Skip to content
2000
image of Neurotoxicity of Endogenous Neurotoxin Salsolinol in Parkinson's Disease

Abstract

Salsolinol (SAL), an endogenous neurotoxin 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, is a dopamine metabolite that has been implicated in the pathogenesis of Parkinson’s disease (PD) due to its selective toxicity toward dopaminergic (DA) neurons. Experimental studies have demonstrated that SAL induces DA neuronal injury both and , thereby contributing to the PD pathogenesis. Given its specificity for nigral DA neurons, SAL serves as a more relevant model for studying PD-associated brain waste clearance and neurotoxicity, as it recapitulates the progressive nature of the disease. Emerging evidence indicates that SAL exerts its neurotoxic effects primarily through the induction of oxidative stress and regulated cell death in DA neurons. With the escalating global burden of PD and unmet need for therapies targeting multifactorial mechanisms, the dual role of SAL as both a dopamine derivative and mediator of protein aggregation links metabolic dysfunction to neurodegeneration, positioning it as a pivotal target for understanding sporadic PD and therapeutic development. In this review, we summarize current knowledge on the molecular mechanisms underlying SAL-induced neurotoxicity and its pathophysiological role in PD. By elucidating these mechanisms, this review provides valuable insights for future research in uncovering underestimated molecular targets for therapeutic intervention in PD.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273379940250704062355
2025-07-09
2025-09-29
Loading full text...

Full text loading...

References

  1. Tysnes O.B. Storstein A. Epidemiology of Parkinson’s disease. J. Neural Transm. (Vienna) 2017 124 8 901 905 10.1007/s00702‑017‑1686‑y 28150045
    [Google Scholar]
  2. Spillantini M.G. Schmidt M.L. Lee V.M.Y. Trojanowski J.Q. Jakes R. Goedert M. α-Synuclein in Lewy bodies. Nature 1997 388 6645 839 840 10.1038/42166 9278044
    [Google Scholar]
  3. Cookson M.R. α-Synuclein and neuronal cell death. Mol. Neurodegener. 2009 4 1 9 10.1186/1750‑1326‑4‑9 19193223
    [Google Scholar]
  4. Yasuda T. Nakata Y. Mochizuki H. α-Synuclein and neuronal cell death. Mol. Neurobiol. 2013 47 2 466 483 10.1007/s12035‑012‑8327‑0 22936307
    [Google Scholar]
  5. Bellini G. D’Antongiovanni V. Palermo G. α-Synuclein in Parkinson’s disease: From bench to bedside. Med. Res. Rev. 2024 45 3 909 10.1002/med.22091 39704040
    [Google Scholar]
  6. Sharma T. Kumar R. Mukherjee S. Neuronal vulnerability to degeneration in Parkinson’s disease and therapeutic approaches. CNS Neurol. Disord. Drug Targets 2024 23 6 715 730 10.2174/1871527322666230426155432 37185323
    [Google Scholar]
  7. Kurnik-Łucka M. Panula P. Bugajski A. Gil K. Salsolinol: An Unintelligible and double-faced molecule—lessons learned from in vivo and in vitro experiments. Neurotox. Res. 2018 33 2 485 514 10.1007/s12640‑017‑9818‑6 29063289
    [Google Scholar]
  8. Subhan I. Siddique Y.H. Modeling of Parkinson’s disease in different models. CNS Neurol. Disord. Drug Targets 2024 39354776
    [Google Scholar]
  9. Carlsson A. Lindqvist M. Magnusson T. Lindqvist M, Magnusson T. 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 1957 180 4596 1200 10.1038/1801200a0
    [Google Scholar]
  10. Porter C.C. Totaro J.A. Stone C.A. Effect of 6-hydroxydopamine and some other compounds on the concentration of norepinephrine in the hearts of mice. J. Pharmacol. Exp. Ther. 1963 140 3 308 316 10.1016/S0022‑3565(25)26555‑7 13972348
    [Google Scholar]
  11. Ungerstedt U. 6-hydroxy-dopamine induced degeneration of central monoamine neurons. Eur. J. Pharmacol. 1968 5 1 107 110 10.1016/0014‑2999(68)90164‑7 5718510
    [Google Scholar]
  12. Davis G.C. Williams A.C. Markey S.P. Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res. 1979 1 3 249 254 10.1016/0165‑1781(79)90006‑4 298352
    [Google Scholar]
  13. Langston J.W. Ballard P. Tetrud J.W. Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983 219 4587 979 980 10.1126/science.6823561 6823561
    [Google Scholar]
  14. Langston J.W. Forno L.S. Tetrud J. Reeves A.G. Kaplan J.A. Karluk D. Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahy-dropyridine exposure. Ann. Neurol. 1999 46 4 598 605 10.1002/1531‑8249(199910)46:4598:AID‑ANA73.0.CO;2‑F 10514096
    [Google Scholar]
  15. Chin-Chan M. Navarro-Yepes J. Quintanilla-Vega B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front. Cell. Neurosci. 2015 9 124 10.3389/fncel.2015.00124 25914621
    [Google Scholar]
  16. Bové J. Perier C. Neurotoxin-based models of Parkinson’s disease. Neuroscience 2012 211 51 76 10.1016/j.neuroscience.2011.10.057 22108613
    [Google Scholar]
  17. Carlsson A. A half-century of neurotransmitter research: Impact on neurology and psychiatry. Biosci. Rep. 2001 21 6 691 710 10.1023/A:1015556204669 12166820
    [Google Scholar]
  18. Kostrzewa R.M. Segura-Aguilar J. Novel mechanisms and approaches in the study of neurodegeneration and neuroprotection. A review. Neurotox. Res. 2003 5 6 375 383 10.1007/BF03033166 14715440
    [Google Scholar]
  19. Daubner S.C. Le T. Wang S. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch. Biochem. Biophys. 2011 508 1 1 12 10.1016/j.abb.2010.12.017 21176768
    [Google Scholar]
  20. Nagatsu T. Isoquinoline neurotoxins in the brain and Parkinson’s disease. Neurosci. Res. 1997 29 2 99 111 10.1016/S0168‑0102(97)00083‑7 9359458
    [Google Scholar]
  21. DeCuypere M. Lu Y. Miller D.D. LeDoux M.S. Regional distribution of tetrahydroisoquinoline derivatives in rodent, human, and Parkinson’s disease brain. J. Neurochem. 2008 107 5 1398 1413 10.1111/j.1471‑4159.2008.05709.x 19013830
    [Google Scholar]
  22. Fleming S.M. Mechanisms of gene-environment interactions in Parkinson’s disease. Curr. Environ. Health Rep. 2017 4 2 192 199 10.1007/s40572‑017‑0143‑2 28417442
    [Google Scholar]
  23. Sandler M. Carter S.B. Hunter K.R. Stern G.M. Tetrahydroisoquinoline alkaloids: In vivo metabolites of L-dopa in man. Nature 1973 241 5390 439 443 10.1038/241439a0 4705752
    [Google Scholar]
  24. Sjöquist B. Eriksson A. Winblad B. Brain salsolinol levels in alcoholism. Lancet 1982 1 8273 675 676 6121978
    [Google Scholar]
  25. Sjöquist B. Eriksson A. Winblad B. Salsolinol and catecholamines in human brain and their relation to alcoholism. Prog. Clin. Biol. Res. 1982 90 57 67 7111326
    [Google Scholar]
  26. Ung-Chhun N. Cheng B.Y. Pronger D.A. Alkaloid adducts in human brain: Coexistence of 1-carboxylated and noncarboxylated isoquinolines and beta-carbolines in alcoholics and nonalcoholics. Prog. Clin. Biol. Res. 1985 183 125 136 4048180
    [Google Scholar]
  27. Naoi M. Matsuura S. Takahashi T. Nagatsu T. A N-methyl-transferase in human brain catalyses N-methylation of 1,2,3,4-tetrahydroisoquinoline into N-methyl-1,2,3,4-tetrahydroisoquin-oline, a precursor of a dopaminergic neurotoxin, N-methyliso-quinolinium ion. Biochem. Biophys. Res. Commun. 1989 161 3 1213 1219 10.1016/0006‑291X(89)91371‑5 2742585
    [Google Scholar]
  28. Maruyama W. Nakahara D. Ota M. N-methylation of dopamine-derived 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, (R)-salsolinol, in rat brains: In vivo microdialysis study. J. Neurochem. 1992 59 2 395 400 10.1111/j.1471‑4159.1992.tb09384.x 1629715
    [Google Scholar]
  29. Voon S.M. Ng K.Y. Chye S.M. The mechanism of action of salsolinol in brain: Implications in Parkinson’s disease. CNS Neurol. Disord. Drug Targets 2021 19 10 725 740 10.2174/1871527319666200902134129 32881676
    [Google Scholar]
  30. Maruyama W. Dostert P. Naoi M. Dopamine-derived 1-methyl-6,7-dihydroxyisoquinolines as hydroxyl radical promoters and scavengers in the rat brain: In vivo and in vitro studies. J. Neurochem. 1995 64 6 2635 2643 10.1046/j.1471‑4159.1995.64062635.x 7760044
    [Google Scholar]
  31. Naoi M. Maruyama W. Zhang J.H. Takahashi T. Deng Y. Dostert P. Enzymatic oxidation of the dopaminergic neurotoxin, 1(R), 2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, into 1,2(N)-dimethyl-6,7-dihydroxyisoquinolinium ion. Life Sci. 1995 57 11 1061 1066 10.1016/0024‑3205(95)02051‑J 7658913
    [Google Scholar]
  32. Wanpen S. Govitrapong P. Shavali S. Sangchot P. Ebadi M. Salsolinol, a dopamine-derived tetrahydroisoquinoline, induces cell death by causing oxidative stress in dopaminergic SH-SY5Y cells, and the said effect is attenuated by metallothionein. Brain Res. 2004 1005 1-2 67 76 10.1016/j.brainres.2004.01.054 15044066
    [Google Scholar]
  33. Maruyama W. Abe T. Tohgi H. Dostert P. Naoi M. A dopaminergic neurotoxin, (R)‐N‐methylsalsolinol, increases in parkinsonian cerebrospinal fluid. Ann. Neurol. 1996 40 1 119 122 10.1002/ana.410400120 8687181
    [Google Scholar]
  34. Da Mesquita S. Louveau A. Vaccari A. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 2018 560 7717 185 191 10.1038/s41586‑018‑0368‑8 30046111
    [Google Scholar]
  35. Maruyama W. Sobue G. Matsubara K. Hashizume Y. Dostert P. Naoi M. A dopaminergic neurotoxin, 1(R), 2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, N-methyl(R)salsolinol, and its oxidation product, 1,2(N)-dimethyl-6,7-dihydroxyiso-quinolinium ion, accumulate in the nigro-striatal system of the human brain. Neurosci. Lett. 1997 223 1 61 64 10.1016/S0304‑3940(97)13389‑4 9058423
    [Google Scholar]
  36. Naoi M. Maruyama W. Dostert P. Binding of 1,2(N)-dimethyl-6,7-dihydroxy-isoquinolinium ion to melanin: Effects of ferrous and ferric ion on the binding. Neurosci. Lett. 1994 171 1-2 9 12 10.1016/0304‑3940(94)90591‑6 8084506
    [Google Scholar]
  37. Blesa J. Przedborski S. Parkinsona’s disease: Animal models and dopaminergic cell vulnerability. Front. Neuroanat. 2014 8 155 10.3389/fnana.2014.00155 25565980
    [Google Scholar]
  38. Chia S.J. Tan E.K. Chao Y.X. Historical perspective: Models of Parkinson’s disease. Int. J. Mol. Sci. 2020 21 7 2464 10.3390/ijms21072464 32252301
    [Google Scholar]
  39. Naoi M. Maruyama W. Dostert P. Dopamine-derived] endogenous 1(R),2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydro-isoquinoline, N-methyl-(R)-salsolinol, induced parkinsonism in rat: biochemical, pathological and behavioral studies. Brain Res. 1996 709 2 285 295 10.1016/0006‑8993(95)01325‑3 8833765
    [Google Scholar]
  40. Naoi M. Maruyama W. Akao Y. Yi H. Dopamine-derived endogenous N-methyl-(R)-salsolinol. Neurotoxicol. Teratol. 2002 24 5 579 591 10.1016/S0892‑0362(02)00211‑8 12200189
    [Google Scholar]
  41. Naoi M. Maruyama W. Nagy G.M. Dopamine-derived salsolinol derivatives as endogenous monoamine oxidase inhibitors: Occurrence, metabolism and function in human brains. Neurotoxicology 2004 25 1-2 193 204 10.1016/S0161‑813X(03)00099‑8 14697894
    [Google Scholar]
  42. Arkinson C. Walden H. Parkin function in Parkinson’s disease. Science 2018 360 6386 267 268 10.1126/science.aar6606 29674580
    [Google Scholar]
  43. Shimura H. Hattori N. Kubo S. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 2000 25 3 302 305 10.1038/77060 10888878
    [Google Scholar]
  44. Pickrell A.M. Youle R.J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 2015 85 2 257 273 10.1016/j.neuron.2014.12.007 25611507
    [Google Scholar]
  45. Su Y. Duan J. Ying Z. Increased vulnerability of parkin knock down PC12 cells to hydrogen peroxide toxicity: The role of salsolinol and NM-salsolinol. Neuroscience 2013 233 72 85 10.1016/j.neuroscience.2012.12.045 23291452
    [Google Scholar]
  46. Kheradpezhouh M. Shavali S. Ebadi M. Salsolinol causing parkinsonism activates endoplasmic reticulum-stress signaling pathways in human dopaminergic SK-N-SH cells. Neurosignals 2003 12 6 315 324 10.1159/000075314 14739562
    [Google Scholar]
  47. Zhang Y. Ma H. Xie B. Alpha-synuclein overexpression induced mitochondrial damage by the generation of endogenous neurotoxins in PC12 cells. Neurosci. Lett. 2013 547 65 69 10.1016/j.neulet.2013.05.012 23680459
    [Google Scholar]
  48. Bohr T. Hjorth P.G. Holst S.C. The glymphatic system: Current understanding and modeling. iScience 2022 25 9 104987 10.1016/j.isci.2022.104987 36093063
    [Google Scholar]
  49. Iliff J.J. Wang M. Liao Y. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 2012 4 147 147ra111 10.1126/scitranslmed.3003748 22896675
    [Google Scholar]
  50. Licastro E. Pignataro G. Iliff J.J. Glymphatic and lymphatic communication with systemic responses during physiological and pathological conditions in the central nervous system. Commun. Biol. 2024 7 1 229 10.1038/s42003‑024‑05911‑5 38402351
    [Google Scholar]
  51. Mastorakos P. McGavern D. The anatomy and immunology of vasculature in the central nervous system. Sci. Immunol. 2019 4 37 eaav0492 10.1126/sciimmunol.aav0492 31300479
    [Google Scholar]
  52. Zhang Y. Zhang C. He X.Z. Interaction between the glymphatic system and α-synuclein in Parkinson’s disease. Mol. Neurobiol. 2023 60 4 2209 2222 10.1007/s12035‑023‑03212‑2 36637746
    [Google Scholar]
  53. Si X. Guo T. Wang Z. Neuroimaging evidence of glymphatic system dysfunction in possible REM sleep behavior disorder and Parkinson’s disease. NPJ Parkinsons Dis. 2022 8 1 54 10.1038/s41531‑022‑00316‑9 35487930
    [Google Scholar]
  54. Smyth L.C.D. Xu D. Okar S.V. Identification of direct connections between the dura and the brain. Nature 2024 627 8002 165 173 10.1038/s41586‑023‑06993‑7 38326613
    [Google Scholar]
  55. Zhou C. Jiang X. Guan X. Glymphatic system dysfunction and risk of clinical milestones in patients with Parkinson disease. Eur. J. Neurol. 2024 31 12 e16521 10.1111/ene.16521 39425566
    [Google Scholar]
  56. Bae Y.J. Kim J.M. Choi B.S. Glymphatic function assessment in Parkinson’s disease using diffusion tensor image analysis along the perivascular space. Parkinsonism Relat. Disord. 2023 114 105767 10.1016/j.parkreldis.2023.105767 37523953
    [Google Scholar]
  57. Antkiewicz-Michaluk L. Krygowska-Wajs A. Szczudlik A. Romańska I. Vetulani J. Increase in salsolinol level in the cerebrospinal fluid of parkinsonian patients is related to dementia: Advantage of a new high-performance liquid chromatography methodology. Biol. Psychiatry 1997 42 6 514 518 10.1016/S0006‑3223(96)00408‑8 9285087
    [Google Scholar]
  58. Jiménez-Jiménez F.J. Alonso-Navarro H. García-Martín E. Agúndez J.A. Cerebrospinal fluid biochemical studies in patients with Parkinson’s disease: Toward a potential search for biomarkers for this disease. Front. Cell. Neurosci. 2014 8 369 25426023
    [Google Scholar]
  59. Das N. Dhamija R. Sarkar S. The role of astrocytes in the glymphatic network: A narrative review. Metab. Brain Dis. 2023 39 3 453 465 10.1007/s11011‑023‑01327‑y 38008886
    [Google Scholar]
  60. Verkman A.S. Ratelade J. Rossi A. Zhang H. Tradtrantip L. Aquaporin-4: Orthogonal array assembly, CNS functions, and role in neuromyelitis optica. Acta Pharmacol. Sin. 2011 32 6 702 710 10.1038/aps.2011.27 21552296
    [Google Scholar]
  61. Gudkov S.V. Burmistrov D.E. Kondakova E.V. An emerging role of astrocytes in aging/neuroinflammation and gut-brain axis with consequences on sleep and sleep disorders. Ageing Res. Rev. 2023 83 101775 10.1016/j.arr.2022.101775 36334910
    [Google Scholar]
  62. Oláh M. Bodnár I. Daniel G. Tóth B.E. Vecsernyés M. Nagy G.M. Role of salsolinol in the regulation of pituitary prolactin and peripheral dopamine release. Reprod. Med. Biol. 2011 10 3 143 151 10.1007/s12522‑011‑0086‑5 29662355
    [Google Scholar]
  63. Wang Y. Wu S. Li Q. Salsolinol induces Parkinson’s disease through activating NLRP3-dependent pyroptosis and the neuroprotective effect of acteoside. Neurotox. Res. 2022 40 6 1948 1962 10.1007/s12640‑022‑00608‑1 36454451
    [Google Scholar]
  64. Hablitz L.M. Plá V. Giannetto M. Circadian control of brain glymphatic and lymphatic fluid flow. Nat. Commun. 2020 11 1 4411 10.1038/s41467‑020‑18115‑2 32879313
    [Google Scholar]
  65. Du L. He X. Fan X. Pharmacological interventions targeting α-synuclein aggregation triggered REM sleep behavior disorder and early development of Parkinson’s disease. Pharmacol. Ther. 2023 249 108498 10.1016/j.pharmthera.2023.108498 37499913
    [Google Scholar]
  66. Nepozitek J. Dusek P. Sonka K. Glymphatic system, sleep, and Parkinson’s disease: Interconnections, research opportunities, and potential for disease modification. Sleep 2025 48 1 zsae251 10.1093/sleep/zsae251 39450429
    [Google Scholar]
  67. Li Y. Zhang T. Wang C. The impact of sleep disorders on glymphatic function in Parkinson’s disease using diffusion tensor MRI. Acad. Radiol. 2024 32 4 2209 10.1016/j.acra.2024.11.030 39627057
    [Google Scholar]
  68. Smolen T. Collins A. Behavioral effects of ethanol and salsolinol in mice selectively bred for acute sensitivity to ethanol. Pharmacol. Biochem. Behav. 1984 20 2 281 287 10.1016/0091‑3057(84)90255‑7 6718455
    [Google Scholar]
  69. Sies H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015 4 180 183 10.1016/j.redox.2015.01.002 25588755
    [Google Scholar]
  70. Trachootham D. Lu W. Ogasawara M.A. Valle N.R-D. Huang P. Redox regulation of cell survival. Antioxid. Redox Signal. 2008 10 8 1343 1374 10.1089/ars.2007.1957 18522489
    [Google Scholar]
  71. Jung Y.J. Surh Y.J. Oxidative DNA damage and cytotoxicity induced by copper-stimulated redox cycling of salsolinol, a neurotoxic tetrahydroisoquinoline alkaloid. Free Radic. Biol. Med. 2001 30 12 1407 1417 10.1016/S0891‑5849(01)00548‑2 11390186
    [Google Scholar]
  72. Jung Y.J. Youn J.Y. Ryu J.C. Surh Y.J. Salsolinol, a naturally occurring tetrahydroisoquinoline alkaloid, induces DNA damage and chromosomal aberrations in cultured Chinese hamster lung fibroblast cells. Mutat. Res. 2001 474 1-2 25 33 10.1016/S0027‑5107(00)00156‑1 11239960
    [Google Scholar]
  73. Kim H.J. Soh Y. Jang J.H. Lee J.S. Oh Y.J. Surh Y.J. Differential cell death induced by salsolinol with and without copper: Possible role of reactive oxygen species. Mol. Pharmacol. 2001 60 3 440 449 10.1016/S0026‑895X(24)12605‑3 11502874
    [Google Scholar]
  74. Martinez-Alvarado P. Dagnino-Subiabre A. Paris I. Possible role of salsolinol quinone methide in the decrease of RCSN-3 cell survival. Biochem. Biophys. Res. Commun. 2001 283 5 1069 1076 10.1006/bbrc.2001.4907 11355881
    [Google Scholar]
  75. Surh Y.J. Jung Y.J. Jang J.H. Lee J.S. Yoon H.R. Iron enhancement of oxidative DNA damage and neuronal cell death induced by salsolinol. J. Toxicol. Environ. Health A 2002 65 5-6 473 488 10.1080/15287390252808127 11936226
    [Google Scholar]
  76. Hashimoto M. Takeda A. Hsu L.J. Takenouchi T. Masliah E. Role of cytochrome c as a stimulator of alpha-synuclein aggregation in Lewy body disease. J. Biol. Chem. 1999 274 41 28849 28852 10.1074/jbc.274.41.28849 10506125
    [Google Scholar]
  77. Kang J.H. Salsolinol, a catechol neurotoxin, induces oxidative modification of cytochrome c. BMB Rep. 2013 46 2 119 123 10.5483/BMBRep.2013.46.2.220 23433116
    [Google Scholar]
  78. Sian J. Dexter D.T. Lees A.J. Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann. Neurol. 1994 36 3 348 355 10.1002/ana.410360305 8080242
    [Google Scholar]
  79. Garrido M. Tereshchenko Y. Zhevtsova Z. Taschenberger G. Bähr M. Kügler S. Glutathione depletion and overproduction both initiate degeneration of nigral dopaminergic neurons. Acta Neuropathol. 2011 121 4 475 485 10.1007/s00401‑010‑0791‑x 21191602
    [Google Scholar]
  80. Wszelaki N. Melzig M.F. Low level of glutathione can intensify the toxic effect of salsolinol in SH-SY5Y neuroblastoma cell line. Neurotoxicology 2012 33 3 424 428 10.1016/j.neuro.2012.04.007 22525935
    [Google Scholar]
  81. Kang J.H. Salsolinol, a tetrahydroisoquinoline catechol neurotoxin, induces human Cu,Zn-superoxidie dismutase modificaiton. J. Biochem. Mol. Biol. 2007 40 5 684 689 17927901
    [Google Scholar]
  82. Willets J.M. Lambert D.G. Lunec J. Griffiths H.R. Studies on the neurotoxicity of 6,7-dihydroxy-1-methyl-1,2,3,4-tetrahydroiso-quinoline (salsolinol) in SH-SY5Y cells. Eur. J. Pharmacol. (Environ. Toxicol. Pharmacol. Sect.) 1995 293 4 319 326 10.1016/0926‑6917(95)90051‑9 8748684
    [Google Scholar]
  83. Skulachev V.P. Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett. 1998 423 3 275 280 10.1016/S0014‑5793(98)00061‑1 9515723
    [Google Scholar]
  84. Bras M. Queenan B. Susin S.A. Programmed cell death via mitochondria: Different modes of dying. Biochemistry (Mosc.) 2005 70 2 231 239 10.1007/s10541‑005‑0105‑4 15807663
    [Google Scholar]
  85. Yang J. Liu X. Bhalla K. Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked. Science 1997 275 5303 1129 1132 10.1126/science.275.5303.1129 9027314
    [Google Scholar]
  86. Bollimuntha S. Ebadi M. Singh B.B. TRPC1 protects human SH-SY5Y cells against salsolinol-induced cytotoxicity by inhibiting apoptosis. Brain Res. 2006 1099 1 141 149 10.1016/j.brainres.2006.04.104 16765919
    [Google Scholar]
  87. Copeland R.L. Das J.R. Kanaan Y.M. Taylor R.E. Tizabi Y. Antiapoptotic effects of nicotine in its protection against salsolinol-induced cytotoxicity. Neurotox. Res. 2007 12 1 61 69 10.1007/BF03033901 17513200
    [Google Scholar]
  88. Das J.R. Tizabi Y. Additive protective effects of donepezil and nicotine against salsolinol-induced cytotoxicity in SH-SY5Y cells. Neurotox. Res. 2009 16 3 194 204 10.1007/s12640‑009‑9040‑2 19526284
    [Google Scholar]
  89. Brown D. Tamas A. Reglödi D. Tizabi Y. PACAP protects against salsolinol-induced toxicity in dopaminergic SH-SY5Y cells: Implication for Parkinson’s disease. J. Mol. Neurosci. 2013 50 3 600 607 10.1007/s12031‑013‑0015‑7 23625270
    [Google Scholar]
  90. Qualls Z. Brown D. Ramlochansingh C. Hurley L.L. Tizabi Y. Protective effects of curcumin against rotenone and salsolinol-induced toxicity: Implications for Parkinson’s disease. Neurotox. Res. 2014 25 1 81 89 10.1007/s12640‑013‑9433‑0 24122264
    [Google Scholar]
  91. Xiong Q. Zheng X. Wang J. Sal synthase induced cytotoxicity of PC12 cells through production of the dopamine metabolites salsolinol and N-methyl-salsolinol. J. Integr. Neurosci. 2022 21 2 71 10.31083/j.jin2102071 35364659
    [Google Scholar]
  92. Elias E.E. Lyons B. Muruve D.A. Gasdermins and pyroptosis in the kidney. Nat. Rev. Nephrol. 2023 19 5 337 350 10.1038/s41581‑022‑00662‑0 36596918
    [Google Scholar]
  93. Jin X. Ma Y. Liu D. Huang Y. Role of pyroptosis in the pathogenesis and treatment of diseases. MedComm 2023 4 3 e249 10.1002/mco2.249
    [Google Scholar]
  94. Shi J. Zhao Y. Wang K. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015 526 7575 660 665 10.1038/nature15514 26375003
    [Google Scholar]
  95. Ding J. Wang K. Liu W. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 2016 535 7610 111 116 10.1038/nature18590 27281216
    [Google Scholar]
  96. Evavold C.L. Ruan J. Tan Y. Xia S. Wu H. Kagan J.C. The pore-forming protein Gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 2018 48 1 35 44.e6 10.1016/j.immuni.2017.11.013 29195811
    [Google Scholar]
  97. Bergsbaken T. Fink S.L. den Hartigh A.B. Loomis W.P. Cookson B.T. Coordinated host responses during pyroptosis: Caspase-1-dependent lysosome exocytosis and inflammatory cytokine maturation. J. Immunol. 2011 187 5 2748 2754 10.4049/jimmunol.1100477 21804020
    [Google Scholar]
  98. He W. Wan H. Hu L. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 2015 25 12 1285 1298 10.1038/cr.2015.139 26611636
    [Google Scholar]
  99. Yu J. Nagasu H. Murakami T. Inflammasome activation leads to Caspase-1–dependent mitochondrial damage and block of mitophagy. Proc. Natl. Acad. Sci. USA 2014 111 43 15514 15519 10.1073/pnas.1414859111 25313054
    [Google Scholar]
  100. Wei X. Xie F. Zhou X. Role of pyroptosis in inflammation and cancer. Cell. Mol. Immunol. 2022 19 9 971 992 10.1038/s41423‑022‑00905‑x 35970871
    [Google Scholar]
  101. Yu P. Zhang X. Liu N. Tang L. Peng C. Chen X. Pyroptosis: Mechanisms and diseases. Signal Transduct. Target. Ther. 2021 6 1 128 10.1038/s41392‑021‑00507‑5 33776057
    [Google Scholar]
  102. Moujalled D. Strasser A. Liddell J.R. Molecular mechanisms of cell death in neurological diseases. Cell Death Differ. 2021 28 7 2029 2044 10.1038/s41418‑021‑00814‑y 34099897
    [Google Scholar]
  103. Oladapo A. Jackson T. Menolascino J. Periyasamy P. Role of pyroptosis in the pathogenesis of various neurological diseases. Brain Behav. Immun. 2024 117 428 446 10.1016/j.bbi.2024.02.001 38336022
    [Google Scholar]
  104. Wan S. Zhang G. Liu R. Abbas M.N. Cui H. Pyroptosis, ferroptosis, and autophagy cross-talk in glioblastoma opens up new avenues for glioblastoma treatment. Cell Commun. Signal. 2023 21 1 115 10.1186/s12964‑023‑01108‑1 37208730
    [Google Scholar]
  105. Doherty J. Baehrecke E.H. Life, death and autophagy. Nat. Cell Biol. 2018 20 10 1110 1117 10.1038/s41556‑018‑0201‑5 30224761
    [Google Scholar]
  106. Mizushima N. Komatsu M. Autophagy: Renovation of cells and tissues. Cell 2011 147 4 728 741 10.1016/j.cell.2011.10.026 22078875
    [Google Scholar]
  107. Li X. He S. Ma B. Autophagy and autophagy-related proteins in cancer. Mol. Cancer 2020 19 1 12 10.1186/s12943‑020‑1138‑4 31969156
    [Google Scholar]
  108. Levine B. Kroemer G. Biological functions of autophagy genes: A disease perspective. Cell 2019 176 1-2 11 42 10.1016/j.cell.2018.09.048 30633901
    [Google Scholar]
  109. Wang J. Ran Y. Li Z. Salsolinol as an RNA m6A methylation inducer mediates dopaminergic neuronal death by regulating YAP1 and autophagy. Neural Regen. Res. 2025 20 3 887 899 10.4103/NRR.NRR‑D‑23‑01592 38886960
    [Google Scholar]
  110. Dixon S.J. Lemberg K.M. Lamprecht M.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012 149 5 1060 1072 10.1016/j.cell.2012.03.042 22632970
    [Google Scholar]
  111. Lei G. Zhuang L. Gan B. Targeting ferroptosis as a vulnerability in cancer. Nat. Rev. Cancer 2022 22 7 381 396 10.1038/s41568‑022‑00459‑0 35338310
    [Google Scholar]
  112. Gu Y. Li Y. Wang J. Zhang L. Zhang J. Wang Y. Targeting ferroptosis: Paving new roads for drug design and discovery. Eur. J. Med. Chem. 2023 247 115015 10.1016/j.ejmech.2022.115015 36543035
    [Google Scholar]
  113. Wang Y Wu S Li Q Sun H Wang H Pharmacological inhibition of ferroptosis as a therapeutic target for neurodegenerative diseases and strokes. Adv Sci (Weinh) 2023 10 24 e2300325 10.1002/advs.202300325
    [Google Scholar]
  114. Wang Y. Wu X. Ren Z. Overcoming cancer chemotherapy resistance by the induction of ferroptosis. Drug Resist. Updat. 2023 66 100916 10.1016/j.drup.2022.100916 36610291
    [Google Scholar]
  115. Sun Y. Xia X. Basnet D. Zheng J.C. Huang J. Liu J. Mechanisms of ferroptosis and emerging links to the pathology of neurodegenerative diseases. Front. Aging Neurosci. 2022 14 904152 10.3389/fnagi.2022.904152 35837484
    [Google Scholar]
  116. Bersuker K. Hendricks J.M. Li Z. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 2019 575 7784 688 692 10.1038/s41586‑019‑1705‑2 31634900
    [Google Scholar]
  117. Doll S. Freitas F.P. Shah R. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 2019 575 7784 693 698 10.1038/s41586‑019‑1707‑0 31634899
    [Google Scholar]
  118. Kraft V.A.N. Bezjian C.T. Pfeiffer S. GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through Lipid Remodeling. ACS Cent. Sci. 2020 6 1 41 53 10.1021/acscentsci.9b01063 31989025
    [Google Scholar]
  119. Soula M. Weber R.A. Zilka O. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat. Chem. Biol. 2020 16 12 1351 1360 10.1038/s41589‑020‑0613‑y 32778843
    [Google Scholar]
  120. Mao C. Liu X. Zhang Y. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 2021 593 7860 586 590 10.1038/s41586‑021‑03539‑7 33981038
    [Google Scholar]
  121. Liang D. Feng Y. Zandkarimi F. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell 2023 186 13 2748 2764.e22 10.1016/j.cell.2023.05.003 37267948
    [Google Scholar]
  122. Chen X. Kang R. Kroemer G. Tang D. Ferroptosis in infection, inflammation, and immunity. J. Exp. Med. 2021 218 6 e20210518 10.1084/jem.20210518 33978684
    [Google Scholar]
  123. Chen X. Li J. Kang R. Klionsky D.J. Tang D. Ferroptosis: Machinery and regulation. Autophagy 2021 17 9 2054 2081 10.1080/15548627.2020.1810918 32804006
    [Google Scholar]
  124. Liang D. Minikes A.M. Jiang X. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol. Cell 2022 82 12 2215 2227 10.1016/j.molcel.2022.03.022 35390277
    [Google Scholar]
  125. Ma J. Liu J. Chen S. Understanding the mechanism of ferroptosis in neurodegenerative diseases. Front. Biosci. (Landmark Ed) 2024 29 8 291 10.31083/j.fbl2908291 39206899
    [Google Scholar]
  126. Wang G. Zhuang W. Zhou Y. 17β-estradiol alleviated ferroptotic neuroinflammation by suppressing ATF4 in mouse model of Parkinson’s disease. Cell Death Discov. 2024 10 1 507 10.1038/s41420‑024‑02273‑z 39702495
    [Google Scholar]
  127. Zhou M. Xu K. Ge J. Targeting ferroptosis in Parkinson’s disease: Mechanisms and emerging therapeutic strategies. Int. J. Mol. Sci. 2024 25 23 13042 10.3390/ijms252313042 39684753
    [Google Scholar]
  128. Wang H. Wu S. Jiang X. Acteoside alleviates salsolinol-induced Parkinson’s disease by inhibiting ferroptosis via activating Nrf2/SLC7A11/GPX4 pathway. Exp. Neurol. 2025 385 115084 10.1016/j.expneurol.2024.115084 39631720
    [Google Scholar]
  129. Alrouji M. Anwar S. Venkatesan K. Iron homeostasis and neurodegeneration in the ageing brain: Insight into ferroptosis pathways. Ageing Res. Rev. 2024 102 102575 10.1016/j.arr.2024.102575 39515619
    [Google Scholar]
  130. Yang K. Zeng L. Zeng J. Research progress in the molecular mechanism of ferroptosis in Parkinson’s disease and regulation by natural plant products. Ageing Res. Rev. 2023 91 102063 10.1016/j.arr.2023.102063 37673132
    [Google Scholar]
  131. Ding X. Gao L. Han Z. Ferroptosis in Parkinson’s disease: Molecular mechanisms and therapeutic potential. Ageing Res. Rev. 2023 91 102077 10.1016/j.arr.2023.102077 37742785
    [Google Scholar]
  132. Yao Z. Jiao Q. Du X. Ferroptosis in Parkinson’s disease: The iron-related degenerative disease. Ageing Res. Rev. 2024 101 102477 10.1016/j.arr.2024.102477 39218077
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273379940250704062355
Loading
/content/journals/cnsnddt/10.2174/0118715273379940250704062355
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test