Skip to content
2000
image of Breaking Through Barriers: The Transformative Potential of Nanomedicine in Overcoming Drug Delivery Challenges for Psychiatric Disorders

Abstract

With a prevalence of almost one in eight people, psychiatric disorders are increasing at an alarming rate due to changes in lifestyle, stress, and dietary habits. Current diagnostic and treatment strategies for psychiatric disorders remain suboptimal and ineffective. Nanomedicine offers a transformative solution by overcoming critical barriers such as the blood-brain barrier, poor drug solubility, low bioavailability, and systemic side effects. Various nanocarriers like polymeric nanoparticles, dendrimers, liposomes, solid lipid nanoparticles, and inorganic nanomaterials demonstrate enhanced brain targeting, controlled drug release, improved therapeutic efficacy, and minimize systemic side effects across a range of psychiatric conditions. Nanomedicine applications span various psychiatric conditions, including depression, anxiety, schizophrenia, and autism, offering innovative solutions like intranasal drug delivery and ligand-targeted delivery systems. These systems exhibit promise in bypassing the blood-brain barrier and achieving site-specific drug delivery. This review highlights the increasing burden of psychiatric disorders, the limitations of current treatments, and the promise of nanomedicine in overcoming drug delivery challenges. It emphasizes how nanotechnology can enhance the pharmacokinetics and pharmacodynamics of psychotropic drugs, enable targeted and synergistic therapies, reduce side effects, and ultimately advance more personalized and effective psychiatric care.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273384176250929130818
2025-11-04
2025-12-14
Loading full text...

Full text loading...

References

  1. Goswami S. Bishnoi A. Tank D. Patel P. Chahar M. Khaturia S. Modi N. Khalid M. Alam M.W. Kumar Yadav V. Alreshidi M.A. Yadav K.K. Recent trends in the synthesis, characterization and commercial applications of zinc oxide nanoparticles- a review. Inorg. Chim. Acta 2024 573 122350 10.1016/j.ica.2024.122350
    [Google Scholar]
  2. K V.K. Gopinath E. N S G.N. Adlin Jino Nesalin J. Chandy V. Unveiling the potential of microsponges: Enhancing oral bioavailability. J Biol Pharm Health Sci 2024 2024 02 405 414 10.30574/wjbphs.2024.17.2.0085
    [Google Scholar]
  3. Li J. Xie F. Ma X. Advances in nanomedicines: a promising therapeutic strategy for ischemic cerebral stroke treatment. Nanomedicine 2024 19 9 811 835 10.2217/nnm‑2023‑0266 38445614
    [Google Scholar]
  4. Zeng M. Guo D. Fernández-Varo G. Zhang X. Fu S. Ju S. Yang H. Liu X. Wang Y.C. Zeng Y. Casals G. Casals E. The integration of nanomedicine with traditional chinese medicine: drug delivery of natural products and other opportunities. Mol. Pharm. 2023 20 2 886 904 10.1021/acs.molpharmaceut.2c00882 36563052
    [Google Scholar]
  5. Kormas P. Moutzouri A. Current psychological approaches in neurodegenerative diseases. Handbook of Computational Neurodegeneration. Vlamos P. Kotsireas I.S. Tarnanas I. Cham Springer International Publishing 2020 1 29
    [Google Scholar]
  6. Remes O. Mendes J.F. Templeton P. Biological, psychological, and social determinants of depression: a review of recent literature. Brain Sci. 2021 11 12 1633 10.3390/brainsci11121633 34942936
    [Google Scholar]
  7. Tahira S. Addressing psychosocial disabilities through social interventions for individuals with severe mental disorders. Cureus 2024 16 6 e61762 10.7759/cureus.61762 38975549
    [Google Scholar]
  8. Raju N.N. Kumar K.S.V.R.N.P. Nihal G. Management of medication-induced psychiatric disorders. Indian J. Psychiatry 2022 64 Suppl. 2 S281 S291 10.4103/indianjpsychiatry.indianjpsychiatry_21_22 35602361
    [Google Scholar]
  9. GBD 2019 Mental Disorders Collaborators Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 2022 9 2 137 150 10.1016/S2215‑0366(21)00395‑3 35026139
    [Google Scholar]
  10. WHO Anxiety Disorders. 2025 Available from: https://www.who.int/news-room/fact-sheets/detail/anxiety-disorders
  11. Paul S.M. Potter W.Z. Finding new and better treatments for psychiatric disorders. In: Neuropsychopharmacology 2024 49 1 3 9 10.1038/s41386‑023‑01690‑5 37582978
    [Google Scholar]
  12. Zorkina Y. Abramova O. Ushakova V. Morozova A. Zubkov E. Valikhov M. Melnikov P. Majouga A. Chekhonin V. Nano carrier drug delivery systems for the treatment of neuropsychiatric disorders: advantages and limitations. Molecules 2020 25 22 5294 10.3390/molecules25225294 33202839
    [Google Scholar]
  13. Zubair M. Riaz M. Kiani M.N. Aslam H.M. Fatima A.E.Z. Sultan H.M. Rehman A.U. Application of nanotechnology for targeted drug delivery and nontoxicity. Int. J. Gen. Pract. Nurs. 2024 2 2 57 67 10.26689/ijgpn.v2i2.7436
    [Google Scholar]
  14. Sueyoshi S. Vitor Silva J. Guizze F. Giarolla J. Dendrimers as drug delivery systems for oncotherapy: Current status of promising applications. Int. J. Pharm. 2024 663 124573 10.1016/j.ijpharm.2024.124573 39134292
    [Google Scholar]
  15. Jiang M. Liao J. Liu C. Liu J. Chen P. Zhou J. Du Z. Liu Y. Luo Y. Liu Y. Chen F. Fang X. Lin X. Metal-organic frameworks/metal nanoparticles as smart nanosensing interfaces for electrochemical sensors applications: a mini-review. Front. Bioeng. Biotechnol. 2023 11 1251713 10.3389/fbioe.2023.1251713 37614634
    [Google Scholar]
  16. Arshiya Ms. Khan H. Fatima S. Nanoparticle-based drug delivery for the treatment of central nervous system disorders. Futuristic Trends in Biotechnology 3 2024 Iterative International Publishers, Selfypage Developers Pvt Ltd 17 37
    [Google Scholar]
  17. Jannat A. Balqees K. Hasnain M. Ashiq M. Muzammal F. Javaid Z. Saeed Z. Baig M.H. Mumtaz T. Rauf U. Biosynthesize nanoparticles as advanced nanocarriers for targeted therapeutic interventions in disease management. Biol. Clin. Sci. Res. J. 2024 2024 1 1152 10.54112/bcsrj.v2024i1.1152
    [Google Scholar]
  18. Kisku A. Nishad A. Agrawal S. Paliwal R. Datusalia A.K. Gupta G. Singh S.K. Dua K. Sulakhiya K. Recent developments in intranasal drug delivery of nanomedicines for the treatment of neuropsychiatric disorders. Front. Med. 2024 11 1463976 10.3389/fmed.2024.1463976 39364023
    [Google Scholar]
  19. Ferreira M.D. Duarte J. Veiga F. Paiva-Santos A.C. Pires P.C. Nanosystems for brain targeting of antipsychotic drugs: an update on the most promising nanocarriers for increased bioavailability and therapeutic efficacy. Pharmaceutics 2023 15 2 678 10.3390/pharmaceutics15020678 36840000
    [Google Scholar]
  20. Liu Z. Chen B. Xiang S. Hu S. Self-immolative nanocapsules precisely regulate depressive neuronal microenvironment for synergistic antidepression therapy. J. Nanobiotechnology 2023 21 1 274 10.1186/s12951‑023‑02008‑9 37592281
    [Google Scholar]
  21. Andreassen O.A. Hindley G.F.L. Frei O. Smeland O.B. New insights from the last decade of research in psychiatric genetics: discoveries, challenges and clinical implications. World Psychiatry 2023 22 1 4 24 10.1002/wps.21034 36640404
    [Google Scholar]
  22. Prange S. Klinger H. Laurencin C. Danaila T. Thobois S. Depression in patients with parkinson’s disease: current understanding of its neurobiology and implications for treatment. Drugs Aging 2022 39 6 417 439 10.1007/s40266‑022‑00942‑1 35705848
    [Google Scholar]
  23. Chikatimalla R. Dasaradhan T. Koneti J. Cherukuri S.P. Kalluru R. Gadde S. Depression in parkinson’s disease: a narrative review. Cureus 2022 14 8 e27750 10.7759/cureus.27750 36106206
    [Google Scholar]
  24. Yager J. Addressing Suffering in Patients With Psychiatric Disorders. J. Nerv. Ment. Dis. 2021 209 9 615 621 10.1097/NMD.0000000000001348 33857957
    [Google Scholar]
  25. Jafferany M. Primary psychiatric disorders. Handbook of Psychodermatology: Introduction to Psychocutaneous Disorders. Jafferany M. Cham Springer International Publishing 2022 27 36 10.1007/978‑3‑030‑90916‑1_5
    [Google Scholar]
  26. Nyamba I. Sombié C.B. Yabré M. Zimé-Diawara H. Yaméogo J. Ouédraogo S. Lechanteur A. Semdé R. Evrard B. Pharmaceutical approaches for enhancing solubility and oral bioavailability of poorly soluble drugs. Eur. J. Pharm. Biopharm. 2024 204 114513 10.1016/j.ejpb.2024.114513 39313163
    [Google Scholar]
  27. Xie B. Liu Y. Li X. Yang P. He W. Solubilization techniques used for poorly water-soluble drugs. Acta Pharm. Sin. B 2024 14 11 4683 4716 10.1016/j.apsb.2024.08.027 39664427
    [Google Scholar]
  28. Ezike T.C. Okpala U.S. Onoja U.L. Nwike C.P. Ezeako E.C. Okpara O.J. Okoroafor C.C. Eze S.C. Kalu O.L. Odoh E.C. Nwadike U.G. Ogbodo J.O. Umeh B.U. Ossai E.C. Nwanguma B.C. Advances in drug delivery systems, challenges and future directions. Heliyon 2023 9 6 e17488 10.1016/j.heliyon.2023.e17488 37416680
    [Google Scholar]
  29. Ouyang J. Zhang Z. Deng B. Liu J. Wang L. Liu H. Koo S. Chen S. Li Y. Yaremenko A.V. Huang X. Chen W. Lee Y. Tao W. Oral drug delivery platforms for biomedical applications. Mater. Today 2023 62 296 326 10.1016/j.mattod.2023.01.002
    [Google Scholar]
  30. Lou J. Duan H. Qin Q. Teng Z. Gan F. Zhou X. Zhou X. Advances in oral drug delivery systems: challenges and opportunities. Pharmaceutics 2023 15 2 484 10.3390/pharmaceutics15020484 36839807
    [Google Scholar]
  31. Wankar J.N. Chaturvedi V.K. Bohara C. Singh M.P. Bohara R.A. Role of Nanomedicine in Management and Prevention of COVID-19. Front. Nanotechnol. 2020 2 589541 10.3389/fnano.2020.589541
    [Google Scholar]
  32. Marx W. Penninx B.W.J.H. Solmi M. Furukawa T.A. Firth J. Carvalho A.F. Berk M. Major depressive disorder. Nat. Rev. Dis. Primers 2023 9 1 44 10.1038/s41572‑023‑00454‑1 37620370
    [Google Scholar]
  33. Rios F.J. Montezano A.C. Camargo L.L. Touyz R.M. Impact of environmental factors on hypertension and associated cardiovascular disease. Can. J. Cardiol. 2023 39 9 1229 1243 10.1016/j.cjca.2023.07.002 37422258
    [Google Scholar]
  34. Qiu W. Cai X. Zheng C. Qiu S. Ke H. Huang Y. Update on the Relationship Between Depression and Neuroendocrine Metabolism. Front. Neurosci. 2021 15 728810 10.3389/fnins.2021.728810 34531719
    [Google Scholar]
  35. Ateaque S. Barde Y.A. A new molecular target for antidepressants. Cell Res. 2021 31 5 489 490 10.1038/s41422‑021‑00500‑1 33824423
    [Google Scholar]
  36. Galván A. The Development of Anxiety in Youth Study (DAYS): A Prospective Study of Trajectories of Brain Maturation among Youth at Risk for Anxiety. J. Psychiatr. Brain Sci. 2020 5 e200025 10.20900/jpbs.20200025
    [Google Scholar]
  37. Thapaliya B. Ray B. Farahdel B. Suresh P. Sapkota R. Holla B. Mahadevan J. Chen J. Vaidya N. Perrone-Bizzozero N.I. Benegal V. Schumann G. Calhoun V.D. Liu J. Cross-continental environmental and genome-wide association study on children and adolescent anxiety and depression. Front. Psychiatry 2024 15 1384298 10.3389/fpsyt.2024.1384298 38827440
    [Google Scholar]
  38. Harshit N.S. Sahu N.K. Lone H.R. Eyes Speak Louder: Harnessing Deep Features From Low-Cost Camera Video for Anxiety Detection. Proceedings of the Proceedings of the Workshop on Body-Centric Computing Systems New York, NY, USA, 2024, pp. 23-28 10.1145/3662009.3662021
    [Google Scholar]
  39. Leone L. McSpadden B. DeMarco A. Enten L. Kline R. Fonzo G.A. Psychedelics and Evidence-based Psychotherapy. Psychiatr. Clin. North Am. 2024 47 2 367 398 10.1016/j.psc.2024.02.006 38724126
    [Google Scholar]
  40. Penninx B.W.J.H. Pine D.S. Holmes E.A. Reif A. Anxiety disorders. Lancet 2021 397 10277 914 927 10.1016/S0140‑6736(21)00359‑7 33581801
    [Google Scholar]
  41. Peritogiannis V. Ninou A. Samakouri M. Mortality in Schizophrenia-Spectrum Disorders: Recent Advances in Understanding and Management. Healthcare (Basel) 2022 10 12 2366 10.3390/healthcare10122366 36553890
    [Google Scholar]
  42. Solmi M. Seitidis G. Mavridis D. Correll C.U. Dragioti E. Guimond S. Tuominen L. Dargél A. Carvalho A.F. Fornaro M. Maes M. Monaco F. Song M. Il Shin J. Cortese S. Incidence, prevalence, and global burden of schizophrenia - data, with critical appraisal, from the Global Burden of Disease (GBD) 2019. Mol. Psychiatry 2023 28 12 5319 5327 10.1038/s41380‑023‑02138‑4 37500825
    [Google Scholar]
  43. Stumpp N.E. Sauer-Zavala S. Evidence-Based Strategies for Treatment Personalization: A Review. Cognit. Behav. Pract. 2022 29 4 902 913 10.1016/j.cbpra.2021.10.004
    [Google Scholar]
  44. Kharawala S. Hastedt C. Podhorna J. Shukla H. Kappelhoff B. Harvey P.D. The relationship between cognition and functioning in schizophrenia: A semi-systematic review. Schizophr. Res. Cogn. 2022 27 100217 10.1016/j.scog.2021.100217 34631435
    [Google Scholar]
  45. Amadeo M.B. Esposito D. Escelsior A. Campus C. Inuggi A. Pereira Da Silva B. Serafini G. Amore M. Gori M. Time in schizophrenia: a link between psychopathology, psychophysics and technology. Transl. Psychiatry 2022 12 1 331 10.1038/s41398‑022‑02101‑x 35961974
    [Google Scholar]
  46. Rizvi A. Safwi S.R. Usmani M.A. Schizophrenia: Disability, clinical insights, and management. The Palgrave Encyclopedia of Disability 2024 Springer Nature Switzerland Cham 1 12
    [Google Scholar]
  47. Dai X. Kuang L. Feng L. Yi X. Tang W. Liao Q. Long X. Wang J. Li J. Yang H. Xiao B. Li G. Chen S. Anti-Dopamine Receptor 2 Antibody-Positive Encephalitis in Adolescent. Front. Neurol. 2020 11 471 10.3389/fneur.2020.00471 32612568
    [Google Scholar]
  48. Vita A. De Peri L. Borgwardt S. Editorial: Trajectories of Brain Abnormalities in Early Schizophrenia. Front. Psychiatry 2021 12 744471 10.3389/fpsyt.2021.744471 34531772
    [Google Scholar]
  49. Mesbah R. Koenders M.A. Spijker A.T. de Leeuw M. van Hemert A.M. Giltay E.J. Dynamic time warp analysis of individual symptom trajectories in individuals with bipolar disorder. Bipolar Disord. 2024 26 1 44 57 10.1111/bdi.13340 37269209
    [Google Scholar]
  50. Moini J. Logalbo A. Schnellmann J.G. Pharmacology of Bipolar Disorder. Neuropsychopharmacology. Elsevier 2023 429 439 10.1016/B978‑0‑323‑95974‑2.00034‑7
    [Google Scholar]
  51. Sangnim T. Dheer D. Jangra N. Huanbutta K. Puri V. Sharma A. Chitosan in Oral Drug Delivery Formulations: A Review. Pharmaceutics 2023 15 9 2361 10.3390/pharmaceutics15092361 37765329
    [Google Scholar]
  52. Vieta E. Bipolar I.I. Bipolar II Disorder: Frequent, Valid, and Reliable. Can. J. Psychiatry 2019 64 8 541 543 10.1177/0706743719855040 31340672
    [Google Scholar]
  53. Arnone D. Karmegam S.R. Östlundh L. Alkhyeli F. Alhammadi L. Alhammadi S. Alkhoori A. Selvaraj S. Risk of suicidal behavior in patients with major depression and bipolar disorder – A systematic review and meta-analysis of registry-based studies. Neurosci. Biobehav. Rev. 2024 159 105594 10.1016/j.neubiorev.2024.105594 38368970
    [Google Scholar]
  54. Hodges H. Fealko C. Soares N. Autism spectrum disorder: definition, epidemiology, causes, and clinical evaluation. Transl. Pediatr. 2020 9 S1 Suppl. 1 S55 S65 10.21037/tp.2019.09.09 32206584
    [Google Scholar]
  55. Zeidan J. Fombonne E. Scorah J. Ibrahim A. Durkin M.S. Saxena S. Yusuf A. Shih A. Elsabbagh M. Global prevalence of autism: A systematic review update. Autism Res. 2022 15 5 778 790 10.1002/aur.2696 35238171
    [Google Scholar]
  56. Patra S. Kar S.K. Autism spectrum disorder in India: a scoping review. Int. Rev. Psychiatry 2021 33 1-2 81 112 10.1080/09540261.2020.1761136 32602754
    [Google Scholar]
  57. Hus Y. Segal O. Challenges Surrounding the Diagnosis of Autism in Children. Neuropsychiatr. Dis. Treat. 2021 17 3509 3529 10.2147/NDT.S282569 34898983
    [Google Scholar]
  58. Mechler K. Banaschewski T. Hohmann S. Häge A. Evidence-based pharmacological treatment options for ADHD in children and adolescents. Pharmacol. Ther. 2022 230 107940 10.1016/j.pharmthera.2021.107940 34174276
    [Google Scholar]
  59. Bhandari R. Paliwal J.K. Kuhad A. Neuropsychopathology of Autism Spectrum Disorder: Complex Interplay of Genetic, Epigenetic, and Environmental Factors. Adv Neurobiol 2020 24 97 141 10.1007/978‑3‑030‑30402‑7_4 32006358
    [Google Scholar]
  60. Lamanna J. Meldolesi J. Autism Spectrum Disorder: Brain Areas Involved, Neurobiological Mechanisms, Diagnoses and Therapies. Int. J. Mol. Sci. 2024 25 4 2423 10.3390/ijms25042423 38397100
    [Google Scholar]
  61. Padula A.M. Monk C. Brennan P.A. Borders A. Barrett E.S. McEvoy C.T. Foss S. Desai P. Alshawabkeh A. Wurth R. Salafia C. Fichorova R. Varshavsky J. Kress A. Woodruff T.J. Morello-Frosch R. program collaborators for Environmental influences on Child Health Outcomes A review of maternal prenatal exposures to environmental chemicals and psychosocial stressors—implications for research on perinatal outcomes in the ECHO program. J. Perinatol. 2020 40 1 10 24 10.1038/s41372‑019‑0510‑y 31616048
    [Google Scholar]
  62. De Giacomo A. Craig F. Palermo G. Coppola A. Margari M. Campanozzi S. Margari L. Turi M. Differential Diagnosis in Children with Autistic Symptoms and Subthreshold ADOS Total Score: An Observational Study. Neuropsychiatr. Dis. Treat. 2021 17 2163 2172 10.2147/NDT.S300452 34262276
    [Google Scholar]
  63. Okoye C. Obialo-Ibeawuchi C.M. Obajeun O.A. Sarwar S. Tawfik C. Waleed M.S. Wasim A.U. Mohamoud I. Afolayan A.Y. Mbaezue R.N. Early Diagnosis of Autism Spectrum Disorder: A Review and Analysis of the Risks and Benefits. Cureus 2023 15 8 e43226 10.7759/cureus.43226 37692637
    [Google Scholar]
  64. Salari N. Ghasemi H. Abdoli N. Rahmani A. Shiri M.H. Hashemian A.H. Akbari H. Mohammadi M. The global prevalence of ADHD in children and adolescents: a systematic review and meta-analysis. Ital. J. Pediatr. 2023 49 1 48 10.1186/s13052‑023‑01456‑1 37081447
    [Google Scholar]
  65. Teaima M.H. El-Nadi M.T. Hamed R.R. El-Nabarawi M.A. Abdelmonem R. Lyophilized Nasal Inserts of Atomoxetine HCl Solid Lipid Nanoparticles for Brain Targeting as a Treatment of Attention-Deficit/Hyperactivity Disorder (ADHD): A Pharmacokinetics Study on Rats. Pharmaceuticals (Basel) 2023 16 2 326 10.3390/ph16020326 37259468
    [Google Scholar]
  66. Kweon K. Pharmacological treatment for attention deficit hyperactivity disorder in adults. J. Korean Med. Assoc. 2021 64 1 49 56 10.5124/jkma.2021.64.1.49
    [Google Scholar]
  67. Xi Y. Chen Y. Jin Y. Han G. Song M. Song T. Shi Y. Tao L. Huang Z. Zhou J. Ding Y. Zhang H. Versatile nanomaterials for Alzheimer’s disease: Pathogenesis inspired disease-modifying therapy. J. Control. Release 2022 345 38 61 10.1016/j.jconrel.2022.02.034 35257810
    [Google Scholar]
  68. Vuk Pisk S. Ivezic E. Senjug Mance L. Matic K. Svetinovic D. Grosic V. Filipcic I. Bipolar disorder type II - will the new classification help in setting an adequate diagnosis. Eur. Psychiatry 2023 66 S1 S709 S710 10.1192/j.eurpsy.2023.1485
    [Google Scholar]
  69. Kapoor D. Sharma D. Pathak Y. Prajapati B.G. Satani B. Nanoformulations Targeting Alzheimer’s Disease. Alzheimer’s Disease and Advanced Drug Delivery Strategies. Elsevier 2024 265 282 10.1016/B978‑0‑443‑13205‑6.00010‑8
    [Google Scholar]
  70. Zhuang Z. Yang R. Wang W. Qi L. Huang T. Associations between gut microbiota and Alzheimer’s disease, major depressive disorder, and schizophrenia. J. Neuroinflammation 2020 17 1 288 10.1186/s12974‑020‑01961‑8 33008395
    [Google Scholar]
  71. Fan D.Y. Wang Y.J. Early Intervention in Alzheimer’s Disease: How Early is Early Enough? Neurosci. Bull. 2020 36 2 195 197 10.1007/s12264‑019‑00429‑x 31494835
    [Google Scholar]
  72. Marucci G. Buccioni M. Ben D.D. Lambertucci C. Volpini R. Amenta F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology 2021 190 108352 10.1016/j.neuropharm.2020.108352 33035532
    [Google Scholar]
  73. Conti Filho C.E. Loss L.B. Marcolongo-Pereira C. Rossoni Junior J.V. Barcelos R.M. Chiarelli-Neto O. Silva B.S. Passamani Ambrosio R. Castro F.C.A.Q. Teixeira S.F. Mezzomo N.J. Advances in Alzheimer’s disease’s pharmacological treatment. Front. Pharmacol. 2023 14 1101452 10.3389/fphar.2023.1101452 36817126
    [Google Scholar]
  74. Okoli C.T.C. Abufarsakh B. Wang T. Makowski A. Cooley A. Assessing the impact of long‐acting injectable compared to oral antipsychotic medications on readmission to a state psychiatric hospital. J. Psychiatr. Ment. Health Nurs. 2024 31 6 1155 1163 10.1111/jpm.13075 38922793
    [Google Scholar]
  75. Sood K. Buddhavarapu M. Bansal L.R. Schaefer D. Parikh P. Utilizing long‐acting injectables to address noncompliance among adolescents diagnosed with bipolar disorder. Bipolar Disord. 2024 26 8 831 834 10.1111/bdi.13493 39218699
    [Google Scholar]
  76. Mahanur V. Rajge R. Tawar M. 2022 A review on emerging oral dosage forms which helps to bypass the hepatic first pass metabolism. Asian J Pharm Technol 2022 47 52 10.52711/2231‑5713.2022.00009
    [Google Scholar]
  77. Umamaheswari A. Puratchikody A. Lakshmana Prabu S. Thirumurugan R. Advanced strategy and future perspectives in drug delivery system. Pharmaceutical Science 2025 IntechOpen 10.5772/intechopen.1008498
    [Google Scholar]
  78. Pai N. McGeachie A.B. Puig A. Huang T.H.W. Brahmbhatt P. Persistence and adherence to second-generation antipsychotic long-acting injectable medications for schizophrenia: A comparative study in the Australian context. Australas. Psychiatry 2023 31 1 76 81 10.1177/10398562221142453 36475909
    [Google Scholar]
  79. Haddad P.M. Correll C.U. Long-acting antipsychotics in the treatment of schizophrenia: opportunities and challenges. Expert Opin. Pharmacother. 2023 24 4 473 493 10.1080/14656566.2023.2181073 36919576
    [Google Scholar]
  80. Pjevac M. Redenšek Trampuž S. Blagus T. Dolžan V. Bon J. Case report: application of pharmacogenetics in the personalized treatment of an elderly patient with a major depressive episode. Front. Psychiatry 2023 14 1250253 10.3389/fpsyt.2023.1250253 37608991
    [Google Scholar]
  81. Keith S. Advances in psychotropic formulations. Prog. Neuropsychopharmacol. Biol. Psychiatry 2006 30 6 996 1008 10.1016/j.pnpbp.2006.03.031 16678954
    [Google Scholar]
  82. Sánchez Prado R.E. Romero Añazco Y.Y. Loor Rodríguez A.K. Uso de fármacos en psiquiatría: Efectos secundarios e interacciones farmacológicas. Revista Científica de Salud y Desarrollo Humano 2024 5 3 98 127 10.61368/r.s.d.h.v5i3.244
    [Google Scholar]
  83. Feng X. Jia P. Zhang D. Nanocarrier drug delivery system: promising platform for targeted depression therapy. Front. Pharmacol. 2024 15 1435133 10.3389/fphar.2024.1435133 39119603
    [Google Scholar]
  84. Citrome L. Zeni C.M. Correll C.U. Patches. J. Clin. Psychiatry 2019 80 4 21174 10.4088/JCP.18nr12554 31318185
    [Google Scholar]
  85. Ngubane N.P. Mabandla M.V. De Gama B.Z. Global perspectives on the traditional approaches used in the treatment of schizophrenia: A systematic review. Asian J. Psychiatr. 2024 97 104081 10.1016/j.ajp.2024.104081 38797088
    [Google Scholar]
  86. Mizock L. Millner U.C. Russinova Z. Spiritual and Religious Issues in Psychotherapy with Schizophrenia: Cultural Implications and Implementation. Religions (Basel) 2012 3 1 82 98 10.3390/rel3010082
    [Google Scholar]
  87. Ngubane N.P. De Gama B.Z. The Influence of Culture on the Cause, Diagnosis and Treatment of Serious Mental Illness (Ufufunyana): Perspectives of Traditional Health Practitioners in the Harry Gwala District, KwaZulu-Natal. Cult. Med. Psychiatry 2024 48 3 634 654 10.1007/s11013‑024‑09863‑7 38909336
    [Google Scholar]
  88. Iliuță F.P. Lacău R.M. Varlam C.I. Mareș A.M. Chele G. Manea M.C. The evolution of modern psychiatry: A chronicle of long-acting antipsychotics and mental illness. Bulletin of Integrative Psychiatry 2024 100 1 63 77 10.36219/BPI.2024.1.06
    [Google Scholar]
  89. Siegel S.J. Extended release drug delivery strategies in psychiatry: theory to practice. Psychiatry (Edgmont) 2005 2 6 22 31 21152152
    [Google Scholar]
  90. Teja P.K. Mithiya J. Kate A.S. Bairwa K. Chauthe S.K. Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview. Phytomedicine 2022 96 153890 10.1016/j.phymed.2021.153890 35026510
    [Google Scholar]
  91. Yadav V.K. Pramanik S. Alghamdi S. Atwah B. Qusty N. Babalghith A. Solanki V.S. Agarwal N. Gupta N. Niazi P. Patel A. Choudhary N. Zairov R. Therapeutic Innovations in Nanomedicine: Exploring the Potential of Magnetotactic Bacteria and Bacterial Magnetosomes. Int. J. Nanomedicine 2025 20 403 444 10.2147/IJN.S462031 39816378
    [Google Scholar]
  92. Sajid M. Nanomaterials: types, properties, recent advances, and toxicity concerns. Curr. Opin. Environ. Sci. Health 2022 25 100319 10.1016/j.coesh.2021.100319
    [Google Scholar]
  93. Perumal R.S. Muralidharan B. Activated biochar derived from Ricinus communis outer shell: Influence of KOH impregnation ratio on physicochemical properties and EMI shielding effectiveness. Results Eng. 2025 25 104362 10.1016/j.rineng.2025.104362
    [Google Scholar]
  94. Joudeh N. Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J. Nanobiotechnology 2022 20 1 262 10.1186/s12951‑022‑01477‑8 35672712
    [Google Scholar]
  95. Toader C. Dumitru A.V. Eva L. Serban M. Covache-Busuioc R.A. Ciurea A.V. Nanoparticle Strategies for Treating CNS Disorders: A Comprehensive Review of Drug Delivery and Theranostic Applications. Int. J. Mol. Sci. 2024 25 24 13302 10.3390/ijms252413302 39769066
    [Google Scholar]
  96. Hamidi S. Shafiee-Kandjani A.R. Salatin S. Nanosystems for Intranasal Delivery of Therapeutics in Psychiatric Disorders. Curr. Drug Deliv. 2025 22 10.2174/0115672018336704241128101556 39810532
    [Google Scholar]
  97. Sadat Razavi Z. Sina Alizadeh S. Sadat Razavi F. Souri M. Soltani M. Advancing neurological disorders therapies: Organic nanoparticles as a key to blood-brain barrier penetration. Int. J. Pharm. 2025 670 125186 10.1016/j.ijpharm.2025.125186 39788400
    [Google Scholar]
  98. Salman Z.N. Shaker N.M. Development of Nanoformulation for Injectable Delivery of Sertraline: Enhancing Efficacy and Patient Compliance in Depression Treatment. International Journal of Medical Toxicology and Legal Medicine 2024 27 4s 10 16 10.47059/ijmtlm/V27I4S/002
    [Google Scholar]
  99. Mishra M. Prasad K. Ramakrishn S. Kant Jha A. Nanomaterials in drug delivery—Promises and limitations. Nano and Medical Materials 2024 4 1 10.59400/nmm.v4i1.38
    [Google Scholar]
  100. Bhardwaj H. Jangde R.K. Current updated review on preparation of polymeric nanoparticles for drug delivery and biomedical applications. Next Nanotechnology 2023 2 100013 10.1016/j.nxnano.2023.100013
    [Google Scholar]
  101. Mahanta A.K. Chaulagain B. Trivedi R. Singh J. Mannose-Functionalized Chitosan-Coated PLGA Nanoparticles for Brain-Targeted Codelivery of CBD and BDNF for the Treatment of Alzheimer’s Disease. ACS Chem. Neurosci. 2024 15 21 4021 4032 10.1021/acschemneuro.4c00392 39377785
    [Google Scholar]
  102. Zielińska A. Carreiró F. Oliveira A.M. Neves A. Pires B. Venkatesh D.N. Durazzo A. Lucarini M. Eder P. Silva A.M. Santini A. Souto E.B. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules 2020 25 16 3731 10.3390/molecules25163731 32824172
    [Google Scholar]
  103. Nath V. Singh M. Jana B.K. Sarkar T. Gogoi N.R. Mazumder B. PLGA and cancer: a comprehensive patent-based review on the present state of art. Pharm. Pat. Anal. 2025 1 15 10.1080/20468954.2025.2470103 40022546
    [Google Scholar]
  104. Mathew A. Fukuda T. Nagaoka Y. Hasumura T. Morimoto H. Yoshida Y. Maekawa T. Venugopal K. Kumar D.S. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One 2012 7 3 e32616 10.1371/journal.pone.0032616 22403681
    [Google Scholar]
  105. Li J. Sabliov C. PLA/PLGA nanoparticles for delivery of drugs across the blood-brain barrier. Nanotechnol. Rev. 2013 2 3 241 257 10.1515/ntrev‑2012‑0084
    [Google Scholar]
  106. Shah P. Chavda K. Vyas B. Patel S. Formulation development of linagliptin solid lipid nanoparticles for oral bioavailability enhancement: role of P-gp inhibition. Drug Deliv. Transl. Res. 2021 11 3 1166 1185 10.1007/s13346‑020‑00839‑9 32804301
    [Google Scholar]
  107. Aghaei Delche N. Kheiri R. Ghorbani Nejad B. Sheikhi M. Razavi M.S. Rahimzadegan M. Salmasi Z. Recent progress in the intranasal PLGA-based drug delivery for neurodegenerative diseases treatment. Iran. J. Basic Med. Sci. 2023 26 10 1107 1119 10.22038/IJBMS.2023.70192.15264 37736505
    [Google Scholar]
  108. Teleanu D.M. Chircov C. Grumezescu A.M. Volceanov A. Teleanu R.I. Blood-Brain Delivery Methods Using Nanotechnology. Pharmaceutics 2018 10 4 269 10.3390/pharmaceutics10040269 30544966
    [Google Scholar]
  109. Sarode R.J. Mahajan H.S. Dendrimers for drug delivery: An overview of its classes, synthesis, and applications. J. Drug Deliv. Sci. Technol. 2024 98 105896 10.1016/j.jddst.2024.105896
    [Google Scholar]
  110. Shetty A. Chikhaliwala P. Suryawanshi J. Chandra S. Understanding Physico-chemical Interactions of Dendrimers with Guest Molecules for Efficient Drug and Gene Delivery. Curr. Pathobiol. Rep. 2021 9 2 57 70 10.1007/s40139‑021‑00221‑5
    [Google Scholar]
  111. Wang G. Zhou Z. Zhao Z. Li Q. Wu Y. Yan S. Shen Y. Huang P. Enzyme-Triggered Transcytosis of Dendrimer–Drug Conjugate for Deep Penetration into Pancreatic Tumors. ACS Nano 2020 14 4 4890 4904 10.1021/acsnano.0c00974 32286784
    [Google Scholar]
  112. Zhang C.Y. Gu K. Chi M.Y. Gao X.Y. Gao L. Zhang N.N. Liu Y.X. Li T.Z. The application progress of PAMAM dendrimer in cancer imaging and treatment. J. Biomater. Sci. Polym. Ed. 2025 1 38 10.1080/09205063.2025.2497623 40293953
    [Google Scholar]
  113. Singh V. Sahebkar A. Kesharwani P. Poly (propylene imine) dendrimer as an emerging polymeric nanocarrier for anticancer drug and gene delivery. Eur. Polym. J. 2021 158 110683 10.1016/j.eurpolymj.2021.110683
    [Google Scholar]
  114. Bukun Y. Zaim M. Senel M. Sagir T. Kiyak B.Y. Isık S. Novel fluorescein isothiocyanate (FITC) cored PAMAM dendrimers as drug delivery agent. Int. J. Polym. Mater. 2024 73 10 917 925 10.1080/00914037.2023.2227314
    [Google Scholar]
  115. Dehkordi A.A. Mollazadeh S. Talaie A. Yazdimamaghani M. Engineering PAMAM dendrimers for optimized drug delivery. Nano Trends 2025 9 100094 10.1016/j.nwnano.2025.100094
    [Google Scholar]
  116. Nakashima Y. Yang W. Chen P. Masuda K. Hong T. Cabral H. Tryptophan Intercalation in SiRNA Drives the Formation of Polymeric Micelles with Enhanced Delivery Efficiency. RSC Pharmaceutics 2024 10.1039/D4PM00142G
    [Google Scholar]
  117. Kuperkar K. Patel D. Atanase L.I. Bahadur P. Amphiphilic Block Copolymers: Their Structures, and Self-Assembly to Polymeric Micelles and Polymersomes as Drug Delivery Vehicles. Polymers (Basel) 2022 14 21 4702 10.3390/polym14214702 36365696
    [Google Scholar]
  118. Bu X. Ji N. Dai L. Dong X. Chen M. Xiong L. Sun Q. Self-assembled micelles based on amphiphilic biopolymers for delivery of functional ingredients. Trends Food Sci. Technol. 2021 114 386 398 10.1016/j.tifs.2021.06.001
    [Google Scholar]
  119. Zheng Y. Oz Y. Gu Y. Ahamad N. Shariati K. Chevalier J. Kapur D. Annabi N. Rational design of polymeric micelles for targeted therapeutic delivery. Nano Today 2024 55 102147 10.1016/j.nantod.2024.102147
    [Google Scholar]
  120. Vambhurkar G. Jain N. Srinivasarao D.A. Famta P. Singh S.B. Srivastava S. Drug solubilization and drug release from polymeric micelles. In: Polymeric Micelles: Principles, Perspectives and Practices 2023 Springer Nature Singapore Singapore 87 109
    [Google Scholar]
  121. Ghezzi M. Pescina S. Padula C. Santi P. Del Favero E. Cantù L. Nicoli S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J. Control. Release 2021 332 312 336 10.1016/j.jconrel.2021.02.031 33652113
    [Google Scholar]
  122. Shakeri S. Ashrafizadeh M. Zarrabi A. Roghanian R. Afshar E.G. Pardakhty A. Mohammadinejad R. Kumar A. Thakur V.K. Multifunctional Polymeric Nanoplatforms for Brain Diseases Diagnosis, Therapy and Theranostics. Biomedicines 2020 8 1 13 10.3390/biomedicines8010013 31941057
    [Google Scholar]
  123. Raman S. Mahmood S. Hilles A.R. Javed M.N. Azmana M. Al-Japairai K.A.S. Polymeric Nanoparticles for Brain Drug Delivery - A Review. Curr. Drug Metab. 2020 21 9 649 660 10.2174/1389200221666200508074348 32384025
    [Google Scholar]
  124. Sobarzo-Sánchez E. Nabavi S. Uriarte E. Santana L. Nanoparticles in the treatment of mental disorders: a new tool in the psychiatric medication. Curr. Top. Med. Chem. 2015 15 4 282 286 10.2174/1568026615666150108124533 25579348
    [Google Scholar]
  125. Maiti S. Jana S. Dendrimers as Nanostructured Therapeutic Carriers. Particulate Technology for Delivery of Therapeutics. Singapore Springer Singapore 2017 139 166 10.1007/978‑981‑10‑3647‑7_5
    [Google Scholar]
  126. Zorab M.M. Qadir A.M. Ahmed A.M.A. Musa M. Zorab Amjad Mahmood Qadir Azad Mohammed Aziz Ahmed Dendrimers as drug delivery vehicles: a comprehensive review. Cell. Mol. Biol. 2025 71 1 1 12 10.14715/cmb/2025.70.1.1 39910946
    [Google Scholar]
  127. Sasi S. Joseph S.K. Arian A.M. Thomas S. An updated review on the application of dendrimers as successful nanocarriers for brain delivery of therapeutic moieties. Int J Appl Pharm 2021 1 9 10.22159/ijap.2021v13i1.39812
    [Google Scholar]
  128. Riccardi C. Napolitano F. Montesarchio D. Sampaolo S. Melone M.A.B. Nanoparticle-Guided Brain Drug Delivery: Expanding the Therapeutic Approach to Neurodegenerative Diseases. Pharmaceutics 2021 13 11 1897 10.3390/pharmaceutics13111897 34834311
    [Google Scholar]
  129. Vardhan H. Jain A. Kumar Singhai A. Potential of dendrimers in drug delivery: An updated review. Asian J Pharm Res 2024 242 254 10.52711/2231‑5691.2024.00038
    [Google Scholar]
  130. Kaur P. Rajput A. Singh D. Singh G. Mehra A. Kaur S. Bedi N. Arora S. The Sojourn of Polymeric Micelles for Effective Brain Drug Delivery System. Curr. Drug Deliv. 2024 21 1 65 79 10.2174/1567201820666230413082352 37069713
    [Google Scholar]
  131. Mendake A.R. Hatwar R.P. Bakal L.R. Hiwe A.K. Barewar S.S. Advance and opportunities in nanoparticle drug delivery for central nervous system disorders: A review of current advances. GSC Biol Pharm Sci 2024 27 44 58 10.30574/gscbps.2024.27.3.0222
    [Google Scholar]
  132. Jampílek J. Králová K. Nanotechnology-based formulations for drug targeting to the central nervous system. Nanoparticulate Drug Delivery Systems 2019 Apple Academic Press Toronto; New Jersey 151 220 10.1201/9781351137263‑5
    [Google Scholar]
  133. Parashar P. Kanoujia J. Kishore A. Progress in Polymeric Micelles as Viable Wagons for Brain Targeting. Curr. Pharm. Des. 2023 29 2 116 125 10.2174/1381612829666221223101753 36567302
    [Google Scholar]
  134. Katari O. Yadav S. Akhtar J. Jain S. Micelles-Based Drug Delivery for Dementia. Nanomedicine-Based Approaches for the Treatment of Dementia. Elsevier 2023 169 192 10.1016/B978‑0‑12‑824331‑2.00002‑9
    [Google Scholar]
  135. Ravindranath B.S. Grewall A. Nanotherapeutics for Neurological Disorders. Theranostic Applications of Nanotechnology in Neurological Disorders. Singapore Springer Nature Singapore 2023 95 113 10.1007/978‑981‑99‑9510‑3_5
    [Google Scholar]
  136. Tudu M. Samanta A. Natural polysaccharides: Chemical properties and application in pharmaceutical formulations. Eur. Polym. J. 2023 184 111801 10.1016/j.eurpolymj.2022.111801
    [Google Scholar]
  137. Baranwal J. Barse B. Fais A. Delogu G.L. Kumar A. Biopolymer: A Sustainable Material for Food and Medical Applications. Polymers (Basel) 2022 14 5 983 10.3390/polym14050983 35267803
    [Google Scholar]
  138. Hong S. Park H.H. Drug Delivery System Using Protein Nanoparticles. KSBB J. 2020 35 1 10 22 10.7841/ksbbj.2020.35.1.10
    [Google Scholar]
  139. Lugasi L. Grinberg I. Sabag R. Madar R. Einat H. Margel S. Proteinoid Nanocapsules as Drug Delivery System for Improving Antipsychotic Activity of Risperidone. Molecules 2020 25 17 4013 10.3390/molecules25174013 32887463
    [Google Scholar]
  140. Aljabali A.A.A. Rezigue M. Alsharedeh R.H. Obeid M.A. Mishra V. Serrano-Aroca Á. El-Tanani M. Tambuwala M.M. Protein-based nanomaterials: a new tool for targeted drug delivery. Ther. Deliv. 2022 13 6 321 338 10.4155/tde‑2021‑0091 35924586
    [Google Scholar]
  141. Kaltbeitzel J. Wich P.R. Protein‐based Nanoparticles: From Drug Delivery to Imaging, Nanocatalysis and Protein Therapy. Angew. Chem. Int. Ed. 2023 62 44 e202216097 10.1002/anie.202216097 36917017
    [Google Scholar]
  142. Sing C.E. Perry S.L. Recent progress in the science of complex coacervation. Soft Matter 2020 16 12 2885 2914 10.1039/D0SM00001A 32134099
    [Google Scholar]
  143. Gowtham P. Arumugam V.A. Harini K. Pallavi P. Thirumalai A. Girigoswami K. Girigoswami A. Nanostructured proteins for delivering drugs to diseased tissues. Bioinspired, Biomimetic and Nanobiomaterials 2023 12 3 115 129 10.1680/jbibn.23.00004
    [Google Scholar]
  144. Hong S. Choi D.W. Kim H.N. Park C.G. Lee W. Park H.H. Protein-Based Nanoparticles as Drug Delivery Systems. Pharmaceutics 2020 12 7 604 10.3390/pharmaceutics12070604 32610448
    [Google Scholar]
  145. Zhang Z. Zhang Y. Song S. Yin L. Sun D. Gu J. Recent advances in the bioanalytical methods of polyethylene glycols and PEGylated pharmaceuticals. J. Sep. Sci. 2020 43 9-10 1978 1997 10.1002/jssc.201901340 32077620
    [Google Scholar]
  146. Ferraro C. Dattilo M. Patitucci F. Prete S. Scopelliti G. Parisi O. Puoci F. Exploring Protein-Based Carriers in Drug Delivery: A Review. Pharmaceutics 2024 16 9 1172 10.3390/pharmaceutics16091172 39339208
    [Google Scholar]
  147. Lofts A. Campea M.A. Winterhelt E. Rigg N. Rivera N.P. Macdonald C. Frey B.N. Mishra R.K. Hoare T. In situ -gelling hydrophobized starch nanoparticle-based nanoparticle network hydrogels for the effective delivery of intranasal olanzapine to treat brain disorders. Int. J. Biol. Macromol. 2024 277 Pt 4 134385 10.1016/j.ijbiomac.2024.134385 39111489
    [Google Scholar]
  148. Narkhede M. Patil N. Advancing Drug Delivery with Plant Protein-based Nanoparticles: A Comprehensive Overview. Nat. Prod. J. 2025 15 6 e090724231758 10.2174/0122103155306353240704072716
    [Google Scholar]
  149. Muraleedharan A. Acharya S. Kumar R. Recent Updates on Diverse Nanoparticles and Nanostructures in Therapeutic and Diagnostic Applications with Special Focus on Smart Protein Nanoparticles: A Review. ACS Omega 2024 9 42 42613 42629 10.1021/acsomega.4c05037 39464472
    [Google Scholar]
  150. Jamroży M. Kudłacik-Kramarczyk S. Drabczyk A. Krzan M. Advanced Drug Carriers: A Review of Selected Protein, Polysaccharide, and Lipid Drug Delivery Platforms. Int. J. Mol. Sci. 2024 25 2 786 10.3390/ijms25020786 38255859
    [Google Scholar]
  151. Kurl S. Kumar A. Reena Mittal N. Singh D. Bassi P. Kaur G. Challenges, opportunities, and future prospects of polysaccharide-based nanoparticles for colon targeting: A comprehensive review. Carbohydr. Polym. Technol. Appl. 2023 6 100361 10.1016/j.carpta.2023.100361
    [Google Scholar]
  152. Bagatini I.L. Meccheri F.S. Paulsen B.S. Garcia Da Silva T. Barsett H. Henriques Vieira A.A. Diversity of monosaccharides and glycosidic linkages on extracellular polysaccharides of the microalga Ankistrodesmus (Chlorophyceae). Phycologia 2023 62 1 36 47 10.1080/00318884.2022.2136455
    [Google Scholar]
  153. Rastogi M. Hejmady S. Shukla P. Tiwari S. Singhvi G. Dubey S.K. Chemically Cross-Linked Polysaccharides for Biomedical Applications. Tailor-Made Polysaccharides in Biomedical Applications. Elsevier 2020 51 68 10.1016/B978‑0‑12‑821344‑5.00003‑5
    [Google Scholar]
  154. Bushra R. Ahmad M. Seidi F. Qurtulen Song J. Jin Y. Xiao H. Polysaccharide-based nanoassemblies: From synthesis methodologies and industrial applications to future prospects. Adv. Colloid Interface Sci. 2023 318 102953 10.1016/j.cis.2023.102953 37399637
    [Google Scholar]
  155. Plucinski A. Lyu Z. Schmidt B.V.K.J. Polysaccharide nanoparticles: from fabrication to applications. J. Mater. Chem. B Mater. Biol. Med. 2021 9 35 7030 7062 10.1039/D1TB00628B 33928990
    [Google Scholar]
  156. Maiti S. Maji B. Yadav H. Progress on green crosslinking of polysaccharide hydrogels for drug delivery and tissue engineering applications. Carbohydr. Polym. 2024 326 121584 10.1016/j.carbpol.2023.121584 38142088
    [Google Scholar]
  157. Bianchera A. Bettini R. Polysaccharide nanoparticles for oral controlled drug delivery: the role of drug–polymer and interpolymer interactions. Expert Opin. Drug Deliv. 2020 17 10 1345 1359 10.1080/17425247.2020.1789585 32602795
    [Google Scholar]
  158. Dhingra K. Chauhan A. Chandra A. Gupta A.K. Parvez N. Kumar G. Singh G. Kumar B. Singh P. Kumar A. Sindhu R.K. Therapeutics Potential of Polysaccharide Based Nanocarriers: A Review. Plant Arch. 2023 23 2 10.51470/PLANTARCHIVES.2023.v23.no2.071
    [Google Scholar]
  159. Halder U. Biswas R. Kabiraj A. Majhi K. Let M. Bandopadhyay R. Recent Patents and Current Emergence of Polysaccharides- Based Nanoparticles in Medicine and Drug Delivery. Polysaccharide Nanoparticles. Elsevier 2022 455 484 10.1016/B978‑0‑12‑822351‑2.00007‑3
    [Google Scholar]
  160. Abourehab M.A.S. Rajendran R.R. Singh A. Pramanik S. Shrivastav P. Ansari M.J. Manne R. Amaral L.S. Deepak A. Alginate as a Promising Biopolymer in Drug Delivery and Wound Healing: A Review of the State-of-the-Art. Int. J. Mol. Sci. 2022 23 16 9035 10.3390/ijms23169035 36012297
    [Google Scholar]
  161. Hegde V. Uthappa U.T. Altalhi T. Jung H.Y. Han S.S. Kurkuri M.D. Alginate based polymeric systems for drug delivery, antibacterial/microbial, and wound dressing applications. Mater. Today Commun. 2022 33 104813 10.1016/j.mtcomm.2022.104813
    [Google Scholar]
  162. Haque S. Md S. Sahni J.K. Ali J. Baboota S. Development and evaluation of brain targeted intranasal alginate nanoparticles for treatment of depression. J. Psychiatr. Res. 2014 48 1 1 12 10.1016/j.jpsychires.2013.10.011 24231512
    [Google Scholar]
  163. Mutingwende F.P. Kondiah P.P.D. Ubanako P. Marimuthu T. Choonara Y.E. Advances in Nano-Enabled Platforms for the Treatment of Depression. Polymers (Basel) 2021 13 9 1431 10.3390/polym13091431 33946703
    [Google Scholar]
  164. Ngwuluka N.C. Responsive Polysaccharides and Polysaccharides-Based Nanoparticles for Drug Delivery. Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications. Elsevier 2018 Vol. 1 531 554 10.1016/B978‑0‑08‑101997‑9.00023‑0
    [Google Scholar]
  165. Kareemi A.F. Likhitkar S. Applications and advancements of polysaccharide-based nanostructures for enhanced drug delivery. Colloids Surf. B Biointerfaces 2024 238 113883 10.1016/j.colsurfb.2024.113883 38615389
    [Google Scholar]
  166. Laha B. Maiti S. Sen K.K. Jana S. Nanoscale Polysaccharide-Based Particles for the Delivery of Therapeutic Molecules. Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier 2019 347 368 10.1016/B978‑0‑08‑102579‑6.00014‑9
    [Google Scholar]
  167. Gillella S. S R. M D. SK A. B A. C G. CH A. Lipid-based nanoparticles. J Innov Appl Pharm Sci 2024 17 24 10.37022/jiaps.v9i1.573
    [Google Scholar]
  168. Onteru S.L-B.N. Advances T.R. GSC Advanced Research and Reviews 2024 18 182 188 10.30574/gscarr.2024.18.3.0096
    [Google Scholar]
  169. Kumar K.P. Nihal P. Bandari N. Iswariya V.T. Rao A.H.P. Rana R. Kaushik S. role of lipid based nanoparticles in brain targeted drug delivery system. Int. J. Health Sci. 2022 2924 2940 10.53730/ijhs.v6nS4.8628
    [Google Scholar]
  170. Dhillon A. Singh R. Senwar K.R. An extensive review on novel liposomes: Classification, methodology, characterization, current formulations. Int J Drug Deliv Technol 2024 14 1842 1852 10.25258/ijddt.14.3.83
    [Google Scholar]
  171. Rutuja Garude Garude R. Poonam Ankush Jadhav A Complete Review on : Liposomes. Int. J. Sci. Res. Sci. Technol. 2024 11 5 373 378 10.32628/IJSRST24115113
    [Google Scholar]
  172. Dymek M. Sikora E. Liposomes as biocompatible and smart delivery systems – the current state. Adv. Colloid Interface Sci. 2022 309 102757 10.1016/j.cis.2022.102757 36152374
    [Google Scholar]
  173. Nsairat H. Khater D. Sayed U. Odeh F. Al Bawab A. Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon 2022 8 5 e09394 10.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  174. Kumar A. Rani R. Kumar R. Singh A.P. Singh A.P. An updated review on liposomes. Int J Pharm Drug Anal 2024 8 14 10.47957/ijpda.v12i1.568
    [Google Scholar]
  175. Gandhi S. Shastri D.H. Lipid-Based Nanoparticles as Drug Delivery System for Modern Therapeutics. Pharm. Nanotechnol. 2024 13 10.2174/0122117385337379240916053259 39400024
    [Google Scholar]
  176. Moudgil A. Chaudhari B.P. Understanding Critical Aspects of Liposomal Synthesis for Designing the Next Generation Targeted Drug Delivery Vehicle. ChemistrySelect 2023 8 38 e202302435 10.1002/slct.202302435
    [Google Scholar]
  177. Yang W. Lipert M. Nofsinger R. Current screening, design, and delivery approaches to address low permeability of chemically synthesized modalities in drug discovery and early clinical development. Drug Discov. Today 2023 28 9 103685 10.1016/j.drudis.2023.103685 37356613
    [Google Scholar]
  178. Chenxi Z. Hemmat A. Thi N.H. Afrand M. Nanoparticle-enhanced drug delivery systems: An up-to-date review. J. Mol. Liq. 2025 424 126999 10.1016/j.molliq.2025.126999
    [Google Scholar]
  179. Li X. Tsibouklis J. Weng T. Zhang B. Yin G. Feng G. Cui Y. Savina I.N. Mikhalovska L.I. Sandeman S.R. Howel C.A. Mikhalovsky S.V. Nano carriers for drug transport across the blood–brain barrier. J. Drug Target. 2017 25 1 17 28 10.1080/1061186X.2016.1184272 27126681
    [Google Scholar]
  180. Bukke S.P.N. Venkatesh C. Bandenahalli Rajanna S. Saraswathi T.S. Kusuma P.K. Goruntla N. Balasuramanyam N. Munishamireddy S. Solid lipid nanocarriers for drug delivery: design innovations and characterization strategies—a comprehensive review. Discover Applied Sciences 2024 6 6 279 10.1007/s42452‑024‑05897‑z
    [Google Scholar]
  181. Tanuku S. Velisila D. Thatraju D. Vadaga A. Nanoemulsion Formulation Strategies for Enhanced Drug Delivery. J Pharm Insights and Res 2024 2 4 125 138 10.69613/3f8m9151
    [Google Scholar]
  182. Jacob S. Kather F.S. Boddu S.H.S. Shah J. Nair A.B. Innovations in Nanoemulsion Technology: Enhancing Drug Delivery for Oral, Parenteral, and Ophthalmic Applications. Pharmaceutics 2024 16 10 1333 10.3390/pharmaceutics16101333 39458662
    [Google Scholar]
  183. Pires P.C. Paiva-Santos A.C. Veiga F. Nano and Microemulsions for the Treatment of Depressive and Anxiety Disorders: An Efficient Approach to Improve Solubility, Brain Bioavailability and Therapeutic Efficacy. Pharmaceutics 2022 14 12 2825 10.3390/pharmaceutics14122825 36559318
    [Google Scholar]
  184. Ghazwani M. Vasudevan R. Kandasamy G. Manusri N. Devanandan P. Puvvada R.C. Veeramani V.P. Paulsamy P. Venkatesan K. Chidmabaram K. Dhurke R. Formulation of Intranasal Mucoadhesive Thermotriggered In Situitalic> Gel Containing Mirtazapine as an Antidepressant Drug. Gels 2023 9 6 457 10.3390/gels9060457 37367128
    [Google Scholar]
  185. Correia A.C. Monteiro A.R. Silva R. Moreira J.N. Sousa Lobo J.M. Silva A.C. Lipid nanoparticles strategies to modify pharmacokinetics of central nervous system targeting drugs: Crossing or circumventing the blood–brain barrier (BBB) to manage neurological disorders. Adv. Drug Deliv. Rev. 2022 189 114485 10.1016/j.addr.2022.114485 35970274
    [Google Scholar]
  186. Rehman S. Nabi B. Pottoo F.H. Baboota S. Ali J. Nanoparticle Based Gene Therapy Approach: A Pioneering Rebellion in the Management of Psychiatric Disorders. Curr. Gene Ther. 2020 20 3 164 173 10.2174/1566523220666200607185903 32515310
    [Google Scholar]
  187. Pires P.C. Paiva-Santos A.C. Veiga F. Liposome-Derived Nanosystems for the Treatment of Behavioral and Neurodegenerative Diseases: The Promise of Niosomes, Transfersomes, and Ethosomes for Increased Brain Drug Bioavailability. Pharmaceuticals (Basel) 2023 16 10 1424 10.3390/ph16101424 37895895
    [Google Scholar]
  188. Javed A. Mandal P. khan, I.; Singh, A.; Akhtar, J.; Maheshwari, S.; Prajapati, B.G. Liposomal Drug Delivery for Neurological Disorders: Advances and Challenges. Cent. Nerv. Syst. Agents Med. Chem. 2024 24 10.2174/0118715249319942240903134353
    [Google Scholar]
  189. Pottoo F.H. Sharma S. Javed M.N. Barkat M.A. Harshita Alam M.S. Naim M.J. Alam O. Ansari M.A. Barreto G.E. Ashraf G.M. Lipid-based nanoformulations in the treatment of neurological disorders. Drug Metab. Rev. 2020 52 1 185 204 10.1080/03602532.2020.1726942 32116044
    [Google Scholar]
  190. Dhankhar S. Garg N. Sharma H. Chauhan S. Saini M. Lipid-Based Nanomedicine for Alzheimer’s Disease: A Comprehensive Review of Recent Advances. Pharm. Nanotechnol. 2024 12 10.2174/0122117385300234240522100826 38867523
    [Google Scholar]
  191. Chaudhri N. Rastogi V. Verma A. A Review on Lipid-based Nanoformulations for Targeting Brain through Non-invasive Nasal Route. Pharm. Nanotechnol. 2025 13 1 143 154 10.2174/0122117385293436240321090218 38685789
    [Google Scholar]
  192. He X. Zhu Y. Wang M. Jing G. Zhu R. Wang S. Antidepressant effects of curcumin and HU-211 coencapsulated solid lipid nanoparticles against corticosterone-induced cellular and animal models of major depression. Int. J. Nanomedicine 2016 11 4975 4990 10.2147/IJN.S109088 27757031
    [Google Scholar]
  193. Esposito E. Drechsler M. Mariani P. Carducci F. Servadio M. Melancia F. Ratano P. Campolongo P. Trezza V. Cortesi R. Nastruzzi C. Lipid nanoparticles for administration of poorly water soluble neuroactive drugs. Biomed. Microdevices 2017 19 3 44 10.1007/s10544‑017‑0188‑x 28526975
    [Google Scholar]
  194. Yin Y. Zhang J. Zhou X. Solid Lipid Nanoparticles: A Nano Drug Carrying System in Treatment of Nervous Diseases. Highlights in Science, Engineering and Technology 2022 11 58 66 10.54097/hset.v11i.1266
    [Google Scholar]
  195. Garg D.V. Gupta D.M. Garg D.N. Saini D.A.K. Saini M.J. Drugs Targeting Cerebrovascular and Neurological Diseases via Green Solid Lipid Nanoparticles. Int J Rec Res Rev 2024 XVII 3 1 8 10.62233/ijrrr12
    [Google Scholar]
  196. Alphandéry E. Natural Metallic Nanoparticles for Application in Nano-Oncology. Int. J. Mol. Sci. 2020 21 12 4412 10.3390/ijms21124412 32575884
    [Google Scholar]
  197. Tuli H.S. Joshi R. Kaur G. Garg V.K. Sak K. Varol M. Kaur J. Alharbi S.A. Alahmadi T.A. Aggarwal D. Dhama K. Jaswal V.S. Mittal S. Sethi G. Metal nanoparticles in cancer: from synthesis and metabolism to cellular interactions. J. Nanostructure Chem. 2023 13 3 321 348 10.1007/s40097‑022‑00504‑2
    [Google Scholar]
  198. Alshammari B.H. Lashin M.M.A. Mahmood M.A. Al-Mubaddel F.S. Ilyas N. Rahman N. Sohail M. Khan A. Abdullaev S.S. Khan R. Organic and inorganic nanomaterials: fabrication, properties and applications. RSC Advances 2023 13 20 13735 13785 10.1039/D3RA01421E 37152571
    [Google Scholar]
  199. Chiang M.C. Yang Y.P. Nicol C.J.B. Wang C.J. Gold Nanoparticles in Neurological Diseases: A Review of Neuroprotection. Int. J. Mol. Sci. 2024 25 4 2360 10.3390/ijms25042360 38397037
    [Google Scholar]
  200. Islam A. Mehwish S. Riaz F. Khan A.U. Applications and Safety of Biosynthesized Nanoparticles in Neurological Disorders. Expanding Nanobiotechnology: Applications and Commercialization. Boca Raton CRC Press 2025 212 227 10.1201/9781003378563‑10
    [Google Scholar]
  201. Tunkaew K. Liewhiran C. Vaddhanaphuti C.S. Functionalized metal oxide nanoparticles: A promising intervention against major health burden of diseases. Life Sci. 2024 358 123154 10.1016/j.lfs.2024.123154 39433083
    [Google Scholar]
  202. Teng J. Yu T. Yan F. GABA attenuates neurotoxicity of zinc oxide nanoparticles due to oxidative stress via DAF-16/FoxO and SKN-1/Nrf2 pathways. Sci. Total Environ. 2024 934 173214 10.1016/j.scitotenv.2024.173214 38754507
    [Google Scholar]
  203. Mishra A. Kumar R. Mishra J. Dutta K. Ahlawat P. Kumar A. Dhanasekaran S. Gupta A.K. Sinha S. Bishi D.K. Gupta P.K. Nayak S. Strategies facilitating the permeation of nanoparticles through blood-brain barrier: An insight towards the development of brain-targeted drug delivery system. J. Drug Deliv. Sci. Technol. 2023 86 104694 10.1016/j.jddst.2023.104694
    [Google Scholar]
  204. Teixeira M.I. Lopes C.M. Gonçalves H. Catita J. Silva A.M. Rodrigues F. Amaral M.H. Costa P.C. Formulation, Characterization, and Cytotoxicity Evaluation of Lactoferrin Functionalized Lipid Nanoparticles for Riluzole Delivery to the Brain. Pharmaceutics 2022 14 1 185 10.3390/pharmaceutics14010185 35057079
    [Google Scholar]
  205. Barandeh F. Nguyen P.L. Kumar R. Iacobucci G.J. Kuznicki M.L. Kosterman A. Bergey E.J. Prasad P.N. Gunawardena S. Organically modified silica nanoparticles are biocompatible and can be targeted to neurons in vivo. PLoS One 2012 7 1 e29424 10.1371/journal.pone.0029424 22238611
    [Google Scholar]
  206. Zeng F. Wu Y. Li X. Ge X. Guo Q. Lou X. Cao Z. Hu B. Long N.J. Mao Y. Li C. Custom‐Made Ceria Nanoparticles Show a Neuroprotective Effect by Modulating Phenotypic Polarization of the Microglia. Angew. Chem. Int. Ed. 2018 57 20 5808 5812 10.1002/anie.201802309 29575461
    [Google Scholar]
  207. Kara G. Ozpolat B. SPIONs: Superparamagnetic iron oxide-based nanoparticles for the delivery of microRNAi-therapeutics in cancer. Biomed. Microdevices 2024 26 1 16 10.1007/s10544‑024‑00698‑y 38324228
    [Google Scholar]
  208. Luo S. Ma C. Zhu M.Q. Ju W.N. Yang Y. Wang X. Application of Iron Oxide Nanoparticles in the Diagnosis and Treatment of Neurodegenerative Diseases With Emphasis on Alzheimer’s Disease. Front. Cell. Neurosci. 2020 14 21 10.3389/fncel.2020.00021 32184709
    [Google Scholar]
  209. Lu Q.B. Sun J.F. Yang Q.Y. Cai W.W. Xia M.Q. Wu F.F. Gu N. Zhang Z.J. Magnetic brain stimulation using iron oxide nanoparticle-mediated selective treatment of the left prelimbic cortex as a novel strategy to rapidly improve depressive-like symptoms in mice. Zool. Res. 2020 41 4 381 394 10.24272/j.issn.2095‑8137.2020.076 32400977
    [Google Scholar]
  210. Chi Y. Wenwen C. Mengqin X. Jingyi D. Precise Implantation of Super-Paramagnetic Iron Oxide (SPIO) Nanoparticles in Hippocampus with External Rotating Magnetic Field (RMF). Produces Rapid Antidepressent Effects in Mice 2019
    [Google Scholar]
  211. Vinzant N. Scholl J.L. Wu C.M. Kindle T. Koodali R. Forster G.L. Iron Oxide Nanoparticle Delivery of Peptides to the Brain: Reversal of Anxiety during Drug Withdrawal. Front. Neurosci. 2017 11 608 10.3389/fnins.2017.00608 29163012
    [Google Scholar]
  212. Sanati M. Aminyavari S. Khodagholi F. Hajipour M.J. Sadeghi P. Noruzi M. Moshtagh A. Behmadi H. Sharifzadeh M. PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) ameliorate learning and memory deficit in a rat model of Alzheimer’s disease: Potential participation of STIMs. Neurotoxicology 2021 85 145 159 10.1016/j.neuro.2021.05.013 34058247
    [Google Scholar]
  213. Zhang J. Yang T. Huang W. Yu Y. Sun T. Applications of Gold Nanoparticles in Brain Diseases across the Blood-Brain Barrier. Curr. Med. Chem. 2022 29 39 6063 6083 10.2174/0929867329666220527121943 35638273
    [Google Scholar]
  214. Melendez O. Comparing and contrasting the use of nanoparticle-assisted drug-delivery of antidepressants to that of the gold standard. Journal of Student Research 2023 12 3 10.47611/jsr.v12i3.2025
    [Google Scholar]
  215. Teixeira M.I. Lopes C.M. Amaral M.H. Costa P.C. Silver Nanoparticles for the Management of Neurological Diseases. Silver Nanoparticles for Drug Delivery. Elsevier 2024 209 239 10.1016/B978‑0‑443‑15343‑3.00002‑4
    [Google Scholar]
  216. Ghaferi M. Koohi Moftakhari Esfahani M. Raza A. Al Harthi S. Ebrahimi Shahmabadi H. Alavi S.E. Mesoporous silica nanoparticles: synthesis methods and their therapeutic use-recent advances. J. Drug Target. 2021 29 2 131 154 10.1080/1061186X.2020.1812614 32815741
    [Google Scholar]
  217. Dadfar S.M. Roemhild K. Drude N.I. von Stillfried S. Knüchel R. Kiessling F. Lammers T. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv. Drug Deliv. Rev. 2019 138 302 325 10.1016/j.addr.2019.01.005 30639256
    [Google Scholar]
  218. Qaswal A.B. Lithium Stabilizes the Mood of Bipolar Patients by Depolarizing the Neuronal Membrane Via Quantum Tunneling through the Sodium Channels. Clin. Psychopharmacol. Neurosci. 2020 18 2 214 218 10.9758/cpn.2020.18.2.214 32329302
    [Google Scholar]
  219. Nayak R. Rosh I. Kustanovich I. Stern S. Mood Stabilizers in Psychiatric Disorders and Mechanisms Learnt from In Vitro Model Systems. Int. J. Mol. Sci. 2021 22 17 9315 10.3390/ijms22179315 34502224
    [Google Scholar]
  220. Badıllı U. Mollarasouli F. Bakirhan N.K. Ozkan Y. Ozkan S.A. Role of quantum dots in pharmaceutical and biomedical analysis, and its application in drug delivery. Trends Analyt. Chem. 2020 131 116013 10.1016/j.trac.2020.116013
    [Google Scholar]
  221. Jeyhoonabadi M. Alimoahmmadi S. Hassanpour S. Hashemnia M. Betaine Ameliorates Depressive-Like Behaviors in Zinc Oxide Nanoparticles Exposed Mice. Biol. Trace Elem. Res. 2022 200 11 4771 4781 10.1007/s12011‑021‑03068‑4 34993911
    [Google Scholar]
  222. Unnikrishnan G. Joy A. Megha M. Kolanthai E. Senthilkumar M. Exploration of inorganic nanoparticles for revolutionary drug delivery applications: a critical review. Discov. Nano 2023 18 1 157 10.1186/s11671‑023‑03943‑0 38112849
    [Google Scholar]
  223. Fahmy H.M. Aboalasaad F.A. Mohamed A.S. Elhusseiny F.A. Khadrawy Y.A. Elmekawy A. Evaluation of the Therapeutic Effect of Curcumin-Conjugated Zinc Oxide Nanoparticles on Reserpine-Induced Depression in Wistar Rats. Biol. Trace Elem. Res. 2024 202 6 2630 2644 10.1007/s12011‑023‑03849‑z 37713054
    [Google Scholar]
  224. Yang H.L. Bai L.F. Geng Z.R. Chen H. Xu L.T. Xie Y.C. Wang D.J. Gu H.W. Wang X.M. Carbon quantum dots: Preparation, optical properties, and biomedical applications. Mater. Today Adv. 2023 18 100376 10.1016/j.mtadv.2023.100376
    [Google Scholar]
  225. Bhakta P. Barthunia B. Fullerene and its applications: A review. J. Indian Acad. Oral Med. Radiol. 2020 32 2 159 10.4103/jiaomr.jiaomr_191_19
    [Google Scholar]
  226. Sajid M. Iram G. Nawaz A. Qayyum W. Farhan A. Qamar M.A. Nawaz H. Shahid A. Carbon-based nanomaterials: synthesis, types and fuel applications: a mini-review. Rev. Inorg. Chem. 2025 45 1 125 149 10.1515/revic‑2024‑0017
    [Google Scholar]
  227. Singh S. Chauhan V. Barik P. A Review on Carbon Nanotubes and its Biomedical Applications. Curr. Nanomater. 2025 10 1 12 21 10.2174/0124054615255751231009041021
    [Google Scholar]
  228. Patel H.P. Desai P.H. Patel R.V. Lodha S.R. Gore A.H. Patil P.O. Desai B.V. Desai D.T. Vyas B.A. Willcox M.D.P. Maulvi F.A. Clozapine-laden carbon dots delivered to the brain via an intranasal pathway: Synthesis, characterization, ex vivo, and in vivo studies. Colloids Surf. B Biointerfaces 2024 237 113862 10.1016/j.colsurfb.2024.113862 38518556
    [Google Scholar]
  229. Shilpi S. Gulbake A.S. Chouhan S. Kumar P. Functionalized carbon nanotubes, graphene oxide, fullerenes, and nanodiamonds: Emerging theranostic nanomedicines. Multifunctional and Targeted Theranostic Nanomedicines 2023 Springer Nature Singapore Singapore 187 213
    [Google Scholar]
  230. Pathak K. Ahmad M.Z. Saikia R. Pathak M.P. Sahariah J.J. Kalita P. Das A. Islam M.A. Pramanik P. Tayeng D. Abdel-Wahab B.A. Nanomedicine: A New Frontier in Alzheimer’s Disease Drug Targeting. Cent. Nerv. Syst. Agents Med. Chem. 2025 25 1 3 19 10.2174/0118715249281331240325042642 38551038
    [Google Scholar]
  231. Kurul F. Turkmen H. Cetin A.E. Topkaya S.N. Nanomedicine: How nanomaterials are transforming drug delivery, bio-imaging, and diagnosis. Next Nanotechnology 2025 7 100129 10.1016/j.nxnano.2024.100129
    [Google Scholar]
  232. Singh K. Singhal S. Pahwa S. Sethi V.A. Sharma S. Singh P. Kale R.D. Ali S.W. Sagadevan S. Nanomedicine and drug delivery: A comprehensive review of applications and challenges. 2024 40 101403 10.1016/j.nanoso.2024.101403
    [Google Scholar]
  233. Moreira R. Nóbrega C. de Almeida L.P. Mendonça L. Brain-targeted drug delivery - nanovesicles directed to specific brain cells by brain-targeting ligands. J. Nanobiotechnology 2024 22 1 260 10.1186/s12951‑024‑02511‑7 38760847
    [Google Scholar]
  234. Li B.K. Vaynshteyn J. Tylawsky D. Vogt K. Raziuddin R. Ge Y. Heller D.A. Becher O. Raju G.P. DIPG-89. Enhancement of blood-brain barrier penetration and tumor targeted drug delivery for DMG using a p-selectin targeted nanomedicine approach. Neuro Oncol 2024 26 0 0 10.1093/neuonc/noae064.142
    [Google Scholar]
  235. Rafati N. Zarepour A. Bigham A. Khosravi A. Naderi-Manesh H. Iravani S. Zarrabi A. Nanosystems for targeted drug Delivery: Innovations and challenges in overcoming the Blood-Brain barrier for neurodegenerative disease and cancer therapy. Int. J. Pharm. 2024 666 124800 10.1016/j.ijpharm.2024.124800 39374818
    [Google Scholar]
  236. Aslam M. Zulphakar M.A. Chandrule K.K. Targeting Drug Delivery System; From Magic Bullet to Nanomedicine. International Journal of Pharmaceutical Research and Applications 2024 09 868 876 10.35629/4494‑0906868876
    [Google Scholar]
  237. Pathak C. Vaidya F.U. Pandey S.M. Mechanism for Development of Nanobased Drug Delivery System. In: Applications of Targeted Nano Drugs and Delivery Systems. Elsevier 2019 35 67 10.1016/B978‑0‑12‑814029‑1.00003‑X
    [Google Scholar]
  238. Vinothini K. Rajan M. Mechanism for the Nano-Based Drug Delivery System. Characterization and Biology of Nanomaterials for Drug Delivery. Elsevier 2019 219 263 10.1016/B978‑0‑12‑814031‑4.00009‑X
    [Google Scholar]
  239. McLoughlin C.D. Nevins S. Stein J.B. Khakbiz M. Lee K.B. Overcoming the Blood–Brain Barrier: Multifunctional Nanomaterial‐Based Strategies for Targeted Drug Delivery in Neurological Disorders. Small Sci. 2024 4 12 2400232 10.1002/smsc.202400232 40213484
    [Google Scholar]
  240. Li S. Wang H. Shan Y. The Mechanism of Nano-drug Delivery. Curr. Pharmacol. Rep. 2019 5 6 410 420 10.1007/s40495‑019‑00205‑5
    [Google Scholar]
  241. Hou Z. Brenner J.S. Developing targeted antioxidant nanomedicines for ischemic penumbra: Novel strategies in treating brain ischemia-reperfusion injury. Redox Biol. 2024 73 103185 10.1016/j.redox.2024.103185 38759419
    [Google Scholar]
  242. Fateh S.T. Fateh S.T. Salehi-Najafabadi A. Aref A.R. Commercial and Regulatory Challenges in Cancer Nanomedicine. In: Functionalized Nanomaterials for Cancer Research. Elsevier 2024 579 601 10.1016/B978‑0‑443‑15518‑5.00009‑4
    [Google Scholar]
  243. Kamath A.P. Nayak P.G. John J. Mutalik S. Balaraman A.K. Krishnadas N. Revolutionizing neurotherapeutics: Nanocarriers unveiling the potential of phytochemicals in Alzheimer’s disease. Neuropharmacology 2024 259 110096 10.1016/j.neuropharm.2024.110096 39084596
    [Google Scholar]
  244. Inamdar A. Gurupadayya B. Halagali P. Tippavajhala V.K. Khan F. Pathak R. Sharma H. Unraveling Neurological Drug Delivery: Polymeric Nanocarriers for Enhanced Blood-Brain Barrier Penetration. Curr. Drug Targets 2025 26 4 243 266 10.2174/0113894501339455241101065040 39513304
    [Google Scholar]
  245. Ferreira R. Bernardino L. Nanotechnology for Intracellular Delivery and Targeting. Nanoengineered Biomaterials for Advanced Drug Delivery. Elsevier 2020 683 696 10.1016/B978‑0‑08‑102985‑5.00027‑9
    [Google Scholar]
  246. Sakurai H. Yonezawa K. Tani H. Mimura M. Bauer M. Uchida H. Novel Antidepressants in the Pipeline (Phase II and III): A Systematic Review of the US Clinical Trials Registry. Pharmacopsychiatry 2022 55 4 193 202 10.1055/a‑1714‑9097 35045580
    [Google Scholar]
  247. Yang J. Li H. Hao Z. Jing X. Zhao Y. Cheng X. Ma H. Wang J. Wang J. Mitigation Effects of Selenium Nanoparticles on Depression-Like Behavior Induced by Fluoride in Mice via the JAK2-STAT3 Pathway. ACS Appl. Mater. Interfaces 2022 14 3 3685 3700 10.1021/acsami.1c18417 35023338
    [Google Scholar]
  248. Tri B.D. Shashni B. Matsui H. Nagasaki Y. Designing poly(gamma-aminobutyric acid)-based nanoparticles for the treatment of major depressive disorders. J. Control. Release 2023 360 110 121 10.1016/j.jconrel.2023.06.021 37336293
    [Google Scholar]
  249. Liu L. Liu M. Xiu J. Zhang B. Hu H. Qiao M. Chen D. Zhang J. Zhao X. Stimuli-responsive nanoparticles delivered by a nasal-brain pathway alleviate depression-like behavior through extensively scavenging ROS. Acta Biomater. 2023 171 451 465 10.1016/j.actbio.2023.09.038 37778483
    [Google Scholar]
  250. Tan H. Cao K. Zhao Y. Zhong J. Deng D. Pan B. Zhang J. Zhang R. Wang Z. Chen T. Shi Y. Brain‐Targeted Black Phosphorus‐Based Nanotherapeutic Platform for Enhanced Hypericin Delivery in Depression. Small 2024 20 31 2310608 10.1002/smll.202310608 38461532
    [Google Scholar]
  251. Qin Q. Li M. Fan L. Zeng X. Zheng D. Wang H. Jiang Y. Ma X. Xing L. Wu L. Liang S. RVG engineered extracellular vesicles-transmitted miR-137 improves autism by modulating glucose metabolism and neuroinflammation. Mol. Psychiatry 2025 10.1038/s41380‑025‑02988‑0 40175518
    [Google Scholar]
  252. Ge K. Bai Z. Wang J. Li Z. Gao F. Liu S. Zhang L. Gao F. Xie C. Engineering EVs‐Mediated mRNA Delivery Regulates Microglia Function and Alleviates Depressive‐Like Behaviors. Adv. Mater. 2025 37 9 2418872 10.1002/adma.202418872 39838773
    [Google Scholar]
  253. Jiang C. Yang X. Huang Q. Lei T. Luo H. Wu D. Yang Z. Xu Y. Dou Y. Ma X. Gao H. Microglial‐Biomimetic Memantine‐Loaded Polydopamine Nanomedicines for Alleviating Depression. Adv. Mater. 2025 37 9 2417869 10.1002/adma.202417869 39838777
    [Google Scholar]
  254. Łukasiewicz S. Development of a New Polymeric Nanocarrier Dedicated to Controlled Clozapine Delivery at the Dopamine D2-Serotonin 5-HT1A Heteromers. Polymers (Basel) 2021 13 7 1000 10.3390/polym13071000 33805130
    [Google Scholar]
  255. Annu Baboota S. Ali J. In vitro appraisals and ex vivo permeation prospect of chitosan nanoparticles designed for schizophrenia to intensify nasal delivery. Polym. Bull. 2022 79 4 2263 2285 10.1007/s00289‑021‑03598‑w
    [Google Scholar]
  256. Elkasabgy N.A. Salama A. Salama A.H. Exploring the effect of intramuscularly injected polymer/lipid hybrid nanoparticles loaded with quetiapine fumarate on the behavioral and neurological changes in cuprizone-induced schizophrenia in mice. J. Drug Deliv. Sci. Technol. 2023 79 104064 10.1016/j.jddst.2022.104064
    [Google Scholar]
  257. Ajay Garg Tanniru Rajeswari J Pavan Kumar Chennnu MM Prasada Rao Ranjan Kumar Singh A comprehensive review on blood brain delivery methods using nanotechnology. Tropical Journal of Pharmaceutical and Life Sciences 2024 11 3 43 52 10.61280/tjpls.v11i3.162
    [Google Scholar]
  258. Sakamoto K. Iwata S. Jin Z. Chen L. Miyaoka T. Yamada M. Katahira K. Yokoyama R. Ono A. Asano S. Tanimoto K. Ishimura R. Nakagawa S. Hirokawa T. Ago Y. Miyako E. Cyclic Peptides KS-133 and KS-487 Multifunctionalized Nanoparticles Enable Efficient Brain Targeting for Treating Schizophrenia. JACS Au 2024 4 8 2811 2817 10.1021/jacsau.4c00311 39211592
    [Google Scholar]
  259. Lhaglham P. Jiramonai L. Liang X.J. Liu B. Li F. The development of paliperidone nanocrystals for the treatment of schizophrenia. Prog. Biomed. Eng. (Bristol) 2025 7 1 012002 10.1088/2516‑1091/ad8fe7 39655839
    [Google Scholar]
  260. Jin H.J. An J.M. Park J. Moon S.J. Hong S. “Chemical-pain sensor” based on nanovesicle–carbon nanotube hybrid structures. Biosens. Bioelectron. 2013 49 86 91 10.1016/j.bios.2013.04.045 23722046
    [Google Scholar]
  261. Fu T. Kong Q. Sheng H. Gao L. Value of Functionalized Superparamagnetic Iron Oxide Nanoparticles in the Diagnosis and Treatment of Acute Temporal Lobe Epilepsy on MRI. Neural Plast. 2016 2016 1 12 10.1155/2016/2412958 26925269
    [Google Scholar]
  262. Singh A.P. Biswas A. Shukla A. Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct. Target. Ther. 2019 4 1 33 10.1038/s41392‑019‑0068‑3 31637012
    [Google Scholar]
  263. Mehra V. Sarkar N. Biswal B. Kaushik M. Simulation of nanocarrier-based targeted delivery of an antidepressant for major depressive disorder. Mol. Simul. 2023 49 15 1465 1477 10.1080/08927022.2023.2241764
    [Google Scholar]
  264. Zou G.J. Chen Z.R. Wang X.Q. Cui Y.H. Li F. Li C.Q. Wang L.F. Huang F. Microglial activation in the medial prefrontal cortex after remote fear recall participates in the regulation of auditory fear extinction. Eur. J. Pharmacol. 2024 978 176759 10.1016/j.ejphar.2024.176759 38901527
    [Google Scholar]
  265. Chen J. Nanomedicine Modulation of Endothelial Low-Density Lipoprotein Receptor-Related Protein 1 at the Blood Brain Barrier for Alzheimer’s Disease Therapy. 2025
    [Google Scholar]
  266. Wang C.X. Nanomedicine: A New Approach for Treatment Neuropsychiatric Diseases. Adv. Mater. 2017 6 3 24 10.11648/j.am.20170603.12
    [Google Scholar]
  267. Fond G. Miot S. La nanopsychiatrie. Le rôle potentiel des nanotechnologies dans l’avenir de la psychiatrie. Une revue systématique. Encephale 2013 39 4 252 257 10.1016/j.encep.2013.02.002 23545476
    [Google Scholar]
  268. Miao C. Shen Y. Lang Y. Li H. Gong Y. Liu Y. Li H. Jones B.C. Chen F. Feng S. Biomimetic nanoparticles with enhanced rapamycin delivery for autism spectrum disorder treatment via autophagy activation and oxidative stress modulation. Theranostics 2024 14 11 4375 4392 10.7150/thno.95614 39113803
    [Google Scholar]
  269. Sawant N. Karade S. Suvarna V. Desai N. Pingale P. Neurological Disease Management with Nanoparticles. Nanocarrier Drug Delivery Systems. De Gruyter 2024 85 124 10.1515/9783111320847‑004
    [Google Scholar]
  270. Mohammadzadeh R. Fathi M. Pourseif M.M. Omidi Y. Farhang S. Barzegar Jalali M. Valizadeh H. Nakhlband A. Adibkia K. Curcumin and nano‐curcumin applications in psychiatric disorders. Phytother. Res. 2024 38 8 4240 4260 10.1002/ptr.8265 38965868
    [Google Scholar]
  271. Shah M.R. Recent Advancement of Nanomaterial in Diagnostic and Treatment of Neurological and Psychiatric Disorders. J. Pak. Psychiatr. Soc. 2022 19 3 10.63050/jpps.19.03.226
    [Google Scholar]
  272. Haswani A. Torremocha V. Lilova K. Nanotechnology for Neurological Disorders: Application of Nanotechnology in Diagnosing and Treating Neurodegenerative Diseases. Journal of Student Research 2024 13 2 10.47611/jsrhs.v13i2.6775
    [Google Scholar]
  273. Krsek A. Baticic L. Nanotechnology-Driven Therapeutic Innovations in Neurodegenerative Disorders: A Focus on Alzheimer’s and Parkinson’s Disease. Future Pharmacol. 2024 4 2 352 379 10.3390/futurepharmacol4020020
    [Google Scholar]
  274. Elmahboub Y.S.M. Elkordy A.A. Polymeric nanoparticles: A promising strategy for treatment of Alzheimer’s disease. J. Taibah Univ. Med. Sci. 2024 19 3 549 565 10.1016/j.jtumed.2024.04.004 38736898
    [Google Scholar]
  275. Gupta N. Rai D.B. Jangid A.K. Pooja D. Kulhari H. Nanomaterials-Based SiRNA Delivery: Routes of Administration, Hurdles and Role of Nanocarriers. Nanotechnology in Modern Animal Biotechnology. Singapore Springer Singapore 2019 67 114 10.1007/978‑981‑13‑6004‑6_3
    [Google Scholar]
  276. Zhang Q. O’Brien S. Grimm J. Biomedical Applications of Lanthanide Nanomaterials, for Imaging, Sensing and Therapy. Nanotheranostics 2022 6 2 184 194 10.7150/ntno.65530 34976593
    [Google Scholar]
  277. Shaikh A.C. Shah A.A. Gupta A. Nanocarriers: Promising vehicles for controlled bioactive drug delivery in current medical system. Medicinal Plants: Microbial Interactions, Molecular Techniques and Therapeutic Trends 2023 Bentham Science Publishers 311 335
    [Google Scholar]
  278. Hami Z. A Brief Review on Advantages of Nano-based Drug Delivery Systems. Annals of Military and Health Sciences Research 2021 19 1 10.5812/amh.112274
    [Google Scholar]
  279. Anwarkhan S. Koilpillai J. Narayanasamy D. Utilizing Multifaceted Approaches to Target Drug Delivery in the Brain: From Nanoparticles to Biological Therapies. Cureus 2024 16 9 e68419 10.7759/cureus.68419 39360065
    [Google Scholar]
  280. Wang J. Yu Y. Zhang C. Song J. Zheng Z. Yan W. New advances in diagnosis and treatment of nano drug delivery systems across the blood-brain barrier. Nanocomposites 2023 9 1 116 127 10.1080/20550324.2023.2256466
    [Google Scholar]
  281. Li Y. Shen Q. Feng L. Zhang C. Jiang X. Liu F. Pang B. A nanoscale natural drug delivery system for targeted drug delivery against ovarian cancer: action mechanism, application enlightenment and future potential. Front. Immunol. 2024 15 1427573 10.3389/fimmu.2024.1427573 39464892
    [Google Scholar]
  282. Ko J. Berger R. Lee H. Yoon H. Cho J. Char K. Electronic effects of nano-confinement in functional organic and inorganic materials for optoelectronics. Chem. Soc. Rev. 2021 50 5 3585 3628 10.1039/D0CS01501F 33514958
    [Google Scholar]
  283. Kajie K. Peng Z. Shimba K. Shibata T. Miyamoto Y. Yagi T. Control of drug release in ultrasound-responsive liposome-encapsulated gel patches. Proceedings of the 2023 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Jeju, Korea, 16 June 2023, pp. 1-5 10.1109/MeMeA57477.2023.10171928.
    [Google Scholar]
  284. Ekhator C. Qureshi M.Q. Zuberi A.W. Hussain M. Sangroula N. Yerra S. Devi M. Naseem M.A. Bellegarde S.B. Pendyala P.R. Advances and Opportunities in Nanoparticle Drug Delivery for Central Nervous System Disorders: A Review of Current Advances. Cureus 2023 15 8 e44302 10.7759/cureus.44302 37649926
    [Google Scholar]
  285. Yang C. Wang W. Xue L. Wang Y. Current status and prospects of nanosuspension for improved transdermal targeted drug delivery. J. Drug Deliv. Sci. Technol. 2024 97 105751 10.1016/j.jddst.2024.105751
    [Google Scholar]
  286. Ei Thu H. Hussain Z. Shuid A.N. New Insight in Improving Therapeutic Efficacy of Antipsychotic Agents: An Overview of Improved In Vitro and In Vivo Performance, Efficacy Upgradation and Future Prospects. Curr. Drug Targets 2018 19 8 865 876 10.2174/1389450117666161125174625 27894237
    [Google Scholar]
  287. Rassu G. Soddu E. Posadino A.M. Pintus G. Sarmento B. Giunchedi P. Gavini E. Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer’s therapy. Colloids Surf. B Biointerfaces 2017 152 296 301 10.1016/j.colsurfb.2017.01.031 28126681
    [Google Scholar]
  288. Saxena P. Varma J. Nanomedicine and Drug Delivery. 2024 34 49 10.4018/979‑8‑3693‑4439‑2.ch003
    [Google Scholar]
  289. Kumar A. Mansour H.M. Friedman A. Blough E.R. Nanomedicine in Drug Delivery. CRC Press 2013 10.1201/b14802
    [Google Scholar]
  290. Chauhan A. Mori D. Soniwala M. Prajapati B. Shah S. Neuro-Nanocarriers: Redefining Treatment Pathways for Brain Disorders. Bionanoscience 2025 15 1 78 10.1007/s12668‑024‑01730‑4
    [Google Scholar]
  291. Upadhyay R. Ghosh P. Desavathu M. Advancement in the Nose-to-Brain Drug delivery of FDA-approved drugs for the better management of Depression and Psychiatric disorders. Int. J. Pharm. 2024 667 Pt B 124866 10.1016/j.ijpharm.2024.124866 39486490
    [Google Scholar]
  292. Banks W.A. Rhea E.M. Reed M.J. Erickson M.A. The penetration of therapeutics across the blood-brain barrier: Classic case studies and clinical implications. Cell Rep. Med. 2024 5 11 101760 10.1016/j.xcrm.2024.101760 39383873
    [Google Scholar]
  293. Zha S. Liu H. Li H. Li H. Wong K.L. All A.H. Functionalized Nanomaterials Capable of Crossing the Blood–Brain Barrier. ACS Nano 2024 18 3 1820 1845 10.1021/acsnano.3c10674 38193927
    [Google Scholar]
  294. Sultana A. Zare M. Thomas V. Kumar T.S.S. Ramakrishna S. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects. Med. Drug Discov. 2022 15 100134 10.1016/j.medidd.2022.100134
    [Google Scholar]
  295. Srinivasan S. Elumalai K. The new frontier of drug delivery through nanotechnology. Intelligent Pharmacy 2023 1 4 169 174 10.1016/j.ipha.2023.08.002
    [Google Scholar]
  296. Hassanzadeh-khanmiri M. Moshari A. Kheradmand R. Haghgouei T. Homaei M. Charsouei S. Mobed A. Nanomedicine: a cost-effective and powerful platform for managing neurodegenerative diseases. Metab. Brain Dis. 2025 40 3 142 10.1007/s11011‑025‑01564‑3 40067468
    [Google Scholar]
  297. Yao Y. Guo D. Lu T.S. Liu F.L. Huang S.H. Diao M.Q. Li S.X. Zhang X.J. Kosten T.R. Shi J. Bao Y.P. Lu L. Han Y. Efficacy and safety of psychedelics for the treatment of mental disorders: A systematic review and meta-analysis. Psychiatry Res. 2024 335 115886 10.1016/j.psychres.2024.115886 38574699
    [Google Scholar]
  298. Hahn M. Roll S.C. The relevance of long-acting injectables in the treatment of schizophrenia. Lancet Psychiatry 2023 10 3 159 160 10.1016/S2215‑0366(23)00033‑0 36716760
    [Google Scholar]
  299. Khan K.U. Minhas M.U. Badshah S.F. Suhail M. Ahmad A. Ijaz S. Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci. 2022 291 120301 10.1016/j.lfs.2022.120301 34999114
    [Google Scholar]
  300. Rahman A. Haider M.F. Solubility of Drugs, Their Enhancement, Factors Affecting and Their Limitations: A Review. Int. J. Pharm. Sci. Rev. Res. 2023 79 2 10.47583/ijpsrr.2023.v79i02.014
    [Google Scholar]
  301. Liu Q. Zou J. Chen Z. He W. Wu W. Current research trends of nanomedicines. Acta Pharm. Sin. B 2023 13 11 4391 4416 10.1016/j.apsb.2023.05.018 37969727
    [Google Scholar]
  302. Ji Y. Wang Y. Wang X. Lv C. Zhou Q. Jiang G. Yan B. Chen L. Beyond the promise: Exploring the complex interactions of nanoparticles within biological systems. J. Hazard. Mater. 2024 468 133800 10.1016/j.jhazmat.2024.133800 38368688
    [Google Scholar]
  303. Balog S. de Almeida M.S. Taladriz-Blanco P. Rothen-Rutishauser B. Petri-Fink A. Does the surface charge of the nanoparticles drive nanoparticle–cell membrane interactions? Curr. Opin. Biotechnol. 2024 87 103128 10.1016/j.copbio.2024.103128 38581743
    [Google Scholar]
  304. De Jong W.H. Geertsma R.E. Borchard G. Regulatory safety evaluation of nanomedical products: key issues to refine. Drug Deliv. Transl. Res. 2022 12 9 2042 2047 10.1007/s13346‑022‑01208‑4 35908133
    [Google Scholar]
  305. Havelikar U. Ghorpade K.B. Kumar A. Patel A. Singh M. Banjare N. Gupta P.N. Comprehensive insights into mechanism of nanotoxicity, assessment methods and regulatory challenges of nanomedicines. Discov. Nano 2024 19 1 165 10.1186/s11671‑024‑04118‑1 39365367
    [Google Scholar]
  306. Zhang C. Yan L. Wang X. Zhu S. Chen C. Gu Z. Zhao Y. Progress, challenges, and future of nanomedicine. Nano Today 2020 35 101008 10.1016/j.nantod.2020.101008
    [Google Scholar]
  307. Bi Y. Xie S. Li Z. Dong S. Teng L. Precise nanoscale fabrication technologies, the “last mile” of medicinal development. Acta Pharm. Sin. B 2025 15 5 2372 2401 10.1016/j.apsb.2025.03.040 40487646
    [Google Scholar]
  308. Soares S. Sousa J. Pais A. Vitorino C. Nanomedicine: Principles, Properties, and Regulatory Issues. Front Chem. 2018 6 360 10.3389/fchem.2018.00360 30177965
    [Google Scholar]
  309. Oladipo A.O. Lebelo S.L. Msagati T.A.M. Nanocarrier design–function relationship: The prodigious role of properties in regulating biocompatibility for drug delivery applications. Chem. Biol. Interact. 2023 377 110466 10.1016/j.cbi.2023.110466 37004951
    [Google Scholar]
  310. Kakad S. Kshirsagar S. Sonar A. Pawar M. Pingale P. Chapter 1 Nanocarrier drug delivery system: Recent advancement and future potential. Nanocarrier Drug Delivery Systems 2024 De Gruyter 1 30
    [Google Scholar]
  311. Kumar R. Chhikara B.S. Gulia K. Chhillar M. Review of nanotheranostics for molecular mechanisms underlying psychiatric disorders and commensurate nanotherapeutics for neuropsychiatry: The mind knockout. Nanotheranostics 2021 5 3 288 308 10.7150/ntno.49619 33732601
    [Google Scholar]
  312. Sohail S. Fakhar-Ud-Din Nanotheranostics: The future remedy of neurological disorders. Cancer Nanotheranostics 2021 Nanotechnology in the Life Sciences Springer Cham 10.1007/978‑3‑030‑76263‑6_5
    [Google Scholar]
  313. Reddy B.N. Saravanan S. Manjunath V. Reddy P.R.S. Review on Next-Gen Healthcare: The Role of MEMS and Nanomaterials in Enhancing Diagnostic and Therapeutic Outcomes. Biomaterials Connect 2024 1 1 1 10.69709/BIOMATC.2024.131006
    [Google Scholar]
  314. Patra J.K. Das G. Fraceto L F.; Campos, E.V.R.; Rodriguez- Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems recent developments and future prospects. J. Nanobiotechnology 2018 ••• 16 10.1186/s12951‑018‑0392‑8
    [Google Scholar]
  315. Zagórska A. Czopek A. Fryc M. Jaromin A. Boyd B.J. Drug Discovery and Development Targeting Dementia. Pharmaceuticals (Basel) 2023 16 2 151 10.3390/ph16020151 37259302
    [Google Scholar]
  316. Curcumin as a Novel Treatment to Improve Cognitive Dysfunction in Schizophrenia. Washinton 2019
    [Google Scholar]
  317. Binyamin O. Nitzan K. Frid K. Ungar Y. Rosenmann H. Gabizon R. Brain targeting of 9c,11t-conjugated linoleic acid, a natural calpain inhibitor, preserves memory and reduces Aβ and P25 accumulation in 5XFAD mice. Sci. Rep. 2019 9 18437 10.1038/s41598‑019‑54971‑9
    [Google Scholar]
  318. Distribuidora B.S. de C. Impact of NANO-PSO on Cognition in Older Adults with Mild to Moderate Cognitive Impairment COGMEG5). ClinicalTrials.gov ID NCT06520878 2024
    [Google Scholar]
  319. Christopher Hill Citruslabs An Exploratory Investigation of a Supplement to Enhance Sleep Quality and Quantity. ClinicalTrials. gov NCT05521243 2022
    [Google Scholar]
  320. Aphios Exploratory Dose Ranging Study Assessing APH-1501 for the Treatment of Opioid Addiction Phase 2a. ClinicalTrials.gov NCT03813095 2023
    [Google Scholar]
  321. Distribuidora B.S. de C. Neuroprotective Effect of (Nano PSO), in Patients Who Used to Consume Psychoactive Substances. ClinicalTrials. gov NCT06550167 2024
    [Google Scholar]
  322. Al-Thani A.N. Jan A.G. Abbas M. Geetha M. Sadasivuni K.K. Nanoparticles in cancer theragnostic and drug delivery: A comprehensive review. Life Sci. 2024 352 122899 10.1016/j.lfs.2024.122899
    [Google Scholar]
  323. Chen Q. Du Y. Zhang K. Tau-Targeted Multifunctional Nanocomposite for Combinational Therapy of Alzheimer’s Disease. ACS Nano 2018 12 2 1321 1338 10.1021/acsnano.7b07625 29364648
    [Google Scholar]
  324. Puri S. Mazza M. Roy G. Evolution of nanomedicine formulations for targeted delivery and controlled release. Adv. Drug Deliv. Rev. 2023 200 114962 10.1016/j.addr.2023.114962 37321376
    [Google Scholar]
  325. Karthikeyan L. Sobhana S. Yasothamani V. Gowsalya K. Vivek R. Multifunctional theranostic nanomedicines for cancer treatment: Recent progress and challenges. Biomed Eng Adv 2023 5 100082 10.1016/j.bea.2023.100082
    [Google Scholar]
  326. Verginadis I.I. Citrin D.E. Ky B. ; Feigenberg, S.J.; Georgakilas, A.G.; Hill-Kayser, C.E.; Koumenis, C.; Maity, A.; Bradley, J.D.; Lin, A, Radiotherapy Toxicities: Mechanisms, Management, and Future Directions. The Lancet 2025 405 338 352 10.1016/S0140‑6736(24)02319‑5
    [Google Scholar]
  327. Siafaka P.I. Okur N.Ü. Karantas I.D. Okur M.E. Gündoğdu E.A. Current Update on Nanoplatforms as Therapeutic and Diagnostic Tools: A Review for the Materials Used as Nanotheranostics and Imaging Modalities. Asian J Pharm Sci 2021 16 24 46 10.1016/j.ajps.2020.03.003
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273384176250929130818
Loading
/content/journals/cnsnddt/10.2174/0118715273384176250929130818
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test