Skip to content
2000
image of Insights into the Diagnosis, Treatment, and Management of Prion Diseases

Abstract

The normal cellular prion protein (PrPC) can misfold into an infectious and pathogenic form (PrPSc) to produce prion diseases, also known as transmissible spongiform encephalopathies (TSEs), which are rare and deadly neurodegenerative conditions. The conversion of PrPC to PrP𝑆𝑐, which builds up as toxic aggregates in the central nervous system, is caused by sporadic, inherited, or acquired pathways. PrPSc-induced proteostasis failure, oxidative stress, neuronal toxicity, and progressive neurodegeneration are characteristics of pathogenesis. Due to their overlap with other neurodegenerative illnesses, prion diseases are still difficult to diagnose, even with breakthroughs in our knowledge of the molecular causes. Cerebrospinal fluid biomarkers, neuroimaging, EEG, and genetic testing are utilized in the diagnostic process. Methods like real-time quaking-induced conversion (RT-QuIC) provide high sensitivity. As there are currently no cures, the main goals of management are palliative care and symptom alleviation. Research is currently being conducted on experimental strategies that target PrP misfolding. These strategies include autophagy enhancers, monoclonal antibodies, antisense oligonucleotides, and small compounds. Artificial intelligence (AI) shows revolutionary promise by enhancing early diagnosis through biomarker analysis, neuroimaging interpretation, and EEG pattern identification. AI also improves clinical trial design, identifies tailored treatment approaches, and accelerates drug discovery. Furthermore, advancements in AI-based bioinformatics technologies have led to a better understanding of prion biology and strain diversity. The future holds promise for utilising cutting-edge treatment techniques, such as CRISPR and gene therapy, for targeted interventions, as well as combining AI with multimodal data to enhance diagnostic capabilities. There is optimism that the burden of prion disorders can be reduced, and the treatment of neurodegenerative illnesses can be improved through the integration of molecular research, novel treatments, and AI technology.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273381241250620114740
2025-07-08
2025-09-25
Loading full text...

Full text loading...

References

  1. Lamptey R.N.L. Chaulagain B. Trivedi R. Gothwal A. Layek B. Singh J. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics. Int. J. Mol. Sci. 2022 23 3 1851 10.3390/ijms23031851 35163773
    [Google Scholar]
  2. Jankovska N. Rusina R. Bruzova M. Parobkova E. Olejar T. Matej R. Human prion disorders: Review of the current literature and a twenty-year experience of the national surveillance center in the czech republic. Diagnostics 2021 11 10 1821 10.3390/diagnostics11101821 34679519
    [Google Scholar]
  3. Geschwind M.D. Prion diseases. Continuum 2015 21 6 1612 1638 10.1212/CON.0000000000000251
    [Google Scholar]
  4. Satoh K. CSF biomarkers for prion diseases. Neurochem. Int. 2022 155 105306 10.1016/j.neuint.2022.105306 35176437
    [Google Scholar]
  5. Kranitz F. Simpson D. Using non-pharmacological approaches for CJD patient and family support as provided by the CJD foundation and CJD insight. CNS Neurol. Disord. Drug Targets 2009 8 5 372 379 10.2174/187152709789542005 19702572
    [Google Scholar]
  6. Sitammagari K.K. Masood W. Creutzfeldt Jakob Disease. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  7. Chen C. Dong X.P. Epidemiological characteristics of human prion diseases. Infect. Dis. Poverty 2016 5 1 47 10.1186/s40249‑016‑0143‑8 27251305
    [Google Scholar]
  8. Weber D.J. Rutala W.A. Managing the risk of nosocomial transmission of prion diseases. Curr. Opin. Infect. Dis. 2002 15 4 421 425 10.1097/00001432‑200208000‑00011 12130940
    [Google Scholar]
  9. Kennedy R.H. Hogan R.N. Brown P. Eye banking and screening for Creutzfeldt-Jakob disease. Arch. Ophthalmol. 2001 119 5 721 726 10.1001/archopht.119.5.721 11346399
    [Google Scholar]
  10. Weinstein R.A. Rutala W.A. Weber D.J. Creutzfeldt-Jakob disease: Recommendations for disinfection and sterilization. Clin. Infect. Dis. 2001 32 9 1348 1356 10.1086/319997 11303271
    [Google Scholar]
  11. Ma Y. Ma J. Immunotherapy against Prion Disease. Pathogens 2020 9 3 216 10.3390/pathogens9030216 32183309
    [Google Scholar]
  12. Mead S. Khalili-Shirazi A. Potter C. Prion protein monoclonal antibody (PRN100) therapy for Creutzfeldt-Jakob disease: Evaluation of a first-in-human treatment programme. Lancet Neurol. 2022 21 4 342 354 10.1016/S1474‑4422(22)00082‑5 35305340
    [Google Scholar]
  13. Liu F. Lü W. Liu L. New implications for prion diseases therapy and prophylaxis. Front. Mol. Neurosci. 2024 17 1324702 10.3389/fnmol.2024.1324702 38500676
    [Google Scholar]
  14. Bamia A. Sinane M. Naït-Saïdi R. Anti-prion drugs targeting the protein folding activity of the ribosome reduce PABPN1 aggregation. Neurotherapeutics 2021 18 2 1137 1150 10.1007/s13311‑020‑00992‑6 33533011
    [Google Scholar]
  15. Ayeni E.A. Aldossary A.M. Ayejoto D.A. Neurodegenerative diseases: Implications of environmental and climatic influences on neurotransmitters and neuronal hormones activities. Int. J. Environ. Res. Public Health 2022 19 19 12495 10.3390/ijerph191912495 36231792
    [Google Scholar]
  16. Gallardo M. Delgado F. Animal prion diseases: A review of intraspecies transmission. Open Vet. J. 2021 11 4 707 723 10.5455/OVJ.2021.v11.i4.23 35070868
    [Google Scholar]
  17. Baiardi S. Mammana A. Capellari S. Parchi P. Human prion disease: Molecular pathogenesis, and possible therapeutic targets and strategies. Expert Opin. Ther. Targets 2023 27 12 1271 1284 10.1080/14728222.2023.2199923 37334903
    [Google Scholar]
  18. Aguzzi A. Heppner F.L. Pathogenesis of prion diseases: A progress report. Cell Death Differ. 2000 7 10 889 902 10.1038/sj.cdd.4400737 11279534
    [Google Scholar]
  19. Benarroch E. What are the roles of cellular prion protein in normal and pathologic conditions? Neurology 2024 102 7 209272 10.1212/WNL.0000000000209272 38484222
    [Google Scholar]
  20. Appleby B.S. Shetty S. Elkasaby M. Genetic aspects of human prion diseases. Front. Neurol. 2022 13 1003056 10.3389/fneur.2022.1003056 36277922
    [Google Scholar]
  21. Ladogana A. Kovacs G.G. Genetic Creutzfeldt–Jakob disease. Handb. Clin. Neurol. 2018 153 219 242 10.1016/B978‑0‑444‑63945‑5.00013‑1 29887139
    [Google Scholar]
  22. Ghetti B. Piccardo P. Zanusso G. Dominantly inherited prion protein cerebral amyloidoses – a modern view of Gerstmann–Sträussler-Scheinker. Handb. Clin. Neurol. 2018 153 243 269 10.1016/B978‑0‑444‑63945‑5.00014‑3 29887140
    [Google Scholar]
  23. Cracco L. Appleby B.S. Gambetti P. Fatal familial insomnia and sporadic fatal insomnia. Handb. Clin. Neurol. 2018 153 271 299 10.1016/B978‑0‑444‑63945‑5.00015‑5 29887141
    [Google Scholar]
  24. Bagyinszky E. Giau V.V. Youn Y.C.A. An S.S. Kim S. Characterization of mutations in PRNP (prion) gene and their possible roles in neurodegenerative diseases. Neuropsychiatr. Dis. Treat. 2018 14 2067 2085 10.2147/NDT.S165445 30147320
    [Google Scholar]
  25. Rayi A. Murr N.I. Electroencephalogram. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  26. Altuna M. Ruiz I. Zelaya M.V. Mendioroz M. Role of biomarkers for the diagnosis of prion diseases: A narrative review. Medicina 2022 58 4 473 10.3390/medicina58040473 35454316
    [Google Scholar]
  27. Wieser H. Schindler K. Zumsteg D. EEG in creutzfeldt–jakob disease. Clin. Neurophysiol. 2006 117 5 935 951 10.1016/j.clinph.2005.12.007 16442343
    [Google Scholar]
  28. Sacco S. Paoletti M. Staffaroni A.M. Multimodal MRI staging for tracking progression and clinical-imaging correlation in sporadic Creutzfeldt-Jakob disease. Neuroimage Clin. 2021 30 102523 10.1016/j.nicl.2020.102523 33636540
    [Google Scholar]
  29. Alsiary R.A. Alghrably M. Saoudi A. Using NMR spectroscopy to investigate the role played by copper in prion diseases. Neurol. Sci. 2020 41 9 2389 2406 10.1007/s10072‑020‑04321‑9 32328835
    [Google Scholar]
  30. Biljan I. Ilc G. Plavec J. Understanding the Effect of Disease-Related Mutations on Human Prion Protein Structure: Insights From NMR Spectroscopy. Prog. Mol. Biol. Transl. Sci. 2017 150 83 103 10.1016/bs.pmbts.2017.06.006 28838676
    [Google Scholar]
  31. Telano L.N. Baker S. Physiology, Cerebral Spinal Fluid. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  32. Berg D. Holzmann C. Riess O. 14-3-3 proteins in the nervous system. Nat. Rev. Neurosci. 2003 4 9 752 762 10.1038/nrn1197 12951567
    [Google Scholar]
  33. Hermann P. Appleby B. Brandel J.P. Biomarkers and diagnostic guidelines for sporadic Creutzfeldt-Jakob disease. Lancet Neurol. 2021 20 3 235 246 10.1016/S1474‑4422(20)30477‑4 33609480
    [Google Scholar]
  34. Muayqil T. Gronseth G. Camicioli R. Evidence-based guideline: Diagnostic accuracy of CSF 14-3-3 protein in sporadic creutzfeldt-jakob disease. Neurology 2012 79 14 1499 1506 10.1212/WNL.0b013e31826d5fc3 22993290
    [Google Scholar]
  35. Wang Y. Mandelkow E. Tau in physiology and pathology. Nat. Rev. Neurosci. 2016 17 1 22 35 10.1038/nrn.2015.1 26631930
    [Google Scholar]
  36. Thompson A.G.B. Mead S.H. Review: Fluid biomarkers in the human prion diseases. Mol. Cell. Neurosci. 2019 97 81 92 10.1016/j.mcn.2018.12.003 30529227
    [Google Scholar]
  37. Zerr I. Villar-Piqué A. Schmitz V.E. Evaluation of human cerebrospinal fluid malate dehydrogenase 1 as a marker in genetic prion disease patients. Biomolecules 2019 9 12 800 10.3390/biom9120800 31795176
    [Google Scholar]
  38. Lieberman P.L. Settipane R.A. Azelastine nasal spray: A review of pharmacology and clinical efficacy in allergic and nonallergic rhinitis. Allergy Asthma Proc. 2003 24 2 95 105 12776442
    [Google Scholar]
  39. Dhaliwal J.S. Spurling B.C. Molla M. Duloxetine. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  40. Sastre J. Ebastine in the treatment of allergic rhinitis and urticaria: 30 years of clinical studies and real-world experience. J. Investig. Allergol. Clin. Immunol. 2020 30 3 156 168 10.18176/jiaci.0401 30977465
    [Google Scholar]
  41. Pubchem compound summary for CID 941361, flunarizine. 2021 Available from:https://pubchem.ncbi.nlm.nih.gov/compound/Flunarizine
  42. Sahi N. Nguyen R. Patel P. Loperamide. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  43. Pubchem compound summary for CID 4167, metixene. 2021 Available from:https://pubchem.ncbi.nlm.nih.gov/compound/Metixene
  44. Maille J.M. Hanna S.S. Shah D.N. Addition of clobazam successfully treating drug resistant seizures in Heidenhain variant Creutzfeldt Jakob disease: A case report. Epilepsy Behav. Rep. 2023 21 100585 10.1016/j.ebr.2023.100585 36698381
    [Google Scholar]
  45. Price J.R. Kheirbek R.E. Addressing the unmet needs of patients with rapidly progressive neurological disease: A case report of palliative care in creutzfeldt-jakob disease (CJD). Cureus 2024 16 2 55228 10.7759/cureus.55228 38558630
    [Google Scholar]
  46. Tabaee Damavandi P. Dove M.T. Pickersgill R.W. A review of drug therapy for sporadic fatal insomnia. Prion 2017 11 5 293 299 10.1080/19336896.2017.1368937 28976233
    [Google Scholar]
  47. Appleby B.S. Yobs D.R. Symptomatic treatment, care, and support of CJD patients. Handb. Clin. Neurol. 2018 153 399 408 10.1016/B978‑0‑444‑63945‑5.00021‑0 29887147
    [Google Scholar]
  48. Minikel E.V. Zhao H.T. Le J. Prion protein lowering is a disease-modifying therapy across prion disease stages, strains and endpoints. Nucleic Acids Res. 2020 48 19 10615 10631 10.1093/nar/gkaa616 32776089
    [Google Scholar]
  49. Wagner J. Ryazanov S. Leonov A. Anle138b: A novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson’s disease. Acta Neuropathol. 2013 125 6 795 813 10.1007/s00401‑013‑1114‑9 23604588
    [Google Scholar]
  50. Shim K.H. Sharma N. An S.S.A. Prion therapeutics: Lessons from the past. Prion 2022 16 1 265 294 10.1080/19336896.2022.2153551 36515657
    [Google Scholar]
  51. Abdelaziz D.H. Abdulrahman B.A. Gilch S. Schatzl H.M. Autophagy pathways in the treatment of prion diseases. Curr. Opin. Pharmacol. 2019 44 46 52 10.1016/j.coph.2019.04.013 31096117
    [Google Scholar]
  52. Napper S. Schatzl H.M. Vaccines for prion diseases: A realistic goal? Cell Tissue Res. 2023 392 1 367 392 10.1007/s00441‑023‑03749‑7 36764940
    [Google Scholar]
  53. Varges D. Manthey H. Heinemann U. Doxycycline in early CJD: A double-blinded randomised phase II and observational study. J. Neurol. Neurosurg. Psychiatry 2017 88 2 119 125 10.1136/jnnp‑2016‑313541 27807198
    [Google Scholar]
  54. McNiven K. Nihat A. Mok T.H. Enteral feeding is associated with longer survival in the advanced stages of prion disease. Brain Commun. 2019 1 1 fcz012 10.1093/braincomms/fcz012 32954259
    [Google Scholar]
  55. Goldman J.S. Vallabh S.M. Genetic counseling for prion disease: Updates and best practices. Genet. Med. 2022 24 10 1993 2003 10.1016/j.gim.2022.06.003 35819418
    [Google Scholar]
  56. Tsuboi Y. Doh-ura K. Yamada T. Continuous intraventricular infusion of pentosan polysulfate: Clinical trial against prion diseases. Neuropathology 2009 29 5 632 636 10.1111/j.1440‑1789.2009.01058.x 19788637
    [Google Scholar]
  57. Takatsuki H. Imamura M. Mori T. Atarashi R. Pentosan polysulfate induces low-level persistent prion infection keeping measurable seeding activity without PrP-res detection in Fukuoka-1 infected cell cultures. Sci. Rep. 2022 12 1 7923 10.1038/s41598‑022‑12049‑z 35562591
    [Google Scholar]
  58. Medd M.M. Cao Q. Perspectives on CRISPR genome editing to prevent prion diseases in high-risk individuals. Biomedicines 2024 12 8 1725 10.3390/biomedicines12081725 39200190
    [Google Scholar]
  59. Du Z. Valtierra S. Cardona L.R. Dunne S.F. Luan C.H. Li L. Identifying anti-prion chemical compounds using a newly established yeast high-throughput screening system. Cell Chem. Biol. 2019 26 12 1664 1680.e4 10.1016/j.chembiol.2019.10.004 31668517
    [Google Scholar]
  60. McDonnell G. Dehen C. Perrin A. Cleaning, disinfection and sterilization of surface prion contamination. J. Hosp. Infect. 2013 85 4 268 273 10.1016/j.jhin.2013.08.003 24074640
    [Google Scholar]
  61. Bovine spongiform encephalopathy (BSE). 2024 Available from:https://www.cdc.gov/mad-cow/php/animal-health/index.html
  62. Addressing foodborne threats to health: Policies, practices, and global coordination: Workshop summary 2006 Available from:https://www.ncbi.nlm.nih.gov/books/NBK57084/
  63. All about BSE (mad cow disease) 2020 Available from:https://www.fda.gov/animal-veterinary/animal-health-literacy/all-about-bse-mad-cow-disease
  64. Kufel J. Bargieł-Łączek K. Kocot S. What is machine learning, artificial neural networks and deep learning?—examples of practical applications in medicine. Diagnostics 2023 13 15 2582 10.3390/diagnostics13152582 37568945
    [Google Scholar]
  65. Lepakshi V.A. Machine learning and deep learning based AI tools for development of diagnostic tools. Computational Approaches for Novel Therapeutic and Diagnostic Designing to Mitigate SARS-CoV-2 Infection. Parihar A. Khan R. Kumar A. United States Academic Press 2022 399 420 10.1016/B978‑0‑323‑91172‑6.00011‑X
    [Google Scholar]
  66. Salvi M. Molinari F. Ciccarelli M. Testi R. Taraglio S. Imperiale D. Quantitative analysis of prion disease using an AI-powered digital pathology framework. Sci. Rep. 2023 13 1 17759 10.1038/s41598‑023‑44782‑4 37853094
    [Google Scholar]
  67. Rajagopal B.G. Arock M. Application of machine learning techniques for study of drug interactions using clinical parameters for creutzfeldt-jakob disease. 2020 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES) 2021 415 420 10.1109/IECBES48179.2021.9398847
    [Google Scholar]
  68. Watson N. Kurudzhu H. Green A. Summers D. Smith C. Pal S. Application of telehealth for comprehensive Creutzfeldt-Jakob disease surveillance in the United Kingdom. J. Neurol. Sci. 2021 420 117221 10.1016/j.jns.2020.117221 33223148
    [Google Scholar]
  69. Geissen M. Leidel F. Eiden M. From high-throughput cell culture screening to mouse model: Identification of new inhibitor classes against prion disease. ChemMedChem 2011 6 10 1928 1937 10.1002/cmdc.201100119 21755599
    [Google Scholar]
  70. Ishibashi D. Ishikawa T. Mizuta S. Novel compounds identified by structure-based prion disease drug discovery using in silico screening delay the progression of an illness in prion-infected mice. Neurotherapeutics 2020 17 4 1836 1849 10.1007/s13311‑020‑00903‑9 32767031
    [Google Scholar]
  71. Ishibashi D. Nakagaki T. Ishikawa T. Structure-based drug discovery for prion disease using a novel binding simulation. EBioMedicine 2016 9 238 249 10.1016/j.ebiom.2016.06.010 27333028
    [Google Scholar]
  72. Ali T. Hannaoui S. Nemani S. Oral administration of repurposed drug targeting Cyp46A1 increases survival times of prion infected mice. Acta Neuropathol. Commun. 2021 9 1 58 10.1186/s40478‑021‑01162‑1 33795005
    [Google Scholar]
  73. Jiang D. Nan H. Chen Z. Zou W.Q. Wu L. Genetic insights into drug targets for sporadic Creutzfeldt-Jakob disease: Integrative multi-omics analysis. Neurobiol. Dis. 2024 199 106599 10.1016/j.nbd.2024.106599 38996988
    [Google Scholar]
  74. Vanni S. Omics of prion diseases. Prog. Mol. Biol. Transl. Sci. 2017 150 409 431 10.1016/bs.pmbts.2017.05.004 28838672
    [Google Scholar]
  75. Casey C. Sleator R.D. Prions: Structure, function, evolution, and disease. Arch. Microbiol. 2025 207 1 1 10.1007/s00203‑024‑04200‑3 39572454
    [Google Scholar]
  76. Canas L.S. Sudre C.H. De Vita E. Prion disease diagnosis using subject-specific imaging biomarkers within a multi-kernel Gaussian process. Neuroimage Clin. 2019 24 102051 10.1016/j.nicl.2019.102051 31734530
    [Google Scholar]
  77. Abdallah S. Sharifa M.I Kh. Almadhoun M.K. The impact of artificial intelligence on optimizing diagnosis and treatment plans for rare genetic disorders. Cureus 2023 15 10 46860 10.7759/cureus.46860 37954711
    [Google Scholar]
  78. Rossi M. Baiardi S. Parchi P. Understanding prion strains: Evidence from studies of the disease forms affecting humans. Viruses 2019 11 4 309 10.3390/v11040309 30934971
    [Google Scholar]
  79. Kurt T.D. Sigurdson C.J. Cross-species transmission of CWD prions. Prion 2016 10 1 83 91 10.1080/19336896.2015.1118603 26809254
    [Google Scholar]
  80. Eid S. Lee S. Verkuyl C.E. The importance of prion research. Biochem. Cell Biol. 2024 102 6 448 471 10.1139/bcb‑2024‑0018 38996387
    [Google Scholar]
  81. Gambetti P. Kong Q. Zou W. Parchi P. Chen S.G. Sporadic and familial CJD: Classification and characterisation. Br. Med. Bull. 2003 66 1 213 239 10.1093/bmb/66.1.213 14522861
    [Google Scholar]
  82. Samek W. Wiegand T. Müller K. Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. 2017 Available from: https://arxiv.org/abs/1708.08296
    [Google Scholar]
  83. Teruya K. Doh-ura K. Insights from therapeutic studies for prp prion disease. Cold Spring Harb. Perspect. Med. 2017 7 3 a024430 10.1101/cshperspect.a024430 27836910
    [Google Scholar]
  84. Collins S.D. Discontinued drugs in 2006: Central and peripheral nervous system drugs. Expert Opin. Investig. Drugs 2007 16 11 1743 1751 10.1517/13543784.16.11.1743 17970635
    [Google Scholar]
  85. Zerr I. Poser S. Clinical diagnosis and differential diagnosis of CJD and vCJD. Acta Pathol Microbiol Scand Suppl 2002 110 1 88 98 10.1034/j.1600‑0463.2002.100111.x 12064260
    [Google Scholar]
  86. Baldwin K.J. Correll C.M. Prion disease. Semin. Neurol. 2019 39 4 428 439 10.1055/s‑0039‑1687841 31533183
    [Google Scholar]
  87. Ironside J.W. Ritchie D.L. Head M.W. Prion diseases. Handb. Clin. Neurol. 2018 145 393 403 10.1016/B978‑0‑12‑802395‑2.00028‑6 28987186
    [Google Scholar]
  88. Piñar-Morales R. Barrero-Hernández F. Aliaga-Martínez L. Human prion diseases: An overview. Medic. Clin. 2023 160 12 554 560 10.1016/j.medcli.2023.03.001
    [Google Scholar]
  89. Orrú C.D. Groveman B.R. Raymond L.D. Bank vole prion protein as an apparently universal substrate for RT-quic-based detection and discrimination of prion strains. PLoS Pathog. 2015 11 6 1004983 10.1371/journal.ppat.1004983 26086786
    [Google Scholar]
  90. Meyne F. Gloeckner S.F. Ciesielczyk B. Total prion protein levels in the cerebrospinal fluid are reduced in patients with various neurological disorders. J. Alzheimers Dis. 2009 17 4 863 873 10.3233/JAD‑2009‑1110 19542614
    [Google Scholar]
  91. Steinhoff B.J. Zerr I. Glatting M. Schulz-Schaeffer W. Poser S. Kretzschmar H.A. Diagnostic value of periodic complexes in Creutzfeldt-Jakob disease. Ann. Neurol. 2004 56 5 702 708 10.1002/ana.20261 15449324
    [Google Scholar]
  92. Zerr I. Bodemer M. Gefeller O. Detection of 14‐3‐3 protein in the cerebrospinal fluid supports the diagnosis of Creutzfeldt‐Jakob disease. Ann. Neurol. 1998 43 1 32 40 10.1002/ana.410430109 9450766
    [Google Scholar]
  93. Knight R. Brazier M. Collins S.J. Human prion diseases: Cause, clinical and diagnostic aspects. Contrib. Microbiol. 2004 11 72 97 10.1159/000077051 15077404
    [Google Scholar]
  94. Haïk S. Marcon G. Mallet A. Doxycycline in Creutzfeldt-Jakob disease: A phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2014 13 2 150 158 10.1016/S1474‑4422(13)70307‑7 24411709
    [Google Scholar]
  95. White A.R. Enever P. Tayebi M. Monoclonal antibodies inhibit prion replication and delay the development of prion disease. Nature 2003 422 6927 80 83 10.1038/nature01457 12621436
    [Google Scholar]
  96. Daude N. Westaway D. Shadoo/PrP (Sprn0/0/Prnp0/0) double knockout mice. Prion 2012 6 5 420 424 10.4161/pri.21867 22929230
    [Google Scholar]
  97. Puoti G. Bizzi A. Forloni G. Safar J.G. Tagliavini F. Gambetti P. Sporadic human prion diseases: Molecular insights and diagnosis. Lancet Neurol. 2012 11 7 618 628 10.1016/S1474‑4422(12)70063‑7 22710755
    [Google Scholar]
  98. Bradford B.M. Piccardo P. Ironside J.W. Mabbott N.A. Human prion diseases and the risk of their transmission during anatomical dissection. Clin. Anat. 2014 27 6 821 832 10.1002/ca.22403 24740900
    [Google Scholar]
  99. Outeiro T.F. Höglinger G. Lang A.E. Vieira T.C.R.G. Protein misfolding: Understanding biology to classify and treat synucleinopathies. J. Neural Transm. 2025 1 6 10.1007/s00702‑025‑02889‑0 39932548
    [Google Scholar]
  100. Zhao Y. Jaber V.R. Lukiw W.J. SARS-CoV-2, long COVID, prion disease and neurodegeneration. Front. Neurosci. 2022 16 1002770 10.3389/fnins.2022.1002770 36238082
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273381241250620114740
Loading
/content/journals/cnsnddt/10.2174/0118715273381241250620114740
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test