nano onions in the biomedical field: Recent advances and challenges. Biomater. Sci. 2021 9 3 626 644 10.1039/D0BM01476A 33241797
    [Google Scholar]
  110. Sheervalilou R. Shirvaliloo M. Sargazi S. Ghaznavi H. Recent advances in iron oxide nanoparticles for brain cancer theranostics: From in vitro to clinical applications. Expert Opin. Drug Deliv. 2021 18 7 949 977 10.1080/17425247.2021.1888926 33567919
    [Google Scholar]
  111. Farzin A. Etesami S.A. Quint J. Memic A. Tamayol A. Magnetic nanoparticles in cancer therapy and diagnosis. Adv. Healthc. Mater. 2020 9 9 1901058 10.1002/adhm.201901058 32196144
    [Google Scholar]
  112. Li X. Li W. Wang M. Liao Z. Magnetic nanoparticles for cancer theranostics: Advances and prospects. J. Control. Release 2021 335 437 448 10.1016/j.jconrel.2021.05.042 34081996
    [Google Scholar]
  113. Danhier F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine J Control Release 2016 244 Pt A 108 21 10.1016/j.jconrel.2016.11.015 27871992
    [Google Scholar]
  114. Mukherjee S. Liang L. Veiseh O. Recent advancements of magnetic nanomaterials in cancer therapy. Pharmaceutics 2020 12 2 147 10.3390/pharmaceutics12020147 32053995
    [Google Scholar]
  115. Ostrom Q.T. Price M. Neff C. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2015–2019. Neuro-oncol. 2022 24 Suppl. 5 v1 v95 10.1093/neuonc/noac202 36196752
    [Google Scholar]
  116. Dong X. Current strategies for brain drug delivery. Theranostics 2018 8 6 1481 1493 10.7150/thno.21254 29556336
    [Google Scholar]
  117. Zhao Z. Nelson A.R. Betsholtz C. Zlokovic B.V. Establishment and dysfunction of the blood-brain barrier. Cell 2015 163 5 1064 1078 10.1016/j.cell.2015.10.067 26590417
    [Google Scholar]
  118. Cooper I. Last D. Guez D. Combined local blood-brain barrier opening and systemic methotrexate for the treatment of brain tumors. J. Cereb. Blood Flow Metab. 2015 35 6 967 976 10.1038/jcbfm.2015.6 25669901
    [Google Scholar]
  119. Li W. Sharma M. Kaur P. The DrrAB efflux system of Streptomyces peucetius is a multidrug transporter of broad substrate specificity. J. Biol. Chem. 2014 289 18 12633 12646 10.1074/jbc.M113.536136 24634217
    [Google Scholar]
  120. On N. Miller D. Transporter-based delivery of anticancer drugs to the brain: Improving brain penetration by minimizing drug efflux at the blood-brain barrier. Curr. Pharm. Des. 2014 20 10 1499 1509 10.2174/13816128113199990458 23789953
    [Google Scholar]
  121. Li W. Rao D.K. Kaur P. Dual role of the metalloprotease FtsH in biogenesis of the DrrAB drug transporter. J. Biol. Chem. 2013 288 17 11854 11864 10.1074/jbc.M112.441915 23504316
    [Google Scholar]
  122. Lun M. Lok E. Gautam S. Wu E. Wong E.T. The natural history of extracranial metastasis from glioblastoma multiforme. J. Neurooncol. 2011 105 2 261 273 10.1007/s11060‑011‑0575‑8 21512826
    [Google Scholar]
  123. Ginat D.T. Schaefer P.W. Imaging guidelines and findings of extracranial glioblastoma. J. Neurooncol. 2014 118 1 9 18 10.1007/s11060‑014‑1404‑7 24557958
    [Google Scholar]
  124. Sai K. Sun S.X. Chen Z.P. Interstitial Chemotherapy for Malignant Gliomas. United Kingdom IntechOpen 2016 10.5772/62838
    [Google Scholar]
  125. Levina A. Pires Vieira A. Wijetunga A. A short-lived but highly cytotoxic vanadium(V) complex as a potential drug lead for brain cancer treatment by intratumoral injections. Angew. Chem. Int. Ed. 2020 59 37 15834 15838 10.1002/anie.202005458 32598089
    [Google Scholar]
  126. Ji N. Weng D. Liu C. Adenovirus-mediated delivery of herpes simplex virus thymidine kinase administration improves outcome of recurrent high-grade glioma. Oncotarget 2016 7 4 4369 4378 10.18632/oncotarget.6737 26716896
    [Google Scholar]
  127. Brun S. Rincheval V. Gaumer S. Mignotte B. Guenal I. reaper and bax initiate two different apoptotic pathways affecting mitochondria and antagonized by bcl-2 in Drosophila. Oncogene 2002 21 42 6458 6470 10.1038/sj.onc.1205839 12226749
    [Google Scholar]
  128. Zhang J. Antonyak M.A. Singh G. Cerione R.A. A mechanism for the upregulation of EGF receptor levels in glioblastomas. Cell Rep. 2013 3 6 2008 2020 10.1016/j.celrep.2013.05.021 23770238
    [Google Scholar]
  129. Lindberg O.R. McKinney A. Engler J.R. GBM heterogeneity as a function of variable epidermal growth factor receptor variant III activity. Oncotarget 2016 7 48 79101 79116 10.18632/oncotarget.12600 27738329
    [Google Scholar]
  130. Idbaih A. Canney M. Belin L. Safety and feasibility of repeated and transient blood–brain barrier disruption by pulsed ultrasound in patients with recurrent glioblastoma. Clin. Cancer Res. 2019 25 13 3793 3801 10.1158/1078‑0432.CCR‑18‑3643 30890548
    [Google Scholar]
  131. Salcman M. Samaras G.M. Hyperthermia for brain tumors: Biophysical rationale. Neurosurgery 1981 9 3 327 335 10.1227/00006123‑198109000‑00021 7029341
    [Google Scholar]
  132. Lin J.C. Lin M.F. Microwave hyperthermia-induced blood-brain barrier alterations. Radiat. Res. 1982 89 1 77 87 10.2307/3575686 7063606
    [Google Scholar]
  133. Ali Hazis N.U. Aneja N. Rajabalaya R. David S.R. Systematic patent review of nanoparticles in drug delivery and cancer therapy in the last decade. Recent Adv. Drug Deliv. Formul. 2021 15 1 59 74 10.2174/1872211314666210521105534 34602031
    [Google Scholar]
  134. Caruso G. Raudino G. Caffo M. Patented nanomedicines for the treatment of brain tumors. Pharm. Pat. Anal. 2013 2 6 745 754 10.4155/ppa.13.56 24237240
    [Google Scholar]
  135. Zhou J. Patel T.R. Piepmeier J.M. Saltzman W.M. Highly penetrative nanocarriers for treatment of CNS disease. US Patent 10,555,911, 2020
    [Google Scholar]
  136. Anchordoquy T. Graner M. Betker J. Angle B. Functionalized nanoparticle formulations for oral drug delivery. US Patent 17/288,104 2021
    [Google Scholar]
  137. Carbone C. Leonardi A. Cupri S. Puglisi G. Pignatello R. Pharmaceutical and biomedical applications of lipid-based nanocarriers. Pharm. Pat. Anal. 2014 3 2 199 215 10.4155/ppa.13.79 24588596
    [Google Scholar]
  138. dos Santos Fonseca L.M. Machado B.A.S. Oliveira F.O. An overview on recent patents and technologies on nanoparticles for nucleic acid delivery. Expert Opin. Ther. Pat. 2024 34 3 171 186 10.1080/13543776.2024.2338097 38578253
    [Google Scholar]
  139. Catchpole I.R. Gough G.W. Papanicolaou I. Encapsulation of biologically active agents. US Patent 0064821 2011
    [Google Scholar]
  140. Zhang L. Ling L. Zhou L.Y. pH-SENSITIVE nanoparticles for oral insulin delivery. US Patent 8,859,004 2014
    [Google Scholar]
  141. Perumal O.P. Averineni R.K. Podaralla S.K. Alqahtani M. Protein nanocarriers for topical delivery. US Patent 9,233,110 2016
    [Google Scholar]
  142. Ramos C.A. Dotti G. Chimeric antigen receptor (CAR)-engineered lymphocytes for cancer therapy. Expert Opin. Biol. Ther. 2011 11 7 855 873 10.1517/14712598.2011.573476 21463133
    [Google Scholar]
  143. Tan M.S.A. Parekh H.S. Pandey P. Siskind D.J. Falconer J.R. Nose-to-brain delivery of antipsychotics using nanotechnology: A review. Expert Opin. Drug Deliv. 2020 17 6 839 853 10.1080/17425247.2020.1762563 32343186
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273386112250912172648
Loading
/content/journals/cnsnddt/10.2174/0118715273386112250912172648
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test