Skip to content
2000
image of Nicotine Dependence-Induced Withdrawal Syndrome: Mechanistic Insights and Therapeutic Implications

Abstract

Tobacco consumption is a worldwide issue that has significant health repercussions. Each year, related diseases result in an expenditure of billions of dollars in healthcare costs and diminished productivity. People are becoming more conscious of the fact that quitting smoking at any age can prolong life and lessen many of the negative consequences of smoking. While there are currently some treatment options available, there is still a substantial demand for novel and efficient pharmacotherapies to assist smokers in achieving and sustaining long-term sobriety. The symptoms of nicotine withdrawal are a significant obstacle to cessation and must be alleviated to prevent early recurrence. This article has discussed the neurotransmitters that are responsible for nicotine reward and the anatomical structures implicated in nicotine withdrawal. A simple hypothesis regarding tobacco addiction posits that nicotine is the primary addictive constituent of tobacco. Anxiety, depression, and stress have intricate effects on every facet of nicotine dependency, including the withdrawal experience. Smokers commonly utilize smoking as a means to reduce tension and anxiety, as it is believed to have a relaxing effect. This increasing knowledge offers a detailed understanding of the mechanisms behind existing and future smoking cessation treatments. Therefore, nicotine withdrawal is a significant factor influencing continued nicotine product use and contributes to unsuccessful cessation attempts. In conclusion, nicotine withdrawal may lead to cognitive changes and attention disturbances in the short term and enhance exercise-related physical abilities in the long term.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273379698251030041410
2026-01-16
2026-02-03
Loading full text...

Full text loading...

References

  1. Wittenberg R.E. Wolfman S.L. De Biasi M. Dani J.A. Nicotinic acetylcholine receptors and nicotine addiction: A brief introduction. Neuropharmacology 2020 177 108256 10.1016/j.neuropharm.2020.108256 32738308
    [Google Scholar]
  2. Benowitz N.L. Neurobiology of nicotine addiction: Implications for smoking cessation treatment. Am. J. Med. 2008 121 4 S3 S10 10.1016/j.amjmed.2008.01.015 18342164
    [Google Scholar]
  3. Adan A. Sánchez-Turet M. Effects of smoking on diurnal variations of subjective activation and mood. Hum. Psychopharmacol. 2000 15 4 287 293 10.1002/1099‑1077(200006)15:4<287:AID‑HUP175>3.0.CO;2‑L 12404324
    [Google Scholar]
  4. Tiwari R.K. Sharma V. Pandey R.K. Shukla S.S. Nicotine addiction: Neurobiology and mechanism. J. Pharmacopuncture 2020 23 1 1 7 10.3831/KPI.2020.23.001 32322429
    [Google Scholar]
  5. Chadda R.K. Sengupta S.N. Tobacco use by Indian adolescents. Tob. Induc. Dis. 2003 1 2 111 119 10.1186/1617‑9625‑1‑2‑111 19570251
    [Google Scholar]
  6. Morissette S.B. Tull M.T. Gulliver S.B. Kamholz B.W. Zimering R.T. Anxiety, anxiety disorders, tobacco use, and nicotine: A critical review of interrelationships. Psychol. Bull. 2007 133 2 245 272 10.1037/0033‑2909.133.2.245 17338599
    [Google Scholar]
  7. Wani S.N. Grewal A.K. Khan H. Singh T.G. Elucidating the molecular symphony: Unweaving the transcriptional & epigenetic pathways underlying neuroplasticity in opioid dependence and withdrawal. Psychopharmacology 2024 241 10 1955 1981 10.1007/s00213‑024‑06684‑9 39254835
    [Google Scholar]
  8. Malin D.H. Nicotine dependence. Pharmacol. Biochem. Behav. 2001 70 4 551 559 10.1016/S0091‑3057(01)00699‑2 11796153
    [Google Scholar]
  9. Malin D.H. Goyarzu P. Rodent models of nicotine withdrawal syndrome. Handb. Exp. Pharmacol. 2009 192 401 434 10.1007/978‑3‑540‑69248‑5_14
    [Google Scholar]
  10. Adan A. Prat G. Sánchez-Turet M. Effects of nicotine dependence on diurnal variations of subjective activation and mood. Addiction 2004 99 12 1599 1607 10.1111/j.1360‑0443.2004.00908.x 15585051
    [Google Scholar]
  11. McLaughlin I. Dani J.A. De Biasi M. Nicotine withdrawal. Curr. Top. Behav. Neurosci. 2015 24 99 123 10.1007/978‑3‑319‑13482‑6_4
    [Google Scholar]
  12. Markou A. Neurobiology of nicotine dependence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008 363 1507 3159 3168 10.1098/rstb.2008.0095 18640919
    [Google Scholar]
  13. Picciotto MR Mineur YS Molecules and circuits involved in nicotine addiction: The many faces of smoking. Neuropharmacology 2014 76 0 0 545 53 10.1016/j.neuropharm.2013.04.028 23632083
    [Google Scholar]
  14. Fedotov I.A. Shustov D.I. Substance-induced schizophrenia: Possible pathogenetic mechanisms. Nevrol. Vestn. 2025 LVII 1 46 53 10.17816/nb641882
    [Google Scholar]
  15. Benowitz N.L. Nicotine addiction. N. Engl. J. Med. 2010 362 24 2295 2303 10.1056/NEJMra0809890 20554984
    [Google Scholar]
  16. Benowitz N.L. Pharmacology of nicotine: Addiction, smoking-induced disease, and therapeutics. Annu. Rev. Pharmacol. Toxicol. 2009 49 57 71 10.1146/annurev.pharmtox.48.113006.094742
    [Google Scholar]
  17. Posadas I. López-Hernández B. Ceña V. Nicotinic receptors in neurodegeneration. Curr. Neuropharmacol. 2013 11 3 298 314 10.2174/1570159X11311030005 24179465
    [Google Scholar]
  18. Dani J.A. Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu. Rev. Pharmacol. Toxicol. 2007 47 699 729 10.1146/annurev.pharmtox.47.120505.105214
    [Google Scholar]
  19. Balfour D.J. The role of mesoaccumbens dopamine in nicotine dependence. Curr. Top. Behav. Neurosci. 2015 24 55 98 10.1007/978‑3‑319‑13482‑6_3
    [Google Scholar]
  20. Liu C. Fang X. Wu Q. Jin G. Zhen X. Prefrontal cortex gates acute morphine action on dopamine neurons in the ventral tegmental area. Neuropharmacology 2015 95 299 308 10.1016/j.neuropharm.2015.03.037 25882828
    [Google Scholar]
  21. Uhl G.R. Koob G.F. Cable J. The neurobiology of addiction. Ann. N. Y. Acad. Sci. 2019 1451 1 5 28 10.1111/nyas.13989 30644552
    [Google Scholar]
  22. Bombardi C. Delicata F. Tagliavia C. Acute and chronic nicotine exposures differentially affect central serotonin 2A receptor function: Focus on the lateral habenula. Int. J. Mol. Sci. 2020 21 5 1873 10.3390/ijms21051873 32182934
    [Google Scholar]
  23. Pistillo F. Clementi F. Zoli M. Gotti C. Nicotinic, glutamatergic and dopaminergic synaptic transmission and plasticity in the mesocorticolimbic system: Focus on nicotine effects. Prog. Neurobiol. 2015 124 1 27 10.1016/j.pneurobio.2014.10.002 25447802
    [Google Scholar]
  24. Kenny P.J. Markou A. Conditioned nicotine withdrawal profoundly decreases the activity of brain reward systems. J. Neurosci. 2005 25 26 6208 6212 10.1523/JNEUROSCI.4785‑04.2005 15987950
    [Google Scholar]
  25. Markou A. Metabotropic glutamate receptor antagonists: Novel therapeutics for nicotine dependence and depression? Biol. Psychiatry 2007 61 1 17 22 10.1016/j.biopsych.2006.03.053 16876138
    [Google Scholar]
  26. Mansvelder H.D. McGehee D.S. Cellular and synaptic mechanisms of nicotine addiction. J. Neurobiol. 2002 53 4 606 617 10.1002/neu.10148 12436424
    [Google Scholar]
  27. Fu Y. Matta S.G. Gao W. Brower V.G. Sharp B.M. Systemic nicotine stimulates dopamine release in nucleus accumbens: Re-evaluation of the role of N-methyl-D-aspartate receptors in the ventral tegmental area. J. Pharmacol. Exp. Ther. 2000 294 2 458 465 10.1016/S0022‑3565(24)39093‑7 10900219
    [Google Scholar]
  28. D’Souza M.S. Markou A. The “stop” and “go” of nicotine dependence: Role of GABA and glutamate. Cold Spring Harb. Perspect. Med. 2013 3 6 a012146 10.1101/cshperspect.a012146 23732855
    [Google Scholar]
  29. Gong B. Boor P.J. The role of amine oxidases in xenobiotic metabolism. Expert Opin. Drug Metab. Toxicol. 2006 2 4 559 571 10.1517/17425255.2.4.559 16859404
    [Google Scholar]
  30. Lewis A. Miller J.H. Lea R.A. Monoamine oxidase and tobacco dependence. Neurotoxicology 2007 28 1 182 195 10.1016/j.neuro.2006.05.019 16859748
    [Google Scholar]
  31. Jensen K.P. DeVito E.E. Sofuoglu M. How intravenous nicotine administration in smokers can inform tobacco regulatory science. Tob. Regul. Sci. 2016 2 4 452 463 10.18001/TRS.2.4.14 29082299
    [Google Scholar]
  32. LeSage M.G. Keyler D.E. Collins G. Pentel P.R. Effects of continuous nicotine infusion on nicotine self-administration in rats: Relationship between continuously infused and self-administered nicotine doses and serum concentrations. Psychopharmacology 2003 170 3 278 286 10.1007/s00213‑003‑1539‑2 12898121
    [Google Scholar]
  33. Smith D.V. Uteshev V.V. Heterogeneity of nicotinic acetylcholine receptor expression in the caudal nucleus of the solitary tract. Neuropharmacology 2008 54 2 445 453 10.1016/j.neuropharm.2007.10.018 18078963
    [Google Scholar]
  34. Simpson S. Shankar K. Kimbrough A. George O. Role of corticotropin-releasing factor in alcohol and nicotine addiction. Brain Res. 2020 1740 146850 10.1016/j.brainres.2020.146850
    [Google Scholar]
  35. Jackson KJ Muldoon PP De Biasi M Damaj MI New mechanisms and perspectives in nicotine withdrawal. Neuropharmacology 2015 96 Pt B 223 34 10.1016/j.neuropharm.2014.11.009 25433149
    [Google Scholar]
  36. Bierut L.J. Stitzel J.A. Wang J.C. Variants in nicotinic receptors and risk for nicotine dependence. Am. J. Psychiatry 2008 165 9 1163 1171 10.1176/appi.ajp.2008.07111711 18519524
    [Google Scholar]
  37. Feng Y. Niu T. Xing H. A common haplotype of the nicotinic acetylcholine receptor α4 subunit gene is associated with vulnerability to nicotine addiction in men. Am. J. Hum. Genet. 2004 75 1 112 121 10.1086/422194 15154117
    [Google Scholar]
  38. Li M.D. The genetics of nicotine dependence. Curr. Psychiatry Rep. 2006 8 2 158 164 10.1007/s11920‑006‑0016‑0 16539894
    [Google Scholar]
  39. Sharma D. Khan H. Kumar A. Grewal A.K. Dua K. Singh T.G. Pharmacological modulation of HIF-1 in the treatment of neuropsychiatric disorders. J. Neural Transm. 2023 130 12 1523 1535 10.1007/s00702‑023‑02698‑3 37740098
    [Google Scholar]
  40. Kaur P. Khan H. Grewal A.K. Dua K. Singh T.G. Therapeutic potential of NOX inhibitors in neuropsychiatric disorders. Psychopharmacology 2023 240 9 1825 1840 10.1007/s00213‑023‑06424‑5 37507462
    [Google Scholar]
  41. Kumar S. Behl T. Sachdeva M. Implicating the effect of ketogenic diet as a preventive measure to obesity and diabetes mellitus. Life Sci. 2021 264 118661 10.1016/j.lfs.2020.118661 33121986
    [Google Scholar]
  42. Molas S. DeGroot S.R. Zhao-Shea R. Tapper A.R. Anxiety and nicotine dependence: Emerging role of the habenulo-interpeduncular axis. Trends Pharmacol. Sci. 2017 38 2 169 180 10.1016/j.tips.2016.11.001 27890353
    [Google Scholar]
  43. De Biasi M. Dani J.A. Reward, addiction, withdrawal to nicotine. Annu. Rev. Neurosci. 2011 34 1 105 130 10.1146/annurev‑neuro‑061010‑113734 21438686
    [Google Scholar]
  44. Salas R. Sturm R. Boulter J. De Biasi M. Nicotinic receptors in the habenulo-interpeduncular system are necessary for nicotine withdrawal in mice. J. Neurosci. 2009 29 10 3014 3018 10.1523/JNEUROSCI.4934‑08.2009 19279237
    [Google Scholar]
  45. Arora A. Behl T. Sehgal A. Unravelling the involvement of gut microbiota in type 2 diabetes mellitus. Life Sci. 2021 273 119311 10.1016/j.lfs.2021.119311 33662428
    [Google Scholar]
  46. Khan H. Tiwari C. Grewal A.K. Singh T.G. Chauhan S. Batiha G.E.S. Pharmacological modulation of phosphodiesterase-7 as a novel strategy for neurodegenerative disorders. Inflammopharmacology 2022 30 6 2051 2061 10.1007/s10787‑022‑01072‑1 36272040
    [Google Scholar]
  47. Morean M.E. Rajeshkumar L. Krishnan-Sarin S. Development and psychometric evaluation of a novel measure of nicotine e-cigarette withdrawal for use with adolescents and young adults. Nicotine Tob. Res. 2024 26 12 1656 1665 10.1093/ntr/ntae095 38695371
    [Google Scholar]
  48. Montanari C. Kelley L.K. Kerr T.M. Cole M. Gilpin N.W. Nicotine e-cigarette vapor inhalation effects on nicotine & cotinine plasma levels and somatic withdrawal signs in adult male Wistar rats. Psychopharmacology (Berl) 2020 237 3 613 625 10.1007/s00213‑019‑05400‑2 31760460
    [Google Scholar]
  49. Omaiye E.E. McWhirter K.J. Luo W. Tierney P.A. Pankow J.F. Talbot P. High concentrations of flavor chemicals are present in electronic cigarette refill fluids. Sci. Rep. 2019 9 1 2468 10.1038/s41598‑019‑39550‑2 30792477
    [Google Scholar]
  50. Kotlyarov S. The role of smoking in the mechanisms of development of chronic obstructive pulmonary disease and atherosclerosis. Int. J. Mol. Sci. 2023 24 10 8725 10.3390/ijms24108725 37240069
    [Google Scholar]
  51. Clinical Trials https://clinicaltrials.gov/
/content/journals/cnsnddt/10.2174/0118715273379698251030041410
Loading
/content/journals/cnsnddt/10.2174/0118715273379698251030041410
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: neurotransmitter ; tobacco ; dopamine ; autophagy ; synaptic plasticity ; Nicotine dependence ; depression
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test