Skip to content
2000
image of Unraveling the Potential of Stem Cell Therapy in Motor Neuron Disease: A Narrative Review

Abstract

Motor neuron disorders (MNDs), including ALS, are deadly neurodegenerative conditions that cause progressive motor neuron degeneration. With neuroprotection and the potential for neuron regeneration employing MSCs, ESCs, iPSCs, and NSCs, stem cell treatment presents a viable alternative to current medicines, which only control a limited number of symptoms. Following PRISMA criteria, this narrative review methodically screened 1248 records from the Cochrane, Web of Science, PubMed, and Scopus databases. Following a thorough screening process, 22 studies, including preclinical models and 19 clinical trials, were analysed to assess the therapeutic mechanisms, safety, and efficacy of stem cell therapies for MNDs. Mesenchymal stem cell (MSC) therapy has shown a promising safety profile and possible therapeutic efficacy in ALS, with no substantial transplant-related toxicity noted. ALS functional rating scale-revised (ALSFRS-R) scores and forced vital capacity (FVC) assessments from clinical trials, such as those evaluating autologous bone marrow-derived MSCs, demonstrated stabilisation in ALS development. Studies have also emphasised as to how immunomodulation and neurotrophic factors play a part in MSC-based therapies. Recent data indicate that repeated intrathecal MSC injection could extend the duration of therapeutic advantages. Clinical trials have shown safety and early efficacy signals for motor neurons produced from embryonic stem cells (ESCs), especially using AstroRx®. This suggests that ESCs could be a viable option for regenerative medicine. Nonetheless, issues, like host integration and differentiation optimisation, still exist. Although clinical translation is still in its early stages, induced pluripotent stem cells (iPSCs) and their derivatives provide disease modelling and patient-specific therapeutic applications. Stem cell therapy holds promise for treating MND, with MSCs leading the way in current trials. It is necessary to enhance ESC- and iPSC-based techniques to tackle integration issues. To ensure long-term safety and efficacy, therapies must be developed using standardised protocols, patient stratification, optimised delivery, and large-scale studies.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273382519250918103218
2025-10-10
2025-11-25
Loading full text...

Full text loading...

References

  1. Rodríguez-Muela N. Autophagy in motor neuron diseases. Prog. Mol. Biol. Transl. Sci. 2020 172 157 202 10.1016/bs.pmbts.2020.03.009 32620242
    [Google Scholar]
  2. Dharmadasa T. Pavey N. Tu S. Novel approaches to assessing upper motor neuron dysfunction in motor neuron disease/amyotrophic lateral sclerosis: IFCN handbook chapter. Clin. Neurophysiol. 2024 163 68 89 10.1016/j.clinph.2024.04.010 38705104
    [Google Scholar]
  3. Pandey P. Rai V. Singh S. Advances in understanding and managing motor neuron disorders: From pathophysiology to therapeutic interventions. IASR J Med Pharm Sci 2024 4 4 120 126
    [Google Scholar]
  4. Kleinerova J. Chipika R.H. Tan E.L. Sensory dysfunction in ALS and other motor neuron diseases: Clinical relevance, histopathology, neurophysiology, and insights from neuroimaging. Biomedicines 2025 13 3 559 10.3390/biomedicines13030559 40149536
    [Google Scholar]
  5. Quinn C. Elman L. Amyotrophic lateral sclerosis and other motor neuron diseases. Continuum (N. Y.) 2020 26 5 1323 1347 10.1212/CON.0000000000000911 33003004
    [Google Scholar]
  6. Sibat H.F. Valdés L.F.I. Introduction to novel motor neuron disease. IntechOpen 2020 10.5772/intechopen.91921
    [Google Scholar]
  7. Young C.A. Chaouch A. Mcdermott C.J. Dyspnea (breathlessness) in amyotrophic lateral sclerosis/motor neuron disease: Prevalence, progression, severity, and correlates. Amyotroph. Lateral Scler. Frontotemporal Degener. 2024 25 5-6 475 485 10.1080/21678421.2024.2322545 38465877
    [Google Scholar]
  8. Goutman S.A. Diagnosis and clinical management of amyotrophic lateral sclerosis and other motor neuron disorders. Continuum 2017 23 5 1332 1359 10.1212/CON.0000000000000535 28968365
    [Google Scholar]
  9. Highley J.R. Wharton S.B. Motor neuron disorders. In: Greenfield’s Neuropathology 10e Set. CRC Press 2025 875 906
    [Google Scholar]
  10. Masrori P. Van Damme P. Amyotrophic lateral sclerosis: A clinical review. Eur. J. Neurol. 2020 27 10 1918 1929 10.1111/ene.14393 32526057
    [Google Scholar]
  11. Aktekin M.R. Uysal H. Epidemiology of amyotrophic lateral sclerosis. Turk Noroloji Dergisi 2020 26 3 187 196 10.4274/tnd.2020.45549
    [Google Scholar]
  12. Riva N. Domi T. Pozzi L. Update on recent advances in amyotrophic lateral sclerosis. J. Neurol. 2024 271 7 4693 4723 10.1007/s00415‑024‑12435‑9 38802624
    [Google Scholar]
  13. Shahrizaila N. Sobue G. Kuwabara S. Amyotrophic lateral sclerosis and motor neuron syndromes in Asia. J. Neurol. Neurosurg. Psychiatry 2016 87 8 821 830 10.1136/jnnp‑2015‑312751 27093948
    [Google Scholar]
  14. Tzeplaeff L. Wilfling S. Requardt M.V. Herdick M. Current state and future directions in the therapy of ALS. Cells 2023 12 11 1523 10.3390/cells12111523 37296644
    [Google Scholar]
  15. Smeyers J. Banchi E.G. Latouche M. C9ORF72: What it is, what it does, and why it matters. Front. Cell. Neurosci. 2021 15 661447 10.3389/fncel.2021.661447 34025358
    [Google Scholar]
  16. Yousefian-Jazi A. Seol Y. Kim J. Ryu H.L. Lee J. Ryu H. Pathogenic genome signatures that damage motor neurons in amyotrophic lateral sclerosis. Cells 2020 9 12 2687 10.3390/cells9122687 33333804
    [Google Scholar]
  17. Mrkela M. Rodrigues M. Naidoo S. The genetics of motor neuron disease in New Zealand. J. Neurol. Sci. 2025 474 123472 10.1016/j.jns.2025.123472 40424855
    [Google Scholar]
  18. Leighton D.J. Ansari M. Newton J. Genotypes and phenotypes of motor neuron disease: An update of the genetic landscape in Scotland. J. Neurol. 2024 271 8 5256 5266 10.1007/s00415‑024‑12450‑w 38852112
    [Google Scholar]
  19. Westeneng H.J. van Veenhuijzen K. van der Spek R.A. Associations between lifestyle and amyotrophic lateral sclerosis stratified by C9orf72 genotype: A longitudinal, population-based, case-control study. Lancet Neurol. 2021 20 5 373 384 10.1016/S1474‑4422(21)00042‑9 33894192
    [Google Scholar]
  20. Joyce E.E. Xu S. Ingre C. Association between early‐life and premorbid measurements of body composition and risk of motor neuron disease: A prospective cohort study in the UK biobank. Ann. Neurol. 2025 97 2 259 269 10.1002/ana.27109 39455418
    [Google Scholar]
  21. Sahu P. Verma H.K. Bhaskar L.V.K.S. Alcohol and alcoholism associated neurological disorders: Current updates in a global perspective and recent recommendations. World J. Exp. Med. 2025 15 1 100402 10.5493/wjem.v15.i1.100402 40115759
    [Google Scholar]
  22. Zhang Z. Global, regional, and national burden of motor neuron disease from 1991 to 2021 and future projections to 2050: A systematic analysis of the global burden of disease study 2021. 2021 Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5172468
  23. de Jongh A.D. van Eijk R.P.A. Peters S.M. Incidence, prevalence, and geographical clustering of motor neuron disease in the Netherlands. Neurology 2021 96 8 e1227 e1236 10.1212/WNL.0000000000011467 33472922
    [Google Scholar]
  24. Ahmed S.H. Khattak N. Jamal M.K. Incidence of motor neuron disease (MND) in patients diagnosed with cervical spondylotic myelopathy (CSM). Pak J Neurol Surg 2023 27 4 394 402 10.36552/pjns.v27i4.914
    [Google Scholar]
  25. Karşıdağ S. Assessment of quality of life in neurological diseases. Turk J Neurol 2024 30 1 1 9 10.55697/tnd.2024.78
    [Google Scholar]
  26. Cheng H.W.B. Chan K.Y. Chung Y.K.J. Supportive & palliative interventions in motor neurone disease: What we know from current literature? Ann. Palliat. Med. 2018 7 3 320 331 10.21037/apm.2017.10.01 29156920
    [Google Scholar]
  27. Jammeh N.H. Theoretical basis and practical management of amyotrophic lateral sclerosis (ALS). Master Thesis 2024
    [Google Scholar]
  28. Mazzini L. De Marchi F. Buzanska L. Current status and new avenues of stem cell-based preclinical and therapeutic approaches in amyotrophic lateral sclerosis. Expert Opin. Biol. Ther. 2024 24 9 933 954 10.1080/14712598.2024.2392307 39162129
    [Google Scholar]
  29. Sun Z. Zhang B. Peng Y. Development of novel treatments for amyotrophic lateral sclerosis. Metab. Brain Dis. 2023 39 3 467 482 10.1007/s11011‑023‑01334‑z 38078970
    [Google Scholar]
  30. Je G. Keyhanian K. Ghasemi M. Overview of stem cells therapy in amyotrophic lateral sclerosis. Neurol. Res. 2021 43 8 616 632 10.1080/01616412.2021.1893564 33632084
    [Google Scholar]
  31. Ceccarelli L. Verriello L. Pauletto G. The role of human pluripotent stem cells in amyotrophic lateral sclerosis: From biological mechanism to practical implications. Front. Biosci. 2024 29 3 114 10.31083/j.fbl2903114 38538275
    [Google Scholar]
  32. Abati E. Bresolin N. Comi G.P. Corti S. Preconditioning and cellular engineering to increase the survival of transplanted neural stem cells for motor neuron disease therapy. Mol. Neurobiol. 2019 56 5 3356 3367 10.1007/s12035‑018‑1305‑4 30120734
    [Google Scholar]
  33. Shields B. Silverdale M. Prokop A. Understanding the underlying causes of degenerative neural diseases. InnovAiT 2025 18 2 100 109 10.1177/17557380241298477
    [Google Scholar]
  34. Caga J. Hsieh S. Lillo P. Dudley K. Mioshi E. The impact of cognitive and behavioral symptoms on ALS patients and their caregivers. Front. Neurol. 2019 10 192 10.3389/fneur.2019.00192 30915018
    [Google Scholar]
  35. Francis R. Attrill S. Radakovic R. Doeltgen S. Exploring clinical management of cognitive and behavioural deficits in MND. A scoping review. Patient Educ. Couns. 2023 116 107942 10.1016/j.pec.2023.107942 37597466
    [Google Scholar]
  36. Zakharova M. Abramova A. Lower and upper motor neuron involvement and their impact on disease prognosis in amyotrophic lateral sclerosis. Neural Regen. Res. 2022 17 1 65 73 10.4103/1673‑5374.314289 34100429
    [Google Scholar]
  37. Bersano E. Upper motor neuron burden in amyotrophic lateral sclerosis: Clinical and imaging features, and the role of iron metabolism. Doctoral Thesis 2024
    [Google Scholar]
  38. Bozzoni V. Pansarasa O. Diamanti L. Nosari G. Cereda C. Ceroni M. Amyotrophic lateral sclerosis and environmental factors. Funct. Neurol. 2016 31 1 7 19 10.11138/fneur/2016.31.1.007 27027889
    [Google Scholar]
  39. Wei Q.Q. Chen Y. Chen X. Clinical and prognostic features of ALS/MND in different phenotypes-data from a hospital-based registry. Brain Res. Bull. 2018 142 403 408 10.1016/j.brainresbull.2018.09.005 30232045
    [Google Scholar]
  40. McKenna M.C. Corcia P. Couratier P. Siah W.F. Pradat P.F. Bede P. Frontotemporal pathology in motor neuron disease phenotypes: Insights from neuroimaging. Front. Neurol. 2021 12 723450 10.3389/fneur.2021.723450 34484106
    [Google Scholar]
  41. Lehnen T.L. Motor neurone disease (MND). 2022 Available from: https://irishpracticenurses.ie/wp-content/uploads/2022/02/Motor-Neurone-Disease.pdf
  42. Yedavalli V.S. Patil A. Shah P. Amyotrophic lateral sclerosis and its mimics/variants: A comprehensive review. J. Clin. Imaging Sci. 2018 8 53 10.4103/jcis.JCIS_40_18 30652056
    [Google Scholar]
  43. de Boer E.M.J. Demaegd K.C. de Bie C.I. Veldink J.H. van den Berg L.H. van Es M.A. Familial motor neuron disease: Co-occurrence of PLS and ALS (-FTD). Amyotroph. Lateral Scler. Frontotemporal Degener. 2024 25 1-2 53 60 10.1080/21678421.2023.2255621 37679883
    [Google Scholar]
  44. Vacchiano V. Bonan L. Liguori R. Rizzo G. Primary lateral sclerosis: An overview. J. Clin. Med. 2024 13 2 578 10.3390/jcm13020578 38276084
    [Google Scholar]
  45. de Boer E.M.J. de Vries B.S. Pennings M. Genetic characterization of primary lateral sclerosis. J. Neurol. 2023 270 8 3970 3980 10.1007/s00415‑023‑11746‑7 37133535
    [Google Scholar]
  46. de Boer E.M.J. de Vries B.S. Van Hecke W. Diagnosing primary lateral sclerosis: A clinico-pathological study. J. Neurol. 2025 272 1 46 10.1007/s00415‑024‑12816‑0 39666071
    [Google Scholar]
  47. Bede P. Pradat P.F. Lope J. Vourc’h P. Blasco H. Corcia P. Primary Lateral Sclerosis: Clinical, radiological and molecular features. Rev. Neurol. 2022 178 3 196 205 10.1016/j.neurol.2021.04.008 34243936
    [Google Scholar]
  48. Şahin E. A new treatment option for amyotrophic lateral sclerosis: Edaravone. Turk J Neurol 2018 24 1 105 106 10.4274/tnd.90698
    [Google Scholar]
  49. Jafari Z. Mahood Q. Hamson A. Riluzole for amyotrophic lateral sclerosis treatment. Can J Health Technol 2023 3 7 10.51731/cjht.2023.680 37782732
    [Google Scholar]
  50. Ditan I.D. Turalde C.W.R. Treatment gaps in the care of amyotrophic lateral sclerosis in the Philippines: A scoping review. Heliyon 2024 10 6 e27944 10.1016/j.heliyon.2024.e27944 38510000
    [Google Scholar]
  51. Luna J. Jost J. Diagana M. Clinical management and disease-modifying treatment for amyotrophic lateral sclerosis in African hospital centers: The TROPALS study. Amyotroph. Lateral Scler. Frontotemporal Degener. 2022 23 3-4 279 283 10.1080/21678421.2021.1961806 34459327
    [Google Scholar]
  52. Ojha S.K. Implication and importance of stem cell therapy in a translational model of neurodegenerative diseases. Neurodegenerative Diseases. CRC Press 2025 224 230
    [Google Scholar]
  53. Quan J. Liu Q. Li P. Mesenchymal stem cell exosome therapy: Current research status in the treatment of neurodegenerative diseases and the possibility of reversing normal brain aging. Stem Cell Res. Ther. 2025 16 1 76 10.1186/s13287‑025‑04160‑5 39985030
    [Google Scholar]
  54. Chen K.S. Koubek E.J. Sakowski S.A. Feldman E.L. Stem cell therapeutics and gene therapy for neurologic disorders. Neurotherapeutics 2024 21 4 e00427 10.1016/j.neurot.2024.e00427 39096590
    [Google Scholar]
  55. Liu G. David B.T. Trawczynski M. Fessler R.G. Advances in pluripotent stem cells: History, mechanisms, technologies, and applications. Stem Cell Rev. Rep. 2020 16 1 3 32 10.1007/s12015‑019‑09935‑x 31760627
    [Google Scholar]
  56. Rodríguez-Fuentes D.E. Fernández-Garza L.E. Samia-Meza J.A. Barrera-Barrera S.A. Caplan A.I. Barrera-Saldaña H.A. Mesenchymal stem cells current clinical applications: A systematic review. Arch. Med. Res. 2021 52 1 93 101 10.1016/j.arcmed.2020.08.006 32977984
    [Google Scholar]
  57. Obernier K. Alvarez-Buylla A. Neural stem cells: Origin, heterogeneity and regulation in the adult mammalian brain. Development 2019 146 4 dev156059 10.1242/dev.156059 30777863
    [Google Scholar]
  58. Kim S.H. Oh K.W. Noh M.Y. Kwon M.S. Optimal therapeutic strategy of bone marrow-originated autologous mesenchymal stromal/stem cells for ALS. Stem Cells Transl. Med. 2024 13 4 309 316 10.1093/stcltm/szad095 38244235
    [Google Scholar]
  59. Petrou P. Kassis I. Yaghmour N.E. Ginzberg A. Karussis D. A phase II clinical trial with repeated intrathecal injections of autologous mesenchymal stem cells in patients with amyotrophic lateral sclerosis. Front. Biosci. 2021 26 10 693 706 10.52586/4980 34719198
    [Google Scholar]
  60. Berry J.D. Cudkowicz M.E. Windebank A.J. NurOwn, phase 2, randomized, clinical trial in patients with ALS. Neurology 2019 93 24 e2294 e2305 10.1212/WNL.0000000000008620 31740545
    [Google Scholar]
  61. Nam J.Y. Lee T.Y. Kim K. Efficacy and safety of Lenzumestrocel (Neuronata-R® inj.) in patients with amyotrophic lateral sclerosis (ALSUMMIT study): Study protocol for a multicentre, randomized, double-blind, parallel-group, sham procedure-controlled, phase III trial. Trials 2022 23 1 415 10.1186/s13063‑022‑06327‑4 35585556
    [Google Scholar]
  62. Zhang J. Guo R. Zhou Z. Neural stem/progenitor cell therapy in patients and animals with amyotrophic lateral sclerosis: A systematic review and meta-analysis. Mol. Neurobiol. 2025 62 5 6521 6536 10.1007/s12035‑024‑04682‑8 39821843
    [Google Scholar]
  63. Tavakol-Afshari J. Boroumand A.R. Farkhad N.K. Adhami Moghadam A. Sahab-Negah S. Gorji A. Safety and efficacy of bone marrow derived-mesenchymal stem cells transplantation in patients with amyotrophic lateral sclerosis. Regen. Ther. 2021 18 268 274 10.1016/j.reth.2021.07.006 34466632
    [Google Scholar]
  64. Aricha R. Cudkowicz M. Berry J. In vivomodulation of neurotrophic and inflammatory factors in the CSF of ALS patients treated with NurOwn (MSC NTF cells). Cytotherapy 2017 19 5 S199 10.1016/j.jcyt.2017.02.297
    [Google Scholar]
  65. Gothelf Y. Cudkowicz M. Berry J. Safety and efficacy of transplantation of nurown (autologous mesenchymal stromal cells secreting neurotrophic factors) in patients with ALS: A phase 2 randomized double blind placebo controlled trial. Cytotherapy 2017 19 5 S23 10.1016/j.jcyt.2017.02.040
    [Google Scholar]
  66. Wang X. Zhang Y. Jin T. Adipose-derived mesenchymal stem cells combined with extracellular vesicles may improve amyotrophic lateral sclerosis. Front. Aging Neurosci. 2022 14 830346 10.3389/fnagi.2022.830346 35663577
    [Google Scholar]
  67. Barczewska M. Maksymowicz S. Zdolińska-Malinowska I. Siwek T. Grudniak M. Umbilical cord mesenchymal stem cells in amyotrophic lateral sclerosis: An original study. Stem Cell Rev. Rep. 2020 16 5 922 932 10.1007/s12015‑020‑10016‑7 32725316
    [Google Scholar]
  68. Aljabri A. Halawani A. Bin Lajdam G. Labban S. Alshehri S. Felemban R. The safety and efficacy of stem cell therapy as an emerging therapy for ALS: A systematic review of controlled clinical trials. Front. Neurol. 2021 12 783122 10.3389/fneur.2021.783122 34938264
    [Google Scholar]
  69. Oh K.W. Moon C. Kim H.Y. Phase I trial of repeated intrathecal autologous bone marrow-derived mesenchymal stromal cells in amyotrophic lateral sclerosis. Stem Cells Transl. Med. 2015 4 6 590 597 10.5966/sctm.2014‑0212 25934946
    [Google Scholar]
  70. Gugliandolo A. Bramanti P. Mazzon E. Mesenchymal stem cells: A potential therapeutic approach for amyotrophic lateral sclerosis? Stem Cells Int. 2019 2019 1 1 16 10.1155/2019/3675627 30956667
    [Google Scholar]
  71. Gotkine M. Caraco Y. Lerner Y. Safety and efficacy of first-in-man intrathecal injection of human astrocytes (AstroRx®) in ALS patients: Phase I/IIa clinical trial results. J. Transl. Med. 2023 21 1 122 10.1186/s12967‑023‑03903‑3 36788520
    [Google Scholar]
  72. Faravelli I. Bucchia M. Rinchetti P. Motor neuron derivation from human embryonic and induced pluripotent stem cells: Experimental approaches and clinical perspectives. Stem Cell Res. Ther. 2014 5 4 87 10.1186/scrt476 25157556
    [Google Scholar]
  73. Christou Y.A. Moore H.D. Shaw P.J. Monk P.N. Embryonic stem cells and prospects for their use in regenerative medicine approaches to motor neurone disease. Neuropathol. Appl. Neurobiol. 2007 33 5 485 498 10.1111/j.1365‑2990.2007.00883.x 17854436
    [Google Scholar]
  74. Nizzardo M. Simone C. Falcone M. Human motor neuron generation from embryonic stem cells and induced pluripotent stem cells. Cell. Mol. Life Sci. 2010 67 22 3837 3847 10.1007/s00018‑010‑0463‑y 20668908
    [Google Scholar]
  75. Harper J.M. Krishnan C. Darman J.S. Axonal growth of embryonic stem cell-derived motoneurons in vitro and in motoneuron-injured adult rats. Proc. Natl. Acad. Sci. USA 2004 101 18 7123 7128 10.1073/pnas.0401103101 15118094
    [Google Scholar]
  76. Du H. Huo Z. Chen Y. Induced pluripotent stem cells and their applications in amyotrophic lateral sclerosis. Cells 2023 12 6 971 10.3390/cells12060971 36980310
    [Google Scholar]
  77. Kondo T. Ebinuma I. Tanaka H. Rapid and robust multi-phenotypic assay system for ALS using human iPS cells with mutations in causative genes. Int. J. Mol. Sci. 2023 24 8 6987 10.3390/ijms24086987 37108151
    [Google Scholar]
  78. Karpe Y. Chen Z. Li X.J. Stem cell models and gene targeting for human motor neuron diseases. Pharmaceuticals 2021 14 6 565 10.3390/ph14060565 34204831
    [Google Scholar]
  79. Chen M. Wang X. Li C. Inducible motor neuron differentiation of human induced pluripotent stem cells in vivo. Cell Prolif. 2022 55 11 e13319 10.1111/cpr.13319 35943218
    [Google Scholar]
  80. Cecerska-Heryć E. Pękała M. Serwin N. The use of stem cells as a potential treatment method for selected neurodegenerative diseases. Cell. Mol. Neurobiol. 2023 43 6 2643 2673 10.1007/s10571‑023‑01344‑6 37027074
    [Google Scholar]
  81. Reis A.L.G. Maximino J.R. Lage L.A.P.C. Proteomic analysis of cerebrospinal fluid of amyotrophic lateral sclerosis patients in the presence of autologous bone marrow derived mesenchymal stem cells. Stem Cell Res. Ther. 2024 15 1 301 10.1186/s13287‑024‑03820‑2 39278909
    [Google Scholar]
  82. Xu L. Yan J. Chen D. Human neural stem cell grafts ameliorate motor neuron disease in SOD-1 transgenic rats. Transplantation 2006 82 7 865 875 10.1097/01.tp.0000235532.00920.7a 17038899
    [Google Scholar]
  83. Corti S. Locatelli F. Papadimitriou D. Neural stem cells LewisX + CXCR4 + modify disease progression in an amyotrophic lateral sclerosis model. Brain 2007 130 5 1289 1305 10.1093/brain/awm043 17439986
    [Google Scholar]
  84. Edwards A. Neural stem cell transplantation in ALS: Developing a cure for the incurable? Biosci. Horiz. 2016 9 hzw013 10.1093/biohorizons/hzw013
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273382519250918103218
Loading
/content/journals/cnsnddt/10.2174/0118715273382519250918103218
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test