Skip to content
2000
image of Autophagy and Neuropsychiatric Disorders: Unraveling Molecular Mechanisms and Signaling Pathways

Abstract

Autophagy is a catabolic process that helps maintain cellular homeostasis by degrading damaged proteins and organelles while recycling essential biomolecules. Neuropsychiatric disorders, such as schizophrenia, bipolar disorder, major depressive disorder, and substance use disorders, have been linked to autophagy dysregulation. In this manuscript, we review the complex role of autophagy in the neurobiology of these disorders, encompassing neuronal function, neurodevelopment, and neuroplasticity. The molecular mechanisms by which autophagy dysregulation contributes to the manifestation and progression of neuropsychiatric diseases, including those related to autophagy genes and pathways, are also discussed. Additionally, potential entry points for autophagy-targeted therapy in these disorders, such as modulating mTOR and combining autophagy modulators with existing treatments, are also explored. We also specifically examine the neuroprotective effects of lithium, a mood stabilizer, through its influence on autophagy pathways. Overall, understanding the intricate relationship between autophagy and neuropsychiatric disorders provides new avenues for developing new treatments for these devastating conditions.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273384110250915073216
2025-10-09
2025-11-13
Loading full text...

Full text loading...

/deliver/fulltext/cnsnddt/10.2174/0118715273384110250915073216/BMS-CNSNDDT-2025-13.html?itemId=/content/journals/cnsnddt/10.2174/0118715273384110250915073216&mimeType=html&fmt=ahah

References

  1. Füllgrabe J. Ghislat G. Cho D.H. Rubinsztein D.C. Transcriptional regulation of mammalian autophagy at a glance. J. Cell Sci. 2016 129 16 3059 3066 10.1242/jcs.188920 27528206
    [Google Scholar]
  2. Towers C.G. Thorburn A. Therapeutic targeting of autophagy. EBioMedicine 2016 14 15 23 10.1016/j.ebiom.2016.10.034 28029600
    [Google Scholar]
  3. Cooper K.F. Till death Do Us part: The marriage of autophagy and apoptosis. Oxid. Med. Cell. Longev. 2018 2018 1 4701275 10.1155/2018/4701275 29854084
    [Google Scholar]
  4. Hsu P. Shi Y. Regulation of autophagy by mitochondrial phospholipids in health and diseases. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2017 1862 1 114 129 10.1016/j.bbalip.2016.08.003 27502688
    [Google Scholar]
  5. Banerjee R. Beal M.F. Thomas B. Autophagy in neurodegenerative disorders: Pathogenic roles and therapeutic implications. Trends Neurosci. 2010 33 12 541 549 10.1016/j.tins.2010.09.001 20947179
    [Google Scholar]
  6. Yang Z. Goronzy J.J. Weyand C.M. Autophagy in autoimmune disease. J. Mol. Med. (Berl.) 2015 93 7 707 717 10.1007/s00109‑015‑1297‑8 26054920
    [Google Scholar]
  7. Pleet M.L. Branscome H. DeMarino C. Autophagy, EVs, and infections: A perfect question for a perfect time. Front. Cell. Infect. Microbiol. 2018 8 362 10.3389/fcimb.2018.00362 30406039
    [Google Scholar]
  8. Yun C.W. Lee S.H. The roles of autophagy in cancer. Int. J. Mol. Sci. 2018 19 11 3466 10.3390/ijms19113466 30400561
    [Google Scholar]
  9. Pierone B.C. Pereira C.A. Garcez M.L. Kaster M.P. Stress and signaling pathways regulating autophagy: From behavioral models to psychiatric disorders. Exp. Neurol. 2020 334 113485 10.1016/j.expneurol.2020.113485 32987001
    [Google Scholar]
  10. Li Y.Y. Qin Z.H. Sheng R. The multiple roles of autophagy in neural function and diseases. Neurosci. Bull. 2024 40 3 363 382 10.1007/s12264‑023‑01120‑y 37856037
    [Google Scholar]
  11. Douglas P.M. Dillin A. Protein homeostasis and aging in neurodegeneration. J. Cell Biol. 2010 190 5 719 729 10.1083/jcb.201005144 20819932
    [Google Scholar]
  12. Tomoda T. Yang K. Sawa A. Neuronal autophagy in synaptic functions and psychiatric disorders. Biol. Psychiatry 2020 87 9 787 796 10.1016/j.biopsych.2019.07.018 31542152
    [Google Scholar]
  13. Polajnar M. ژerovnik E. Impaired autophagy: A link between neurodegenerative and neuropsychiatric diseases. J. Cell. Mol. Med. 2014 18 9 1705 1711 10.1111/jcmm.12349 25139375
    [Google Scholar]
  14. Bar-Yosef T. Damri O. Agam G. Dual role of autophagy in diseases of the central nervous system. Front. Cell. Neurosci. 2019 13 196 10.3389/fncel.2019.00196 31191249
    [Google Scholar]
  15. Mukhopadhyay S. Autophagy and apoptosis: Where do they meet? Apoptosis 2014 19 4 555 566 10.1007/s10495‑014‑0967‑2
    [Google Scholar]
  16. Galluzzi L. Bravo-San Pedro J.M. Blomgren K. Kroemer G. Autophagy in acute brain injury. Nat. Rev. Neurosci. 2016 17 8 467 484 10.1038/nrn.2016.51 27256553
    [Google Scholar]
  17. Peker N. Gozuacik D. Autophagy as a Cellular Stress Response Mechanism in the Nervous System. J. Mol. Biol. 2020 432 8 2560 2588 10.1016/j.jmb.2020.01.017 31962122
    [Google Scholar]
  18. Stavoe A.K.H. Kargbo-Hill S.E. Hall D.H. Colَn-Ramos DA. KIF1A/UNC-104 transports atg-9 to regulate neurodevelopment and autophagy at synapses. Dev. Cell 2016 38 2 171 185 10.1016/j.devcel.2016.06.012 27396362
    [Google Scholar]
  19. Maday S. Holzbaur E.L.F. Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway. Dev. Cell 2014 30 1 71 85 10.1016/j.devcel.2014.06.001 25026034
    [Google Scholar]
  20. Ban B.K. Jun M.H. Ryu H.H. Jang D.J. Ahmad S.T. Lee J.A. Autophagy negatively regulates early axon growth in cortical neurons. Mol. Cell. Biol. 2013 33 19 3907 3919 10.1128/MCB.00627‑13 23918799
    [Google Scholar]
  21. Ye J. Tong Y. Lv J. Rare mutations in the autophagy‐regulating gene AMBRA1 contribute to human neural tube defects. Hum. Mutat. 2020 41 8 1383 1393 10.1002/humu.24028 32333458
    [Google Scholar]
  22. Kannan M. Bayam E. Wagner C. WD40-repeat 47, a microtubule-associated protein, is essential for brain development and autophagy. Proc. Natl. Acad. Sci. USA 2017 114 44 E9308 E9317 10.1073/pnas.1713625114 29078390
    [Google Scholar]
  23. Dragich J.M. Kuwajima T. Hirose-Ikeda M. Autophagy linked FYVE (Alfy/WDFY3) is required for establishing neuronal connectivity in the mammalian brain. eLife 2016 5 14810 10.7554/eLife.14810 27648578
    [Google Scholar]
  24. Tang G. Gudsnuk K. Kuo S.H. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 2014 83 5 1131 1143 10.1016/j.neuron.2014.07.040 25155956
    [Google Scholar]
  25. Shen W. Ganetzky B. Autophagy promotes synapse development in Drosophila. J. Cell Biol. 2009 187 1 71 79 10.1083/jcb.200907109 19786572
    [Google Scholar]
  26. Lüscher C. Malenka R.C. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb. Perspect. Biol. 2012 4 6 a005710 10.1101/cshperspect.a005710 22510460
    [Google Scholar]
  27. Liang C.C. Wang C. Peng X. Gan B. Guan J.L. Neural-specific deletion of FIP200 leads to cerebellar degeneration caused by increased neuronal death and axon degeneration. J. Biol. Chem. 2010 285 5 3499 3509 10.1074/jbc.M109.072389 19940130
    [Google Scholar]
  28. Valencia M. Kim S.R. Jang Y. Lee S.H. Neuronal autophagy: Characteristic features and roles in neuronal pathophysiology. Biomol. Ther. (Seoul) 2021 29 6 605 614 10.4062/biomolther.2021.012 33875624
    [Google Scholar]
  29. Wu X. Fleming A. Ricketts T. Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis. Nat. Commun. 2016 7 1 10533 10.1038/ncomms10533 26837467
    [Google Scholar]
  30. Sato S. Uchihara T. Fukuda T. Loss of autophagy in dopaminergic neurons causes Lewy pathology and motor dysfunction in aged mice. Sci. Rep. 2018 8 1 2813 10.1038/s41598‑018‑21325‑w 29434298
    [Google Scholar]
  31. Moisoi N. Fedele V. Edwards J. Martins L.M. Loss of PINK1 enhances neurodegeneration in a mouse model of Parkinson’s disease triggered by mitochondrial stress. Neuropharmacology 2014 77 350 357 10.1016/j.neuropharm.2013.10.009 24161480
    [Google Scholar]
  32. Hassanpour M. Hajihassani F. Hiradfar A. Real-state of autophagy signaling pathway in neurodegenerative disease; focus on multiple sclerosis. J. Inflamm. 2020 17 1 6 10.1186/s12950‑020‑0237‑8 32082082
    [Google Scholar]
  33. Yazdankhah M. Farioli-Vecchioli S. Tonchev A.B. Stoykova A. Cecconi F. The autophagy regulators Ambra1 and Beclin 1 are required for adult neurogenesis in the brain subventricular zone. Cell Death Dis. 2014 5 9 1403 10.1038/cddis.2014.358 25188513
    [Google Scholar]
  34. Vega-Rubيn-de-Celis S. The role of beclin 1-dependent autophagy in cancer. Biology 2019 9 1 4 10.3390/biology9010004 31877888
    [Google Scholar]
  35. Choi S. Houdek X. Anderson R.A. Phosphoinositide 3-kinase pathways and autophagy require phosphatidylinositol phosphate kinases. Adv. Biol. Regul. 2018 68 31 38 10.1016/j.jbior.2018.02.003 29472147
    [Google Scholar]
  36. Plaza-Zabala A. Sierra-Torre V. Sierra A. Autophagy and microglia: Novel partners in neurodegeneration and aging. Int. J. Mol. Sci. 2017 18 3 598 10.3390/ijms18030598 28282924
    [Google Scholar]
  37. Zubova S.G. Suvorova I.I. Karpenko M.N. Macrophage and microglia polarization: Focus on autophagy-dependent reprogramming. Front. Biosci. 2022 14 1 3 10.31083/j.fbs1401003 35320914
    [Google Scholar]
  38. Sliter D.A. Martinez J. Hao L. Parkin and PINK1 mitigate STING-induced inflammation. Nature 2018 561 7722 258 262 10.1038/s41586‑018‑0448‑9 30135585
    [Google Scholar]
  39. Wani A. Al Rihani S.B. Sharma A. Crocetin promotes clearance of amyloid-β by inducing autophagy via the STK11/LKB1-mediated AMPK pathway. Autophagy 2021 17 11 3813 3832 10.1080/15548627.2021.1872187 33404280
    [Google Scholar]
  40. Wang S. Li B. Qiao H. Autophagy‐related gene Atg5 is essential for astrocyte differentiation in the developing mouse cortex. EMBO Rep. 2014 15 10 1053 1061 10.15252/embr.201338343 25227738
    [Google Scholar]
  41. Wang J.L. Wang J.J. Cai Z.N. Xu C.J. The effect of curcumin on the differentiation, apoptosis and cell cycle of neural stem cells is mediated through inhibiting autophagy by the modulation of Atg7 and p62. Int. J. Mol. Med. 2018 42 5 2481 2488 10.3892/ijmm.2018.3847 30226560
    [Google Scholar]
  42. Glatigny M. Moriceau S. Rivagorda M. Autophagy is required for memory formation and reverses age-related memory decline. Curr. Biol. 2019 29 3 435 448.e8 10.1016/j.cub.2018.12.021 30661803
    [Google Scholar]
  43. Wang M.M. Feng Y.S. Yang S.D. The relationship between autophagy and brain plasticity in neurological diseases. Front. Cell. Neurosci. 2019 13 228 10.3389/fncel.2019.00228 31244604
    [Google Scholar]
  44. Zhu Q. The ER stress-autophagy axis: Implications for cognitive dysfunction in diabetes mellitus. Clin. Sci. 2020 134 11 1255 1258 10.1042/CS20200235 32501495
    [Google Scholar]
  45. Gupta V.K. Scheunemann L. Eisenberg T. Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nat. Neurosci. 2013 16 10 1453 1460 10.1038/nn.3512 23995066
    [Google Scholar]
  46. Hwang J.Y. Gertner M. Pontarelli F. Global ischemia induces lysosomal-mediated degradation of mTOR and activation of autophagy in hippocampal neurons destined to die. Cell Death Differ. 2017 24 2 317 329 10.1038/cdd.2016.140 27935582
    [Google Scholar]
  47. Bockaert J. Marin P. mTOR in brain physiology and pathologies. Physiol. Rev. 2015 95 4 1157 1187 10.1152/physrev.00038.2014 26269525
    [Google Scholar]
  48. Zhao Y.G. Sun L. Miao G. The autophagy gene Wdr45/Wipi4 regulates learning and memory function and axonal homeostasis. Autophagy 2015 11 6 881 890 10.1080/15548627.2015.1047127 26000824
    [Google Scholar]
  49. Lipinski M.M. Zheng B. Lu T. Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2010 107 32 14164 14169 10.1073/pnas.1009485107 20660724
    [Google Scholar]
  50. Guo M.L. Buch S. Neuroinflammation & pre-mature aging in the context of chronic HIV infection and drug abuse: Role of dysregulated autophagy. Brain Res. 2019 1724 146446 10.1016/j.brainres.2019.146446 31521638
    [Google Scholar]
  51. Patel KR Cherian J Gohil K Atkinson D Schizophrenia:Overview and treatment options 2014 39 (9) 638 45 25210417
  52. Correll C.U. Schooler N.R. Negative Symptoms in Schizophrenia: A Review and Clinical Guide for Recognition, Assessment, and Treatment. Neuropsychiatr. Dis. Treat. 2020 16 519 534 10.2147/NDT.S225643 32110026
    [Google Scholar]
  53. Rector N.A. Stolar N. Grant P. Schizophrenia: Cognitive theory, research, and therapy. New York Guilford Press 2011
    [Google Scholar]
  54. Klauser P. Baker S.T. Cropley V.L. White matter disruptions in schizophrenia are spatially widespread and topologically converge on brain network hubs. Schizophr. Bull. 2017 43 2 425 435 27535082
    [Google Scholar]
  55. Cetin-Karayumak S. Di Biase M.A. Chunga N. White matter abnormalities across the lifespan of schizophrenia: A harmonized multi-site diffusion MRI study. Mol. Psychiatry 2020 25 12 3208 3219 10.1038/s41380‑019‑0509‑y 31511636
    [Google Scholar]
  56. Schneider J.L. Miller A.M. Woesner M.E. Autophagy and schizophrenia: A closer look at how dysregulation of neuronal cell homeostasis influences the pathogenesis of schizophrenia. Einstein J. Biol. Med. 2016 31 1-2 34 39 28239307
    [Google Scholar]
  57. Sragovich S. Merenlender-Wagner A. Gozes I. ADNP plays a key role in autophagy: From autism to schizophrenia and alzheimer’s disease. BioEssays 2017 39 11 1700054 10.1002/bies.201700054 28940660
    [Google Scholar]
  58. Panda S.P. Singh V. The dysregulated MAD in mad: A neuro-theranostic approach through the induction of autophagic biomarkers LC3B-II and ATG. Mol. Neurobiol. 2023 60 9 5214 5236 10.1007/s12035‑023‑03402‑y 37273153
    [Google Scholar]
  59. Barnes M.R. Huxley-Jones J. Maycox P.R. Transcription and pathway analysis of the superior temporal cortex and anterior prefrontal cortex in schizophrenia. J. Neurosci. Res. 2011 89 8 1218 1227 10.1002/jnr.22647 21538462
    [Google Scholar]
  60. Horesh Y. Katsel P. Haroutunian V. Domany E. Gene expression signature is shared by patients with Alzheimer’s disease and schizophrenia at the superior temporal gyrus. Eur. J. Neurol. 2011 18 3 410 424 10.1111/j.1468‑1331.2010.03166.x 20695885
    [Google Scholar]
  61. Cuenod M. Steullet P. Cabungcal J.H. Caught in vicious circles: A perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Mol. Psychiatry 2022 27 4 1886 1897 10.1038/s41380‑021‑01374‑w 34759358
    [Google Scholar]
  62. Tan Y. Zhu J. Hashimoto K. Autophagy-related gene model as a novel risk factor for schizophrenia. Transl. Psychiatry 2024 14 1 94 10.1038/s41398‑024‑02767‑5 38351068
    [Google Scholar]
  63. Kuijpers M. Neuronal autophagy regulates presynaptic neurotransmission by controlling the axonal endoplasmic reticulum. Neuron 2021 109 2 299 313.e9 10.1016/j.neuron.2020.10.005
    [Google Scholar]
  64. Deretic V. Autophagy in inflammation, infection, and immunometabolism. Immunity 2021 54 3 437 453 10.1016/j.immuni.2021.01.018 33691134
    [Google Scholar]
  65. Demeter A. Romero-Mulero M.C. Csabai L. ULK1 and ULK2 are less redundant than previously thought: Computational analysis uncovers distinct regulation and functions of these autophagy induction proteins. Sci. Rep. 2020 10 1 10940 10.1038/s41598‑020‑67780‑2 32616830
    [Google Scholar]
  66. Nishimura T. Tooze S.A. Emerging roles of ATG proteins and membrane lipids in autophagosome formation. Cell Discov. 2020 6 1 32 10.1038/s41421‑020‑0161‑3 32509328
    [Google Scholar]
  67. Kroemer G. Mariٌo G, Levine B. Autophagy and the integrated stress response. Mol. Cell 2010 40 2 280 293 10.1016/j.molcel.2010.09.023 20965422
    [Google Scholar]
  68. Merenlender-Wagner A. Malishkevich A. Shemer Z. Autophagy has a key role in the pathophysiology of schizophrenia. Mol. Psychiatry 2015 20 1 126 132 10.1038/mp.2013.174 24365867
    [Google Scholar]
  69. Kang R. Zeh H.J. Lotze M.T. Tang D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 2011 18 4 571 580 10.1038/cdd.2010.191 21311563
    [Google Scholar]
  70. Bjornson K.J. Vanderplow A.M. Bhasker A.I. Cahill M.E. Increased regional activity of a pro-autophagy pathway in schizophrenia as a contributor to sex differences in the disease pathology. Cell Rep. Med. 2024 5 7 101652 10.1016/j.xcrm.2024.101652 39019008
    [Google Scholar]
  71. Cui F. Gu S. Gu Y. Yin J. Fang C. Liu L. Alteration in the mRNA expression profile of the autophagy-related mTOR pathway in schizophrenia patients treated with olanzapine. BMC Psychiatry 2021 21 1 388 10.1186/s12888‑021‑03394‑w 34348681
    [Google Scholar]
  72. a Song C. Wang X-N. Yan L. Wang H-Y. Wang C-H. The interaction between autophagy and inflammation in Schizophrenia: Insight into mTOR-PI3K/Akt pathways and glial phenotype expression. J Affect Disord Rep 2023 12 100567 10.1016/j.jadr.2023.100567
    [Google Scholar]
  73. b Boushehri Y.G. Meymanatabadi Z. Tanha A.E. Azami P. Alaei M. Alamdari A.A. Momtazi H. Moezzi N.D. Habibzadeh A. Khanmohammadi S. Association of triglyceride glucose-body mass index (TyG-BMI) with metabolic dysfunction-associated steatotic liver disease: A systematic review and meta-analysis. PLoS One 2025 20 8 e0324483 10.1371/journal.pone.0324483
    [Google Scholar]
  74. Chadha R. Meador-Woodruff J.H. Downregulated AKT-mTOR signaling pathway proteins in dorsolateral prefrontal cortex in Schizophrenia. Neuropsychopharmacology 2020 45 6 1059 1067 10.1038/s41386‑020‑0614‑2 31952070
    [Google Scholar]
  75. Kim P. Dysregulated neuronal autophagy pathway in dorsolateral prefrontal cortex of elderly schizophrenia patients. Res Square 2022 10.21203/rs.3.rs‑1896079/v1
    [Google Scholar]
  76. Rietschel M. Mattheisen M. Degenhardt F. Association between genetic variation in a region on chromosome 11 and schizophrenia in large samples from Europe. Mol. Psychiatry 2012 17 9 906 917 10.1038/mp.2011.80 21747397
    [Google Scholar]
  77. Cianfanelli V. Nazio F. Cecconi F. Connecting autophagy: AMBRA1 and its network of regulation. Mol. Cell. Oncol. 2015 2 1 970059 10.4161/23723548.2014.970059 27308402
    [Google Scholar]
  78. Uranova N. Orlovskaya D. Vikhreva O. Electron microscopy of oligodendroglia in severe mental illness. Brain Res. Bull. 2001 55 5 597 610 10.1016/S0361‑9230(01)00528‑7 11576756
    [Google Scholar]
  79. Uranova N.A. Vostrikov V.M. Orlovskaya D.D. Rachmanova V.I. Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: A study from the Stanley Neuropathology Consortium. Schizophr. Res. 2004 67 2-3 269 275 10.1016/S0920‑9964(03)00181‑6 14984887
    [Google Scholar]
  80. Wang Z.T. Lu M.H. Zhang Y. Disrupted‐in‐schizophrenia‐1 protects synaptic plasticity in a transgenic mouse model of Alzheimer’s disease as a mitophagy receptor. Aging Cell 2019 18 1 12860 10.1111/acel.12860 30488644
    [Google Scholar]
  81. Uranova N.A. Vikhreva O.V. Rakhmanova V.I. Orlovskaya D.D. Dystrophy of oligodendrocytes and adjacent microglia in prefrontal gray matter in schizophrenia. Front. Psychiatry 2020 11 204 10.3389/fpsyt.2020.00204 32292358
    [Google Scholar]
  82. Bernstein H.G. Keilhoff G. Dobrowolny H. Steiner J. Enhanced mitochondrial autophagy (mitophagy) in oligodendrocytes might play a role in white matter pathology in schizophrenia. Med. Hypotheses 2020 134 109443 10.1016/j.mehy.2019.109443 31644973
    [Google Scholar]
  83. Wang J. Li M. Zhang J. Gao Q. Ding Z. Sun J. Paliperidone alleviates MK-801-induced damage to prefrontal cortical neurons via the PP2A/PTEN pathway. J. Affect. Disord. 2022 317 265 277 10.1016/j.jad.2022.08.071 36031001
    [Google Scholar]
  84. Hong S. Yi J.H. Lee S. Defective neurogenesis and schizophrenia-like behavior in PARP-1-deficient mice. Cell Death Dis. 2019 10 12 943 10.1038/s41419‑019‑2174‑0 31819047
    [Google Scholar]
  85. Qu M. Tang F. Wang L. Associations of ATF4 gene polymorphisms with schizophrenia in male patients. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 2008 147B 6 732 736 10.1002/ajmg.b.30675 18163433
    [Google Scholar]
  86. Corona C. Pasini S. Liu J. Amar F. Greene L.A. Shelanski M.L. Activating transcription factor 4 (ATF4) regulates neuronal activity by controlling GABA b R trafficking. J. Neurosci. 2018 38 27 6102 6113 10.1523/JNEUROSCI.3350‑17.2018 29875265
    [Google Scholar]
  87. Kumon H. Yoshino Y. Ozaki T. Gestational exposure to haloperidol changes Cdkn1a and Apaf1 mRNA expressions in mouse hippocampus. Brain Res. Bull. 2023 199 110662 10.1016/j.brainresbull.2023.110662 37150328
    [Google Scholar]
  88. Manji H.K. Lenox R.H. Lithium: A molecular transducer of mood-stabilization in the treatment of bipolar disorder. Neuropsychopharmacology 1998 19 3 161 166 9741960
    [Google Scholar]
  89. Nierenberg AA Agustini B Köhler-Forsberg O,et al Diagnosis and treatment of bipolar disorder. JAMA 2023 330 14 1370 1380 10.1001/jama.2023.18588 37815563
    [Google Scholar]
  90. Jain A. Bipolar Disorder: Diagnosis. Pathophysiology and Therapy 2020
    [Google Scholar]
  91. Ma D. Panda S. Lin J.D. Temporal orchestration of circadian autophagy rhythm by C/EBPβ. EMBO J. 2011 30 22 4642 4651 10.1038/emboj.2011.322 21897364
    [Google Scholar]
  92. Barakat D.J. Mendonca J. Barberi T. C/EBPβ regulates sensitivity to bortezomib in prostate cancer cells by inducing REDD1 and autophagosome–lysosome fusion. Cancer Lett. 2016 375 1 152 161 10.1016/j.canlet.2016.03.005 26968249
    [Google Scholar]
  93. Kara N.Z. Flaisher-Grinberg S. Anderson G.W. Agam G. Einat H. Mood-stabilizing effects of rapamycin and its analog temsirolimus: Relevance to autophagy. Behav. Pharmacol. 2018 29 4 379 384 10.1097/FBP.0000000000000334 28777104
    [Google Scholar]
  94. Wu R. Dang F. Li P. The circadian protein period2 suppresses mtorc1 activity via recruiting Tsc1 to mTORC1 complex. Cell Metab. 2019 29 3 653 667.e6 10.1016/j.cmet.2018.11.006 30527742
    [Google Scholar]
  95. Pastore N. Vainshtein A. Herz N.J. Nutrient‐sensitive transcription factors TFEB and TFE 3 couple autophagy and metabolism to the peripheral clock. EMBO J. 2019 38 12 101347 10.15252/embj.2018101347 31126958
    [Google Scholar]
  96. Zahid M.D.K. Rogowski M. Ponce C. Choudhury M. Moustaid-Moussa N. Rahman S.M. CCAAT/enhancer-binding protein beta (C/EBPβ) knockdown reduces inflammation, ER stress, and apoptosis, and promotes autophagy in oxLDL-treated RAW264.7 macrophage cells. Mol. Cell. Biochem. 2020 463 1-2 211 223 10.1007/s11010‑019‑03642‑4 31686316
    [Google Scholar]
  97. Takaesu Y. Inoue Y. Murakoshi A. Prevalence of circadian rhythm sleep-wake disorders and associated factors in euthymic patients with bipolar disorder. PLoS One 2016 11 7 0159578 10.1371/journal.pone.0159578 27442503
    [Google Scholar]
  98. Takaesu Y. Circadian rhythm in bipolar disorder: A review of the literature. Psychiatry Clin. Neurosci. 2018 72 9 673 682 10.1111/pcn.12688 29869403
    [Google Scholar]
  99. Naghavi-Gargari B. Zahirodin A. Ghaderian S.M.H. Shirvani-Farsani Z. Significant increasing of DISC2 long non-coding RNA expression as a potential biomarker in bipolar disorder. Neurosci. Lett. 2019 696 206 211 10.1016/j.neulet.2018.12.044 30599263
    [Google Scholar]
  100. van Enkhuizen J. Minassian A. Young J.W. Further evidence for ClockΔ19 mice as a model for bipolar disorder mania using cross-species tests of exploration and sensorimotor gating. Behav. Brain Res. 2013 249 44 54 10.1016/j.bbr.2013.04.023 23623885
    [Google Scholar]
  101. Chellappa S.L. Morris C.J. Scheer F.A.J.L. Circadian misalignment increases mood vulnerability in simulated shift work. Sci. Rep. 2020 10 1 18614 10.1038/s41598‑020‑75245‑9 33122670
    [Google Scholar]
  102. Toker L. Agam G. Mitochondrial dysfunction in psychiatric morbidity: Current evidence and therapeutic prospects. Neuropsychiatr. Dis. Treat. 2015 11 2441 2447 26442764
    [Google Scholar]
  103. Chopra A. Tye S.J. Lee K.H. Underlying neurobiology and clinical correlates of mania status after subthalamic nucleus deep brain stimulation in Parkinson’s disease: A review of the literature. J. Neuropsychiatry Clin. Neurosci. 2012 24 1 102 110 10.1176/appi.neuropsych.10070109 22450620
    [Google Scholar]
  104. Shen D.N. Zhang L.H. Wei E.Q. Yang Y. Autophagy in synaptic development, function, and pathology. Neurosci. Bull. 2015 31 4 416 426 10.1007/s12264‑015‑1536‑6 26139541
    [Google Scholar]
  105. Limanaqi F. Biagioni F. Gambardella S. Ryskalin L. Fornai F. Interdependency between autophagy and synaptic vesicle trafficking: Implications for dopamine release. Front. Mol. Neurosci. 2018 11 299 10.3389/fnmol.2018.00299 30186112
    [Google Scholar]
  106. Hunn B.H.M. Vingill S. Threlfell S. Impairment of macroautophagy in dopamine neurons has opposing effects on parkinsonian pathology and behavior. Cell Rep. 2019 29 4 920 931.e7 10.1016/j.celrep.2019.09.029 31644913
    [Google Scholar]
  107. Valvassori S.S. Dal-Pont G.C. Resende W.R. Validation of the animal model of bipolar disorder induced by Ouabain: Face, construct and predictive perspectives. Transl. Psychiatry 2019 9 1 158 10.1038/s41398‑019‑0494‑6 31164628
    [Google Scholar]
  108. Machado-Vieira R. Pivovarova N.B. Stanika R.I. The Bcl-2 gene polymorphism rs956572AA increases inositol 1,4,5-trisphosphate receptor-mediated endoplasmic reticulum calcium release in subjects with bipolar disorder. Biol. Psychiatry 2011 69 4 344 352 10.1016/j.biopsych.2010.10.019 21167476
    [Google Scholar]
  109. Rangarajan N. Kapoor I. Li S. Potassium starvation induces autophagy in yeast. J. Biol. Chem. 2020 295 41 14189 14202 10.1074/jbc.RA120.014687 32788210
    [Google Scholar]
  110. Nabissi M. Morelli M.B. Amantini C. Cannabidiol stimulates A ml‐1a‐dependent glial differentiation and inhibits glioma stem‐like cells proliferation by inducing autophagy in a TRPV 2‐dependent manner. Int. J. Cancer 2015 137 8 1855 1869 10.1002/ijc.29573 25903924
    [Google Scholar]
  111. Kang J.K. Kim O.H. Hur J. Increased intracellular Ca2+ concentrations prevent membrane localization of PH domains through the formation of Ca2+-phosphoinositides. Proc. Natl. Acad. Sci. USA 2017 114 45 11926 11931 10.1073/pnas.1706489114 29078297
    [Google Scholar]
  112. Cao D. Liu Y. Mei J. Identification of autophagy-related genes as potential biomarkers correlated with immune infiltration in bipolar disorder: A bioinformatics analysis. BMC Med. Genomics 2024 17 1 231 10.1186/s12920‑024‑02003‑5 39272120
    [Google Scholar]
  113. Cui L. Li S. Wang S. Major depressive disorder: Hypothesis, mechanism, prevention and treatment. Signal Transduct. Target. Ther. 2024 9 1 30 10.1038/s41392‑024‑01738‑y 38331979
    [Google Scholar]
  114. Hasler G. Pathophysiology of depression: Do we have any solid evidence of interest to clinicians? World Psychiatry 2010 9 3 155 161 10.1002/j.2051‑5545.2010.tb00298.x 20975857
    [Google Scholar]
  115. Gassen N.C. Rein T. Is there a role of autophagy in depression and antidepressant action? Front. Psychiatry 2019 10 337 10.3389/fpsyt.2019.00337 31156481
    [Google Scholar]
  116. Alcocer-Gَmez E, Casas-Barquero N, Nٌْez-Vasco J, Navarro-Pando JM, Bullَn P. Psychological status in depressive patients correlates with metabolic gene expression. CNS Neurosci. Ther. 2017 23 10 843 845 10.1111/cns.12755 28879683
    [Google Scholar]
  117. Jernigan C.S. Goswami D.B. Austin M.C. The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011 35 7 1774 1779 10.1016/j.pnpbp.2011.05.010 21635931
    [Google Scholar]
  118. Liu C. Hao S. Zhu M. Wang Y. Zhang T. Yang Z. Maternal separation induces different autophagic responses in the hippocampus and prefrontal cortex of adult rats. Neuroscience 2018 374 287 294 10.1016/j.neuroscience.2018.01.043 29391188
    [Google Scholar]
  119. Zhang H. Prenatal stress-induced impairments of cognitive flexibility and bidirectional synaptic plasticity are possibly associated with autophagy in adolescent male-offspring. Exp Neurol 2017 298 (PtA) 68 78 10.1016/j.expneurol.2017.09.001
    [Google Scholar]
  120. Zhang K. Wang F. Zhai M. Hyperactive neuronal autophagy depletes BDNF and impairs adult hippocampal neurogenesis in a corticosterone-induced mouse model of depression. Theranostics 2023 13 3 1059 1075 10.7150/thno.81067 36793868
    [Google Scholar]
  121. Ali T. Rahman S.U. Hao Q. Melatonin prevents neuroinflammation and relieves depression by attenuating autophagy impairment through FOXO3a regulation. J. Pineal Res. 2020 69 2 12667 10.1111/jpi.12667 32375205
    [Google Scholar]
  122. Yang Y. Hu Z. Du X. Davies H. Huo X. Fang M. miR-16 and fluoxetine both reverse autophagic and apoptotic change in chronic unpredictable mild stress model rats. Front. Neurosci. 2017 11 428 10.3389/fnins.2017.00428 28790887
    [Google Scholar]
  123. Huang X. Wu H. Jiang R. The antidepressant effects of ɑ-tocopherol are related to activation of autophagy via the AMPK/mTOR pathway. Eur. J. Pharmacol. 2018 833 1 7 10.1016/j.ejphar.2018.05.020 29782858
    [Google Scholar]
  124. Gulbins A. Schumacher F. Becker K.A. Antidepressants act by inducing autophagy controlled by sphingomyelin–ceramide. Mol. Psychiatry 2018 23 12 2324 2346 10.1038/s41380‑018‑0090‑9 30038230
    [Google Scholar]
  125. Zschocke J. Rein T. Antidepressants encounter autophagy in neural cells. Autophagy 2011 7 10 1247 1248 10.4161/auto.7.10.16520 21642768
    [Google Scholar]
  126. Jeon S.H. Kim S.H. Kim Y. The tricyclic antidepressant imipramine induces autophagic cell death in U-87MG glioma cells. Biochem. Biophys. Res. Commun. 2011 413 2 311 317 10.1016/j.bbrc.2011.08.093 21889492
    [Google Scholar]
  127. Ma J. Hou L.N. Rong Z.X. Antidepressant desipramine leads to C6 glioma cell autophagy: Implication for the adjuvant therapy of cancer. Anticancer. Agents Med. Chem. 2013 13 2 254 260 10.2174/1871520611313020011 22934693
    [Google Scholar]
  128. Cloonan S.M. Williams D.C. The antidepressants maprotiline and fluoxetine induce Type II autophagic cell death in drug‐resistant Burkitt’s lymphoma. Int. J. Cancer 2011 128 7 1712 1723 10.1002/ijc.25477 20503272
    [Google Scholar]
  129. He L. Fu Y. Tian Y. Antidepressants as autophagy modulators for cancer therapy. Molecules 2023 28 22 7594 10.3390/molecules28227594 38005316
    [Google Scholar]
  130. Chen L.J. Hsu T.C. Chan H.L. Protective.s. Int. J. Mol. Sci. 2022 23 16 9247 10.3390/ijms23169247 36012510
    [Google Scholar]
  131. Fu Z. Zhao P.Y. Yang X.P. Cannabidiol regulates apoptosis and autophagy in inflammation and cancer: A review. Front. Pharmacol. 2023 14 1094020 10.3389/fphar.2023.1094020 36755953
    [Google Scholar]
  132. Salazar M Carracedo A Salanueva ÍJ et al Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J. Clin. Invest. 2009 119 5 1359 1372 10.1172/JCI37948 19425170
    [Google Scholar]
  133. Vrechi TAM Leão AHFF, Morais IBM, et al Cannabidiol induces autophagy via ERK1/2 activation in neural cells. Sci. Rep. 2021 11 1 5434 10.1038/s41598‑021‑84879‑2 33686185
    [Google Scholar]
  134. Blázquez C Ruiz-Calvo A Bajo-Grañeras R, et al Inhibition of striatonigral autophagy as a link between cannabinoid intoxication and impairment of motor coordination. eLife 2020 9 56811 10.7554/eLife.56811 32773031
    [Google Scholar]
  135. Offertáler L Mo FM Bátkai S et al Offertلler L Selective ligands and cellular effectors of a G protein-coupled endothelial cannabinoid receptor. Mol. Pharmacol. 2003 63 3 699 705 10.1124/mol.63.3.699 12606780
    [Google Scholar]
  136. Dando I. Donadelli M. Costanzo C. Cannabinoids inhibit energetic metabolism and induce AMPK-dependent autophagy in pancreatic cancer cells. Cell Death Dis. 2013 4 6 664 10.1038/cddis.2013.151 23764845
    [Google Scholar]
  137. Cao L. Walker M.P. Vaidya N.K. Fu M. Kumar S. Kumar A. Cocaine-mediated autophagy in astrocytes involves sigma 1 receptor, PI3K, mTOR, Atg5/7, beclin-1 and induces type II programed cell death. Mol. Neurobiol. 2016 53 7 4417 4430 10.1007/s12035‑015‑9377‑x 26243186
    [Google Scholar]
  138. a Harraz M.M. Guha P. Kang I.G. Cocaine-induced locomotor stimulation involves autophagic degradation of the dopamine transporter. Mol. Psychiatry 2021 26 2 370 382 10.1038/s41380‑020‑00978‑y 33414501
    [Google Scholar]
  139. b PMID: 33414501 Momtazi H. Davoudi A. Ayatollahi S. Cone-Beam Computed Tomography (CBCT) Assessment of the Inter-Radicular Bone Thickness in the Anterior Maxilla in an Iranian Population. J. Maxillofac. Oral Surg. 2025 1 8 10.1007/s12663‑025‑02644‑8
    [Google Scholar]
  140. Kim Y.J. Kong Q. Yamamoto S. An autophagy-related protein Becn2 regulates cocaine reward behaviors in the dopaminergic system. Sci. Adv. 2021 7 8 eabc8310 10.1126/sciadv.abc8310 33608268
    [Google Scholar]
  141. Subu R. Jayanthi S. Cadet J.L. Compulsive methamphetamine taking induces autophagic and apoptotic markers in the rat dorsal striatum. Arch. Toxicol. 2020 94 10 3515 3526 10.1007/s00204‑020‑02844‑w 32676729
    [Google Scholar]
  142. Xu X. Methamphetamine exposure triggers apoptosis and autophagy in neuronal cells by activating the C/EBPβ-related signaling pathway. FASEB J 2018 fj201701460RRR 10.1096/fj.201701460RRR
    [Google Scholar]
  143. Tehrani A.M. Boroujeni M.E. Aliaghaei A. Feizi M.A.H. Safaralizadeh R. Methamphetamine induces neurotoxicity-associated pathways and stereological changes in prefrontal cortex. Neurosci. Lett. 2019 712 134478 10.1016/j.neulet.2019.134478 31491463
    [Google Scholar]
  144. Limanaqi F. Busceti C.L. Celli R. Biagioni F. Fornai F. Autophagy as a gateway for the effects of methamphetamine: From neurotransmitter release and synaptic plasticity to psychiatric and neurodegenerative disorders. Prog. Neurobiol. 2021 204 102112 10.1016/j.pneurobio.2021.102112 34171442
    [Google Scholar]
  145. a Gannon A.M. Stنmpfli MR, Foster WG. Cigarette smoke exposure elicits increased autophagy and dysregulation of mitochondrial dynamics in murine granulosa cells. Biol. Reprod. 2013 88 3 63 10.1095/biolreprod.112.106617 23325812
    [Google Scholar]
  146. b PMID: 23325812 Ayatollahi S. Davoudi A. Momtazi H. In vitro comparative effects of alcohol-containing and alcohol-free mouthwashes on surface roughness of bulk-fill composite resins. BMC Res. Notes 2025 18 146 2025 10.1186/s13104‑025‑07213‑3
    [Google Scholar]
  147. Feng Y.M. Jia Y.F. Su L.Y. Decreased mitochondrial DNA copy number in the hippocampus and peripheral blood during opiate addiction is mediated by autophagy and can be salvaged by melatonin. Autophagy 2013 9 9 1395 1406 10.4161/auto.25468 23800874
    [Google Scholar]
  148. Merenlender-Wagner A. Shemer Z. Touloumi O. New horizons in schizophrenia treatment: Autophagy protection is coupled with behavioral improvements in a mouse model of schizophrenia. Autophagy 2014 10 12 2324 2332 10.4161/15548627.2014.984274 25484074
    [Google Scholar]
  149. Toda H. Mochizuki H. Flores R. UNC-51/ATG1 kinase regulates axonal transport by mediating motor–cargo assembly. Genes Dev. 2008 22 23 3292 3307 10.1101/gad.1734608 19056884
    [Google Scholar]
  150. Høyer-Hansen M. Bastholm L. Szyniarowski P,et al. Control of macroautophagy by calcium, calmodulin-dependent kinase kinasebeta,and Bcl-2. 2007 Mol Cell 2007 25 (2) 193 205 10.1016/j.molcel.2006.12.009 17244528
    [Google Scholar]
  151. Kaiser J. Nay K. Horne C.R. CaMKK2 as an emerging treatment target for bipolar disorder. Mol. Psychiatry 2023 28 11 4500 4511 10.1038/s41380‑023‑02260‑3 37730845
    [Google Scholar]
  152. Yang Y. Yuan R. Lu Y. The engagement of autophagy in maniac disease. CNS Neurosci. Ther. 2023 29 12 3684 3692 10.1111/cns.14353 37438945
    [Google Scholar]
  153. Chen K. Zhu P. Chen W. Luo K. Shi X.J. Zhai W. Melatonin inhibits proliferation, migration, and invasion by inducing ROS-mediated apoptosis via suppression of the PI3K/Akt/mTOR signaling pathway in gallbladder cancer cells. Aging (Albany NY) 2021 13 18 22502 22515 10.18632/aging.203561 34580235
    [Google Scholar]
  154. Tavakol S. Ashrafizadeh M. Deng S. Autophagy modulators: Mechanistic aspects and drug delivery systems. Biomolecules 2019 9 10 530 10.3390/biom9100530 31557936
    [Google Scholar]
  155. Shi Q. Mechanisms of action of autophagy modulators dissected by quantitative systems pharmacology analysis. bioRxiv 2020 2020.03.25.007344
    [Google Scholar]
  156. Cleary C. Linde J.A.S. Hiscock K.M. Antidepressive-like effects of rapamycin in animal models: Implications for mTOR inhibition as a new target for treatment of affective disorders. Brain Res. Bull. 2008 76 5 469 473 10.1016/j.brainresbull.2008.03.005 18534253
    [Google Scholar]
  157. Motoi Y. Shimada K. Ishiguro K. Hattori N. Lithium and autophagy. ACS Chem. Neurosci. 2014 5 6 434 442 10.1021/cn500056q 24738557
    [Google Scholar]
  158. Malhi G.S. Tanious M. Das P. Coulston C.M. Berk M. Potential mechanisms of action of lithium in bipolar disorder. Current understanding. CNS Drugs 2013 27 2 135 153 10.1007/s40263‑013‑0039‑0 23371914
    [Google Scholar]
  159. Forlenza O.V. De-Paula V.J.R. Diniz B.S.O. Neuroprotective effects of lithium: Implications for the treatment of Alzheimer’s disease and related neurodegenerative disorders. ACS Chem. Neurosci. 2014 5 6 443 450 10.1021/cn5000309 24766396
    [Google Scholar]
  160. Ghanaatfar F. Ghanaatfar A. Isapour P. Is lithium neuroprotective? An updated mechanistic illustrated review. Fundam. Clin. Pharmacol. 2023 37 1 4 30 10.1111/fcp.12826 35996185
    [Google Scholar]
  161. Metaxakis A. Ploumi C. Tavernarakis N. Autophagy in age-associated neurodegeneration. Cells 2018 7 5 37 10.3390/cells7050037 29734735
    [Google Scholar]
  162. Wu S. Zheng S.D. Huang H.L. Lithium down-regulates histone deacetylase 1 (HDAC1) and induces degradation of mutant huntingtin. J. Biol. Chem. 2013 288 49 35500 35510 10.1074/jbc.M113.479865 24165128
    [Google Scholar]
  163. Zhang X. Heng X. Li T. Long-term treatment with lithium alleviates memory deficits and reduces amyloid-β production in an aged Alzheimer’s disease transgenic mouse model. J. Alzheimers Dis. 2011 24 4 739 749 10.3233/JAD‑2011‑101875 21321394
    [Google Scholar]
  164. Shimada K. Motoi Y. Ishiguro K. Long-term oral lithium treatment attenuates motor disturbance in tauopathy model mice: Implications of autophagy promotion. Neurobiol. Dis. 2012 46 1 101 108 10.1016/j.nbd.2011.12.050 22249108
    [Google Scholar]
  165. Fornai F. Longone P. Ferrucci M. Autophagy and amyotrophic lateral sclerosis: The multiple roles of lithium. Autophagy 2008 4 4 527 530 10.4161/auto.5923 18367867
    [Google Scholar]
  166. Taskaeva I. Gogaeva I. Shatruk A. Bgatova N. Lithium enhances autophagy and cell death in skin melanoma: An ultrastructural and immunohistochemical study. Microsc. Microanal. 2022 28 5 1703 1711 10.1017/S1431927622000745 35592888
    [Google Scholar]
  167. Costa A. Erustes A. Sinigaglia R. Lack of autophagy induction by lithium decreases neuroprotective effects in the striatum of aged rats. Pharmaceutics 2021 13 2 135 10.3390/pharmaceutics13020135 33494241
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273384110250915073216
Loading
/content/journals/cnsnddt/10.2174/0118715273384110250915073216
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test