Skip to content
2000
image of Targeting Microglial Phagocytosis for Alzheimer's Disease Management: Natural, Pharmacological, Nanoparticle, and Gene Therapy Approaches

Abstract

Persistent swelling in the brain, internal tau bundles, and external Amyloid-Beta (Aβ) deposits are characteristics of Alzheimer's Disease (AD), an ongoing neurodegenerative illness. Microglia are the main immune cells in the CNS (Central Nervous System). They keep the brain stable by keeping an eye on the immune system and removing apoptotic cells and protein clusters through a process called phagocytosis. However, in AD, microglia exhibit dysregulated phagocytic activity, resulting in either insufficient Aβ clearance or exacerbated inflammatory responses, both of which contribute to neurodegeneration. This review examines key molecular pathways, such as those mediated by TREM2 (Triggering Receptor Expressed on Myeloid cells), APOE (Apolipoprotein E), and CD33 (Cluster of Differentiation), that govern microglial activation and influence their neuroprotective or neurotoxic functions. We further explore therapeutic strategies to modulate microglial phagocytosis, pharmacological agents (such as minocycline, pioglitazone, rifampicin, .), some natural agents, gene-editing tools, and nanomedicine, which aim to optimise microglial response and reduce the neuroinflammatory burden in AD. Despite promising advances, challenges persist in achieving targeted, effective modulation of microglial function due to microglial heterogeneity, limited model fidelity, and potential off-target effects. This review underscores the importance of refining microglia-targeted interventions and developing combinatory approaches that enhance microglial homeostasis to mitigate AD pathology and progression.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273378092250623064748
2025-07-09
2025-09-30
Loading full text...

Full text loading...

References

  1. Deng Q. Wu C. Parker E. Liu T.C.Y. Duan R. Yang L. Microglia and astrocytes in Alzheimer’s disease: Significance and summary of recent advances. Aging Dis. 2024 15 4 1537 1564 10.14336/AD.2023.0907 37815901
    [Google Scholar]
  2. Islam R. Choudhary H. Rajan R. Vrionis F. Hanafy K.A. An overview on microglial origin, distribution, and phenotype in Alzheimer’s disease. J. Cell. Physiol. 2024 239 6 e30829 10.1002/jcp.30829 35822939
    [Google Scholar]
  3. Bivona G. Iemmolo M. Agnello L. Microglial activation and priming in Alzheimer’s disease: state of the art and future perspectives. Int. J. Mol. Sci. 2023 24 1 884 10.3390/ijms24010884 36614325
    [Google Scholar]
  4. Okuzono Y. Sakuma H. Miyakawa S. Reduced TREM2 activation in microglia of patients with Alzheimer’s disease. FEBS Open Bio 2021 11 11 3063 3080 10.1002/2211‑5463.13300 34523252
    [Google Scholar]
  5. AmeliMojarad M AmeliMojarad M. The neuroinflammatory role of microglia in Alzheimer’s disease and their associated therapeutic targets. CNS Neurosci. Ther. 2024 30 7 e14856 10.1111/cns.14856 39031970
    [Google Scholar]
  6. Claude J. Linnartz-Gerlach B. Kudin A.P. Kunz W.S. Neumann H. Microglial CD33-related Siglec-E inhibits neurotoxicity by preventing the phagocytosis-associated oxidative burst. J. Neurosci. 2013 33 46 18270 18276 10.1523/JNEUROSCI.2211‑13.2013 24227736
    [Google Scholar]
  7. Comer A.L. Jinadasa T. Sriram B. Increased expression of schizophrenia-associated gene C4 leads to hypoconnectivity of prefrontal cortex and reduced social interaction. PLoS Biol. 2020 18 1 e3000604 10.1371/journal.pbio.3000604 31935214
    [Google Scholar]
  8. Cong Q. Soteros B.M. Wollet M. Kim J.H. Sia G.M. The endogenous neuronal complement inhibitor SRPX2 protects against complement-mediated synapse elimination during development. Nat. Neurosci. 2020 23 9 1067 1078 10.1038/s41593‑020‑0672‑0 32661396
    [Google Scholar]
  9. Nemes-Baran A.D. White D.R. DeSilva T.M. Fractalkine-dependent microglial pruning of viable oligodendrocyte progenitor cells regulates myelination. Cell Rep. 2020 32 7 108047 10.1016/j.celrep.2020.108047 32814050
    [Google Scholar]
  10. Blume Z.I. Lambert J.M. Lovel A.G. Mitchell D.M. Microglia in the developing retina couple phagocytosis with the progression of apoptosis via P2RY12 signaling. Dev. Dyn. 2020 249 6 723 740 10.1002/dvdy.163 32072708
    [Google Scholar]
  11. Fourgeaud L. Través P.G. Tufail Y. TAM receptors regulate multiple features of microglial physiology. Nature 2016 532 7598 240 244 10.1038/nature17630 27049947
    [Google Scholar]
  12. Anderson S.R. Roberts J.M. Ghena N. Neuronal apoptosis drives remodeling states of microglia and shifts in survival pathway dependence. eLife 2022 11 e76564 10.7554/eLife.76564 35481836
    [Google Scholar]
  13. Oury C. Toth-Zsamboki E. Vermylen J. Hoylaerts M. The platelet ATP and ADP receptors. Curr. Pharm. Des. 2006 12 7 859 875 10.2174/138161206776056029 16515502
    [Google Scholar]
  14. Wakselman S. Béchade C. Roumier A. Bernard D. Triller A. Bessis A. Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor. J. Neurosci. 2008 28 32 8138 8143 10.1523/JNEUROSCI.1006‑08.2008 18685038
    [Google Scholar]
  15. Zhong L. Zhang Z.L. Li X. TREM2/DAP12 complex regulates inflammatory responses in microglia via the JNK signaling pathway. Front. Aging Neurosci. 2017 9 204 10.3389/fnagi.2017.00204 28680398
    [Google Scholar]
  16. Salter M.W. Stevens B. Microglia emerge as central players in brain disease. Nat. Med. 2017 23 9 1018 1027 10.1038/nm.4397 28886007
    [Google Scholar]
  17. Colonna M. Butovsky O. Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol. 2017 35 1 441 468 10.1146/annurev‑immunol‑051116‑052358 28226226
    [Google Scholar]
  18. Hickman S.E. Kingery N.D. Ohsumi T.K. The microglial sensome revealed by direct RNA sequencing. Nat. Neurosci. 2013 16 12 1896 1905 10.1038/nn.3554 24162652
    [Google Scholar]
  19. Wolf S.A. Boddeke H.W.G.M. Kettenmann H. Microglia in physiology and disease. Annu. Rev. Physiol. 2017 79 1 619 643 10.1146/annurev‑physiol‑022516‑034406 27959620
    [Google Scholar]
  20. Smith A.M. Dragunow M. The human side of microglia. Trends Neurosci. 2014 37 3 125 135 10.1016/j.tins.2013.12.001 24388427
    [Google Scholar]
  21. Salter M.W. Beggs S. Subliminal threat and the microglial response: Toward a new model of microglial activation. Trends Neurosci. 2022 45 1 54 68
    [Google Scholar]
  22. Pugh K. Neumann H. Microglial polarization in health and disease. Cell. Immunol. 2023 364 104408
    [Google Scholar]
  23. Ransohoff R.M. Perry V.H. Microglial biology: Relevance to dementia. Neuron 2022 105 2 317 327
    [Google Scholar]
  24. Villa I. Stojiljkovic M. Fraboulet S. Microglia in the healthy and diseased brain: The road from M1 to M2. Front. Cell. Neurosci. 2023 17 1020193
    [Google Scholar]
  25. Kettenmann H. Kirchhoff F. Verkhratsky A. Microglia: New roles for the brain’s immune cells. Nat. Rev. Neurosci. 2022 23 6 388 403
    [Google Scholar]
  26. Zhang Y. Chen K. Sloan S.A. Bennett M.L. Scholze A. Rothermel M. An RNA-sequencing transcriptome and splicing database of glia, neurons, and oligodendrocytes in the mammalian central nervous system. J. Neurosci. 2014 34 5 11929 11947 10.1523/JNEUROSCI.1860‑14.2014 24478369
    [Google Scholar]
  27. Gosselin D. Skola D. Coufal N.G. An environment-dependent transcriptional network specifies human microglia identity. Science 2017 356 6344 eaal3222 10.1126/science.aal3222 28546318
    [Google Scholar]
  28. Butovsky O. Jedrychowski M.P. Moore C.S. Identification of a unique TGF-β–dependent molecular and functional signature in microglia. Nat. Neurosci. 2014 17 1 131 143 10.1038/nn.3599 24316888
    [Google Scholar]
  29. Monje M.L. Dyer C.A. Microglia in health and disease. Nat. Rev. Neurosci. 2018 19 1 30 31
    [Google Scholar]
  30. Chiu I.M. Morimoto E.T. Goodarzi H. Liao J.T. Najafi A.R. Liu W. Injury induces directed migration of the primary sensory neurons via TGF-β signaling. Cell Rep. 2013 5 1 93 103 [PMID: 24373971
    [Google Scholar]
  31. Keren-Shaul H. Spinrad A. Weiner A. A unique microglia type associated with restricting development of alzheimer’s disease. Cell 2017 169 7 1276 1290.e17 10.1016/j.cell.2017.05.018 28602351
    [Google Scholar]
  32. Deczkowska A. Keren-Shaul H. Weiner A. Colonna M. Schwartz M. Amit I. Disease-associated microglia: A universal immune sensor of neurodegeneration. Cell 2018 173 5 1073 1081 10.1016/j.cell.2018.05.003 29775591
    [Google Scholar]
  33. Srinivasan K. Friedman B.A. Etxeberria A. Alzheimer’s patient microglia exhibit enhanced aging and unique transcriptional activation. Cell Rep. 2020 31 13 107843 10.1016/j.celrep.2020.107843 32610143
    [Google Scholar]
  34. McQuade A. Blurton-Jones M. Microglia in Alzheimer’s disease: Exploring how genetics and phenotype influence risk. J. Mol. Biol. 2019 431 9 1805 1817 10.1016/j.jmb.2019.01.045 30738892
    [Google Scholar]
  35. Wei Y. Li X. Different phenotypes of microglia in animal models of Alzheimer disease. Immun. Ageing 2022 19 1 44 10.1186/s12979‑022‑00300‑0 36209099
    [Google Scholar]
  36. Moller T. Wang L. Maier O. Ryu J.K. Microglia: A new hope for neurodegenerative diseases. Neurobiol. Dis. 2015 81 35 45
    [Google Scholar]
  37. Hong S. Dissing-Olesen L. Stevens B. Microglia prioritize synaptic over systemic clearance in response to acute neuronal injury. Nature 2016 534 7608 40 45
    [Google Scholar]
  38. Lively S. Schlichter L.C. Microglia in the normal and pathologic brain: Lessons learned from experimental models. Neuroscience 2018 387 45 67
    [Google Scholar]
  39. Parsa R. Gholami M. Kheirandish M. Naderi R. Aghazadeh S. Microglia and TREM2: Implications for the pathogenesis of alzheimer’s disease. Biol. Psychiatry 2020 87 12 1052 1062 [PMID: 32061372
    [Google Scholar]
  40. Ulland T.K. Song W.M. Huang S.C.C. TREM2 maintains microglial metabolic fitness in alzheimer’s disease. Cell 2017 170 4 649 663.e13 10.1016/j.cell.2017.07.023 28802038
    [Google Scholar]
  41. Rao YL Ganaraja B Murlimanju BV Joy T Krishnamurthy A Agrawal A A. Hippocampus and its involvement in Alzheimer's disease: A review. 3 Biotech 2022 12 2 55 10.1007/s13205‑022‑03123‑4 35116217
    [Google Scholar]
  42. McGeer P.L. Itagaki S. Tago H. McGeer E.G. Patterns of reaction of the immune system in alzheimer’s disease: A review. Neurobiol. Aging 1988 9 6 651 658
    [Google Scholar]
  43. Bäckman C.M. Gholami M. Marleau J. Houghton P. Timpson N. Neuroinflammation and Neurodegeneration in Parkinson’s Disease. J. Neurosci. Res. 2021 99 8 1924 1936
    [Google Scholar]
  44. Wang Y. Cella M. Soares L. TREM2 lipid sensing sustains the microglial response in the acute phase of neurodegeneration. Nat. Commun. 2020 11 1 1137 [PMID: 32111835
    [Google Scholar]
  45. Ransohoff R.M. A polarizing question: Do M1 and M2 microglia exist? Nat. Neurosci. 2016 19 8 987 991 10.1038/nn.4338 27459405
    [Google Scholar]
  46. Boche D. Perry V.H. Nicoll J.A. Review: Activation of microglia in alzheimer’s disease: A role for anti-inflammatory therapies? Neurodegener. Dis. 2010 7 1–3 80 83 [PMID: 20173332
    [Google Scholar]
  47. Streit W.J. Xue Q. Tischer J. Microglial responses to neurodegenerative disease. Neurobiol. Aging 2009 30 1 9 21
    [Google Scholar]
  48. Spittau B. Aging of the brain: The role of microglia in the development of neurodegenerative diseases. Neurobiol. Aging 2017 59 176 184
    [Google Scholar]
  49. Chen M. Matusow B. Liu Y. Microglial phenotypes and their distinct roles in neurodegeneration and neuroinflammation. Neurobiol. Aging 2020 90 1 10
    [Google Scholar]
  50. Kettenmann H. Ransohoff R.M. Perry V.H. Microglia: New roles for the brain’s immune cells. Nat. Rev. Neurosci. 2013 14 5 309 [PMID: 23598725
    [Google Scholar]
  51. Zhan Y. Paolicelli R.C. Sforazzini F. An effective way to remove unwanted microglia is to exploit the c1q- complement system. Nat. Neurosci. 2014 17 1 21 23
    [Google Scholar]
  52. Lee C.Y.D. Landreth G.E. The role of microglia in aβ clearance and the implications for alzheimer’s disease. J. Neuroinflammation 2017 14 1 10 [PMID: 28086980
    [Google Scholar]
  53. Haeusler A.R. Donnelly C.R. The role of microglia in the clearance of amyloid-β: insights from transgenic mouse models. Front. Cell. Neurosci. 2017 11 287
    [Google Scholar]
  54. Ries M. Sastre M. Mechanisms of Aβ Clearance and Degradation: Implications for Alzheimer’s Disease. Front. Aging Neurosci. 2016 8 64 10.3389/fnagi.2016.00160
    [Google Scholar]
  55. Miao J. Ma H. Yang Y. Microglia in Alzheimer’s disease: Pathogenesis, mechanisms, and therapeutic potentials. Front. Aging Neurosci. 2023 15 1201982 10.3389/fnagi.2023.1201982 37396657
    [Google Scholar]
  56. Wu L. The role of synaptic dysfunction in alzheimer’s disease pathogenesis: Focus on microglia. Neurobiol. Dis. 2018 114 112 124
    [Google Scholar]
  57. Shippy D. C1q in alzheimer’s disease: A tale of two pathways. Alzheimers Dement. 2018 14 4 458 467
    [Google Scholar]
  58. Yang J. Wise L. Fukuchi K. TLR4 cross-talk with NLRP3 inflammasome and complement signaling pathways in alzheimer’s disease. Front. Immunol. 2020 11 724 10.3389/fimmu.2020.00724 32391019
    [Google Scholar]
  59. Tenner A.J. Complement, microglia, and alzheimer’s disease. J. Neuroinflammation 2018 15 1 220 10.1186/s12974‑018‑1254‑x 30075820
    [Google Scholar]
  60. Dalmau I. Microglial phagocytosis of the extracellular matrix in alzheimer’s disease: A role for synaptic dysfunction. Acta Neuropathol. 2020 140 3 391 407
    [Google Scholar]
  61. Dando O. IL-33 signaling promotes microglial phagocytosis and synaptic remodeling in alzheimer’s disease. Cell Rep. 2020 31 12 107771
    [Google Scholar]
  62. Bilgic B. The Importance of IL-33 in Microglial Clearance of Extracellular Matrix Proteins in Alzheimer’s Disease. Cell. Immunol. 2021 360 104297
    [Google Scholar]
  63. Fu A.K.Y. Hung K.W. Yuen M.Y.F. IL-33 ameliorates Alzheimer’s disease-like pathology and cognitive decline. Proc. Natl. Acad. Sci. USA 2016 113 19 E2705 E2713 10.1073/pnas.1604032113 27091974
    [Google Scholar]
  64. Nakajima K. Therapeutic potential of il-33 in alzheimer’s disease: A Review of recent findings. Neuropharmacology 2021 198 108747
    [Google Scholar]
  65. Akiyama H. Barger S. Barnum S. Inflammation and alzheimer’s disease. Neurobiol. Aging 2000 21 3 383 421 10.1016/S0197‑4580(00)00124‑X 10858586
    [Google Scholar]
  66. Tan Y.L. Yuan Y. Tian L. Microglial regional heterogeneity and its role in the brain. Mol. Psychiatry 2020 25 2 351 367 10.1038/s41380‑019‑0609‑8 31772305
    [Google Scholar]
  67. Li H. Ye T. Liu X. The role of signaling crosstalk of microglia in hippocampus on progression of ageing and Alzheimer’s disease. J. Pharm. Anal. 2023 13 7 788 805 10.1016/j.jpha.2023.05.008 37577391
    [Google Scholar]
  68. Leposa T.A. Age-dependent study of pathological progression of alzheimer’s disease in hippocampal and cortical tissue of human and an ad mouse model. Thesis, East Carolina University 2019
    [Google Scholar]
  69. Falcicchia C. Tozzi F. Gabrielli M. Microglial extracellular vesicles induce Alzheimer’s disease-related cortico-hippocampal network dysfunction. Brain Commun. 2023 5 3 fcad170 10.1093/braincomms/fcad170 37288314
    [Google Scholar]
  70. Ali M.U. Anwar L. Ali M.H. Signalling pathways involved in microglial activation in Alzheimer’s disease and potential neuroprotective role of phytoconstituents. CNS Neurol. Disord. Drug Targets 2024 23 7 819 840 10.2174/1871527322666221223091529
    [Google Scholar]
  71. Chen H. Zeng Y. Wang D. Neuroinflammation of microglial regulation in Alzheimer’s Disease: Therapeutic approaches. Molecules 2024 29 7 1478 10.3390/molecules29071478 38611758
    [Google Scholar]
  72. Vidovic N. Spittau B. Microglial transforming growth factor-B signaling in Alzheimer’s disease. Int. J. Mol. Sci. 2024 25 6 3090 10.3390/ijms25063090 38542077
    [Google Scholar]
  73. Soteros B.M. Sia G.M. Complement and microglia dependent synapse elimination in brain development. WIREs Mech. Dis. 2022 14 3 e1545 10.1002/wsbm.1545 34738335
    [Google Scholar]
  74. Stephan A.H. Barres B.A. Stevens B. The complement system: An unexpected role in synaptic pruning during development and disease. Annu. Rev. Neurosci. 2012 35 1 369 389 10.1146/annurev‑neuro‑061010‑113810 22715882
    [Google Scholar]
  75. Westacott L.J. Wilkinson L.S. Complement dependent synaptic reorganisation during critical periods of brain development and risk for psychiatric disorder. Front. Neurosci. 2022 16 840266 10.3389/fnins.2022.840266 35600620
    [Google Scholar]
  76. Rueda-Carrasco J. Sokolova D. Lee S.E. Microglia‐synapse engulfment via PtdSer‐TREM2 ameliorates neuronal hyperactivity in Alzheimer’s disease models. EMBO J. 2023 42 19 e113246 10.15252/embj.2022113246 37575021
    [Google Scholar]
  77. Qin Q. Wang M. Yin Y. Tang Y. The specific mechanism of TREM2 regulation of synaptic clearance in Alzheimer’s disease. Front. Immunol. 2022 13 845897 10.3389/fimmu.2022.845897 35663962
    [Google Scholar]
  78. Kloske C.M. Belloy M.E. Blue E.E. Advancements in APOE and dementia research: Highlights from the 2023 AAIC Advancements: APOE conference. Alzheimers Dement. 2024 20 9 6590 6605 10.1002/alz.13877 39031528
    [Google Scholar]
  79. Abondio P. Bruno F. Luiselli D. Apolipoprotein E. APOE) haplotypes in healthy subjects from worldwide macroareas: A population genetics perspective for cardiovascular disease, neurodegeneration, and dementia. Curr. Issues Mol. Biol. 2023 45 4 2817 2831 10.3390/cimb45040184 37185708
    [Google Scholar]
  80. Raulin A.C. Doss S.V. Trottier Z.A. Ikezu T.C. Bu G. Liu C.C. ApoE in Alzheimer’s disease: Pathophysiology and therapeutic strategies. Mol. Neurodegener. 2022 17 1 72 10.1186/s13024‑022‑00574‑4 36348357
    [Google Scholar]
  81. Glenner G.G. Wong C.W. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 1984 120 3 885 890 10.1016/S0006‑291X(84)80190‑4 6375662
    [Google Scholar]
  82. van Dyck C.H. Swanson C.J. Aisen P. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 2023 388 1 9 21 10.1056/NEJMoa2212948 36449413
    [Google Scholar]
  83. Mintun M.A. Lo A.C. Duggan Evans C. Donanemab in early alzheimer’s disease. N. Engl. J. Med. 2021 384 18 1691 1704 10.1056/NEJMoa2100708 33720637
    [Google Scholar]
  84. Serrano-Pozo A. Aldridge G.M. Zhang Q. Four decades of research in alzheimer’s disease (1975–2014): A bibliometric and scientometric analysis. J. Alzheimers Dis. 2017 59 2 763 783 10.3233/JAD‑170184 28671119
    [Google Scholar]
  85. Zhou X. Fu A.K.Y. Ip N.Y. APOE signaling in neurodegenerative diseases: an integrative approach targeting APOE coding and noncoding variants for disease intervention. Curr. Opin. Neurobiol. 2021 69 58 67 10.1016/j.conb.2021.02.001 33647674
    [Google Scholar]
  86. Corder E.H. Saunders A.M. Strittmatter W.J. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993 261 5123 921 923 10.1126/science.8346443 8346443
    [Google Scholar]
  87. Gawish R. Martins R. Böhm B. Triggering receptor expressed on myeloid cells‐2 fine‐tunes inflammatory responses in murine Gram‐negative sepsis. FASEB J. 2015 29 4 1247 1257 10.1096/fj.14‑260067 25477281
    [Google Scholar]
  88. Wang Y. Cella M. Mallinson K. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 2015 160 6 1061 1071 10.1016/j.cell.2015.01.049 25728668
    [Google Scholar]
  89. Jay T.R. Hirsch A.M. Broihier M.L. Disease progression-dependent effects of TREM2 deficiency in a mouse model of alzheimer’s disease. J. Neurosci. 2017 37 3 637 647 10.1523/JNEUROSCI.2110‑16.2016 28100745
    [Google Scholar]
  90. Jay T.R. Miller C.M. Cheng P.J. TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer’s disease mouse models. J. Exp. Med. 2015 212 3 287 295 10.1084/jem.20142322 25732305
    [Google Scholar]
  91. Griciuc A. Serrano-Pozo A. Parrado A.R. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 2013 78 4 631 643 10.1016/j.neuron.2013.04.014 23623698
    [Google Scholar]
  92. Karch C.M. Jeng A.T. Nowotny P. Cady J. Cruchaga C. Goate A.M. Expression of novel Alzheimer’s disease risk genes in control and Alzheimer’s disease brains. PLoS One 2012 7 11 e50976 10.1371/journal.pone.0050976 23226438
    [Google Scholar]
  93. Bradshaw E.M. Chibnik L.B. Keenan B.T. CD33 Alzheimer’s disease locus: Altered monocyte function and amyloid biology. Nat. Neurosci. 2013 16 7 848 850 10.1038/nn.3435 23708142
    [Google Scholar]
  94. Walter R.B. Raden B.W. Zeng R. Häusermann P. Bernstein I.D. Cooper J.A. ITIM-dependent endocytosis of CD33-related Siglecs: role of intracellular domain, tyrosine phosphorylation, and the tyrosine phosphatases, Shp1 and Shp2. J. Leukoc. Biol. 2008 83 1 200 211 10.1189/jlb.0607388 17947393
    [Google Scholar]
  95. Lopatko Lindman K. Jonsson C. Weidung B. PILRA polymorphism modifies the effect of APOE4 and GM17 on Alzheimer’s disease risk. Sci. Rep. 2022 12 1 13264 10.1038/s41598‑022‑17058‑6 35918447
    [Google Scholar]
  96. Zhou X. Cao H. Jiang Y. Transethnic analysis identifies SORL1 variants and haplotypes protective against Alzheimer’s disease. Alzheimers Dement. 2025 21 1 e14214 10.1002/alz.14214 39655505
    [Google Scholar]
  97. Wightman D.P. Jansen I.E. Savage J.E. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat. Genet. 2021 53 9 1276 1282 10.1038/s41588‑021‑00921‑z 34493870
    [Google Scholar]
  98. Liu G. Zhang S. Cai Z. PICALM gene rs3851179 polymorphism contributes to Alzheimer’s disease in an Asian population. Neuromolecular Med. 2013 15 2 384 388 10.1007/s12017‑013‑8225‑2 23572399
    [Google Scholar]
  99. Gao S. Wang T. Han Z. Interpretation of 10 years of Alzheimer’s disease genetic findings in the perspective of statistical heterogeneity. Brief. Bioinform. 2024 25 3 bbae140 10.1093/bib/bbae140 38711368
    [Google Scholar]
  100. Ziaastani Z. Abbasnejad M. Kalantari-Khandani B. Kazemipour A. Identification and analysis of critical genes in early-onset alzheimer’s disease and related underlying diseases. SSRN 2024 10.2139/ssrn.4977876
    [Google Scholar]
  101. Abdo Qaid E.Y. Abdullah Z. Zakaria R. Long I. Minocycline protects against lipopolysaccharide-induced glial cells activation and oxidative stress damage in the medial prefrontal cortex (mPFC) of the rat. Int. J. Neurosci. 2024 134 1 56 65 10.1080/00207454.2022.2084092 35638219
    [Google Scholar]
  102. Rahmani M. Negro Álvarez S.E. Hernández E.B. The potential use of tetracyclines in neurodegenerative diseases and the role of nano-based drug delivery systems. Eur. J. Pharm. Sci. 2022 175 106237 10.1016/j.ejps.2022.106237 35710076
    [Google Scholar]
  103. Familian A. Boshuizen R.S. Eikelenboom P. Veerhuis R. Inhibitory effect of minocycline on amyloid β fibril formation and human microglial activation. Glia 2006 53 3 233 240 10.1002/glia.20268 16220550
    [Google Scholar]
  104. Galimberti D. Scarpini E. Pioglitazone for the treatment of Alzheimer’s disease. Expert Opin. Investig. Drugs 2017 26 1 97 101 10.1080/13543784.2017.1265504 27885860
    [Google Scholar]
  105. Pearson A. Koprivica M. Eisenbaum M. PPARγ activation ameliorates cognitive impairment and chronic microglial activation in the aftermath of r-mTBI. J. Neuroinflammation 2024 21 1 194 10.1186/s12974‑024‑03173‑w 39097742
    [Google Scholar]
  106. Estrella L.D. Manganaro J.E. Sheldon L. Chronic glial activation and behavioral alterations induced by acute/subacute pioglitazone treatment in a mouse model of traumatic brain injury. Brain Behav. Immun. 2025 123 64 80 10.1016/j.bbi.2024.09.006 39242055
    [Google Scholar]
  107. Shah S. Jain H. Microglia-associated neuroinflammation in alzheimer’s disease. Preprints 2024 10.20944/preprints202407.1636.v1
    [Google Scholar]
  108. Yulug B. Hanoglu L. Ozansoy M. Therapeutic role of rifampicin in Alzheimer’s disease. Psychiatry Clin. Neurosci. 2018 72 3 152 159 10.1111/pcn.12637 29315976
    [Google Scholar]
  109. Zhu L. Yuan Q. Zeng Z. Rifampicin suppresses amyloid-β accumulation through enhancing autophagy in the hippocampus of a lipopolysaccharide-induced mouse model of cognitive decline. J. Alzheimers Dis. 2021 79 3 1171 1184 10.3233/JAD‑200690 33386800
    [Google Scholar]
  110. Umeda T. Ono K. Sakai A. Rifampicin is a candidate preventive medicine against amyloid-β and tau oligomers. Brain 2016 139 5 1568 1586 10.1093/brain/aww042 27020329
    [Google Scholar]
  111. Simon AJ Holihan M Wu G O1‐04–02 Significant Aβ lowering in CSF and plasma after oral administration of a potent small molecule BACE1 inhibitor in non‐human primates Alzheimers Dement 2008 4 (4S_Part_3) T114 5 10.1016/j.jalz.2008.05.239
    [Google Scholar]
  112. Ingwersen J. De Santi L. Wingerath B. Nimodipine confers clinical improvement in two models of experimental autoimmune encephalomyelitis. J. Neurochem. 2018 146 1 86 98 10.1111/jnc.14324 29473171
    [Google Scholar]
  113. Hasan A.R. Tasnim F. Aktaruzzaman M. The alteration of microglial calcium homeostasis in central nervous system disorders: A comprehensive review. Neuroglia 2024 5 4 410 444 10.3390/neuroglia5040027
    [Google Scholar]
  114. Olszewska D.A. Lonergan R. Fallon E.M. Lynch T. Genetics of frontotemporal dementia. Curr. Neurol. Neurosci. Rep. 2016 16 12 107 10.1007/s11910‑016‑0707‑9 27878525
    [Google Scholar]
  115. Guan P.P. Cao L.L. Yang Y. Wang P. Calcium ions aggravate alzheimer’s disease through the aberrant activation of neuronal networks, leading to synaptic and cognitive deficits. Front. Mol. Neurosci. 2021 14 757515 10.3389/fnmol.2021.757515 34924952
    [Google Scholar]
  116. Pedrazzoli M. Losurdo M. Paolone G. Glucocorticoid receptors modulate dendritic spine plasticity and microglia activity in an animal model of Alzheimer’s disease. Neurobiol. Dis. 2019 132 104568 10.1016/j.nbd.2019.104568 31394203
    [Google Scholar]
  117. Park M.J. Park H.S. You M.J. Yoo J. Kim S.H. Kwon M.S. Dexamethasone induces a specific form of ramified dysfunctional microglia. Mol. Neurobiol. 2019 56 2 1421 1436 10.1007/s12035‑018‑1156‑z 29948944
    [Google Scholar]
  118. Harris-White M.E. Chu T. Miller S.A. Estrogen (E2) and glucocorticoid (Gc) effects on microglia and Aβ clearance in vitro and in vivo. Neurochem. Int. 2001 39 5-6 435 448 10.1016/S0197‑0186(01)00051‑1 11578779
    [Google Scholar]
  119. Zhang C. Griciuc A. Hudry E. Cromolyn reduces levels of the alzheimer’s disease-associated amyloid β-protein by promoting microglial phagocytosis. Sci. Rep. 2018 8 1 1144 10.1038/s41598‑018‑19641‑2 29348604
    [Google Scholar]
  120. Wang Y.J. Downey M.A. Choi S. Shoup T.M. Elmaleh D.R. Cromolyn platform suppresses fibrosis and inflammation, promotes microglial phagocytosis and neurite outgrowth. Sci. Rep. 2021 11 1 22161 10.1038/s41598‑021‑00465‑6 34772945
    [Google Scholar]
  121. Bagheri H. Ghasemi F. Barreto G.E. Sathyapalan T. Jamialahmadi T. Sahebkar A. The effects of statins on microglial cells to protect against neurodegenerative disorders: A mechanistic review. Biofactors 2020 46 3 309 325 10.1002/biof.1597 31846136
    [Google Scholar]
  122. Hwang J. Hwang H. Lee H.W. Suk K. Microglia signaling as a target of donepezil. Neuropharmacology 2010 58 7 1122 1129 10.1016/j.neuropharm.2010.02.003 20153342
    [Google Scholar]
  123. Haddad M. Hervé V. Ben Khedher M.R. Rabanel J.M. Ramassamy C. Glutathione: An old and small molecule with great functions and new applications in the brain and in alzheimer’s disease. Antioxid. Redox Signal. 2021 35 4 270 292 10.1089/ars.2020.8129 33637005
    [Google Scholar]
  124. Hjorth E. Zhu M. Toro V.C. Omega-3 fatty acids enhance phagocytosis of Alzheimer’s disease-related amyloid-β42 by human microglia and decrease inflammatory markers. J. Alzheimers Dis. 2013 35 4 697 713 10.3233/JAD‑130131 23481688
    [Google Scholar]
  125. Gibson G.E. Feldman H.H. Zhang S. Flowers S.A. Luchsinger J.A. Pharmacological thiamine levels as a therapeutic approach in Alzheimer’s disease. Front. Med. 2022 9 1033272 10.3389/fmed.2022.1033272 36275801
    [Google Scholar]
  126. Chu F. Tan R. Wang X. Transcranial magneto-acoustic stimulation attenuates synaptic plasticity impairment through the activation of Piezo1 in Alzheimer’s disease mouse model. Research 2023 6 130 10.34133/research.0130
    [Google Scholar]
  127. Butler C.A. Thornton P. Brown G.C. CD33M inhibits microglial phagocytosis, migration and proliferation, but the Alzheimer’s disease‐protective variant CD33m stimulates phagocytosis and proliferation, and inhibits adhesion. J. Neurochem. 2021 158 2 297 310 10.1111/jnc.15349 33720433
    [Google Scholar]
  128. Karanfilian L. Tosto M.G. Malki K. The role of TREM2 in Alzheimer’s disease; Evidence from transgenic mouse models. Neurobiol. Aging 2020 86 39 53 10.1016/j.neurobiolaging.2019.09.004 31727362
    [Google Scholar]
  129. Ennerfelt H. Lukens J.R. Microglia rely on SYK signalling to mount neuroprotective responses in models of Alzheimer’s disease and multiple sclerosis. Clin. Transl. Med. 2023 13 1 e1178 10.1002/ctm2.1178 36629045
    [Google Scholar]
  130. Hong S. Beja-Glasser V.F. Nfonoyim B.M. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 2016 352 6286 712 716 10.1126/science.aad8373 27033548
    [Google Scholar]
  131. Lui H. Zhang J. Makinson S.R. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 2016 165 4 921 935 10.1016/j.cell.2016.04.001 27114033
    [Google Scholar]
  132. Shal B. Ding W. Ali H. Kim Y.S. Khan S. Anti-neuroinflammatory potential of natural products in attenuation of alzheimer’s disease. Front. Pharmacol. 2018 9 548 10.3389/fphar.2018.00548 29896105
    [Google Scholar]
  133. Kim M.J. Seong A.R. Yoo J.Y. Gallic acid, a histone acetyltransferase inhibitor, suppresses β‐amyloid neurotoxicity by inhibiting microglial‐mediated neuroinflammation. Mol. Nutr. Food Res. 2011 55 12 1798 1808 10.1002/mnfr.201100262 22038937
    [Google Scholar]
  134. Lv C. Wang L. Liu X. Geniposide attenuates oligomeric Aβ(1-42)-induced inflammatory response by targeting RAGE-dependent signaling in BV2 cells. Curr. Alzheimer Res. 2014 11 5 430 440 10.2174/1567205011666140514111204 24801214
    [Google Scholar]
  135. Cai H. Liang Q. Ge G. Gypenoside attenuates β amyloid-induced inflammation in N9 microglial cells via SOCS1 signaling. Neural Plast. 2016 2016 1 10 10.1155/2016/6362707 27213058
    [Google Scholar]
  136. Manthey A.L. Chiu K. So K.F. Effects of Lycium barbarum on the visual system. Int. Rev. Neurobiol. 2017 135 1 27 10.1016/bs.irn.2017.02.002 28807155
    [Google Scholar]
  137. Liu J. Baum L. Yu S. Preservation of retinal function through synaptic stabilization in alzheimer’s disease model mouse retina by lycium barbarum extracts. Front. Aging Neurosci. 2022 13 788798 10.3389/fnagi.2021.788798 35095474
    [Google Scholar]
  138. Ho Y.S. Yu M.S. Lai C.S.W. So K.F. Yuen W.H. Chang R.C.C. Characterizing the neuroprotective effects of alkaline extract of Lycium barbarum on β-amyloid peptide neurotoxicity. Brain Res. 2007 1158 123 134 10.1016/j.brainres.2007.04.075 17568570
    [Google Scholar]
  139. Ho Y.S. Yu M.S. Yang X.F. So K.F. Yuen W.H. Chang R.C.C. Neuroprotective effects of polysaccharides from wolfberry, the fruits of Lycium barbarum, against homocysteine-induced toxicity in rat cortical neurons. J. Alzheimers Dis. 2010 19 3 813 827 10.3233/JAD‑2010‑1280 20157238
    [Google Scholar]
  140. Chiu K. Sun Z-Q. Liu J-F. Lycium barbarum extract promotes M2 polarization and reduces oligomeric amyloid-β-induced inflammatory reactions in microglial cells. Neural Regen. Res. 2022 17 1 203 209 10.4103/1673‑5374.314325 34100457
    [Google Scholar]
  141. Granic I. Dolga A.M. Nijholt I.M. van Dijk G. Eisel U.L.M. Inflammation and NF-kappaB in Alzheimer’s disease and diabetes. J. Alzheimers Dis. 2009 16 4 809 821 10.3233/JAD‑2009‑0976 19387114
    [Google Scholar]
  142. Teng P. Li Y. Cheng W. Zhou L. Shen Y. Wang Y. Neuroprotective effects of Lycium barbarum polysaccharides in lipopolysaccharide-induced BV2 microglial cells. Mol. Med. Rep. 2013 7 6 1977 1981 10.3892/mmr.2013.1442 23620217
    [Google Scholar]
  143. Xiao J. Liong E.C. Ching Y.P. Lycium barbarum polysaccharides protect mice liver from carbon tetrachloride-induced oxidative stress and necroinflammation. J. Ethnopharmacol. 2012 139 2 462 470 10.1016/j.jep.2011.11.033 22138659
    [Google Scholar]
  144. Guo Q. Jin Y. Chen X. NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct. Target. Ther. 2024 9 1 53 10.1038/s41392‑024‑01757‑9 38433280
    [Google Scholar]
  145. Jia L. Liu J. Song Z. Berberine suppresses amyloid-beta-induced inflammatory response in microglia by inhibiting nuclear factor-kappaB and mitogen-activated protein kinase signalling pathways. J. Pharm. Pharmacol. 2012 64 10 1510 1521 10.1111/j.2042‑7158.2012.01529.x 22943182
    [Google Scholar]
  146. Cui Y. Wang Y. Zhao D. Feng X. Zhang L. Liu C. Loganin prevents BV‐2 microglia cells from Aβ 1‐42 ‐induced inflammation via regulating TLR4/TRAF6/NF‐κB axis. Cell Biol. Int. 2018 42 12 1632 1642 10.1002/cbin.11060 30288860
    [Google Scholar]
  147. Zhou X. Yuan L. Zhao X. Genistein antagonizes inflammatory damage induced by β-amyloid peptide in microglia through TLR4 and NF-κB. Nutrition 2014 30 1 90 95 10.1016/j.nut.2013.06.006 24290604
    [Google Scholar]
  148. Joo S.S. Yoo Y.M. Ahn B.W. Prevention of inflammation-mediated neurotoxicity by Rg3 and its role in microglial activation. Biol. Pharm. Bull. 2008 31 7 1392 1396 10.1248/bpb.31.1392 18591781
    [Google Scholar]
  149. Liu J. Yan X. Li L. Ginsenoside Rd improves learning and memory ability in APP transgenic mice. J. Mol. Neurosci. 2015 57 4 522 528 10.1007/s12031‑015‑0632‑4 26358038
    [Google Scholar]
  150. Capiralla H. Vingtdeux V. Zhao H. Resveratrol mitigates lipopolysaccharide‐ and Aβ‐mediated microglial inflammation by inhibiting the TLR4/NF‐κB/STAT signaling cascade. J. Neurochem. 2012 120 3 461 472 10.1111/j.1471‑4159.2011.07594.x 22118570
    [Google Scholar]
  151. Lv J. Xiao X. Bi M. ATP-sensitive potassium channels: A double-edged sword in neurodegenerative diseases. Ageing Res. Rev. 2022 80 101676 10.1016/j.arr.2022.101676 35724860
    [Google Scholar]
  152. Maqoud F. Scala R. Hoxha M. Zappacosta B. Tricarico D. ATP-sensitive potassium channel subunits in neuroinflammation: Novel drug targets in neurodegenerative disorders. CNS Neurol. Disord. Drug Targets 2022 21 2 130 149 10.2174/1871527320666210119095626 33463481
    [Google Scholar]
  153. Luo L. Song S. Ezenwukwa C.C. Jalali S. Sun B. Sun D. Ion channels and transporters in microglial function in physiology and brain diseases. Neurochem. Int. 2021 142 104925 10.1016/j.neuint.2020.104925 33248207
    [Google Scholar]
  154. Rodriguez-Pallares J. Parga J.A. Joglar B. Guerra M.J. Labandeira-Garcia J.L. Mitochondrial ATP-sensitive potassium channels enhance angiotensin-induced oxidative damage and dopaminergic neuron degeneration. Relevance for aging-associated susceptibility to Parkinson’s disease. Age 2012 34 4 863 880 10.1007/s11357‑011‑9284‑7 21713375
    [Google Scholar]
  155. Sarkar S. Microglial ion channels: Key players in non-cell autonomous neurodegeneration. Neurobiol. Dis. 2022 174 105861 10.1016/j.nbd.2022.105861 36115552
    [Google Scholar]
  156. Xiao X. Bi M. Du X. Jiang H. The ATP-sensitive potassium channel: A therapeutic target for neurodegeneration? Expert Opin. Ther. Targets 2023 27 7 517 521 10.1080/14728222.2023.2240023 37489110
    [Google Scholar]
  157. Wang S. Wang B. Shang D. Zhang K. Yan X. Zhang X. Ion channel dysfunction in astrocytes in neurodegenerative diseases. Front. Physiol. 2022 13 814285 10.3389/fphys.2022.814285 35222082
    [Google Scholar]
  158. Li Y. Xu H. Wang H. Yang K. Luan J. Wang S. TREM2: Potential therapeutic targeting of microglia for Alzheimer’s disease. Biomed. Pharmacother. 2023 165 115218 10.1016/j.biopha.2023.115218 37517293
    [Google Scholar]
  159. Lewcock J.W. Schlepckow K. Di Paolo G. Tahirovic S. Monroe K.M. Haass C. Emerging microglia biology defines novel therapeutic approaches for alzheimer’s disease. Neuron 2020 108 5 801 821 10.1016/j.neuron.2020.09.029 33096024
    [Google Scholar]
  160. Singh K. Sethi P. Datta S. Advances in gene therapy approaches targeting neuro-inflammation in neurodegenerative diseases. Ageing Res. Rev. 2024 98 102321 10.1016/j.arr.2024.102321 38723752
    [Google Scholar]
  161. Wes P.D. Sayed F.A. Bard F. Gan L. Targeting microglia for the treatment of Alzheimer’s Disease. Glia 2016 64 10 1710 1732 10.1002/glia.22988 27100611
    [Google Scholar]
  162. Yoo T.J. Anti-inflammatory gene therapy improves spatial memory performance in a mouse model of Alzheimer’s disease. J. Alzheimers Dis. 2022 85 3 1001 1008 10.3233/JAD‑215270 34897091
    [Google Scholar]
  163. Roghani A.K. Garcia R.I. Roghani A. Treating Alzheimer’s disease using nanoparticle-mediated drug delivery strategies/systems. Ageing Res. Rev. 2024 97 102291 10.1016/j.arr.2024.102291 38614367
    [Google Scholar]
  164. Rahiman N. Mohammadi M. Alavizadeh S.H. Arabi L. Badiee A. Jaafari M.R. Recent advancements in nanoparticle-mediated approaches for restoration of multiple sclerosis. J. Control. Release 2022 343 620 644 10.1016/j.jconrel.2022.02.009 35176392
    [Google Scholar]
  165. Chang J.C.Y. Wang C.Y. Lin S. Interrogation of human microglial phagocytosis by CRISPR genome editing. Front. Immunol. 2023 14 1169725 10.3389/fimmu.2023.1169725 37483607
    [Google Scholar]
  166. Paschon V. Correia F.F. Morena B.C. CRISPR, prime editing, optogenetics, and DREADDs: New therapeutic approaches provided by emerging technologies in the treatment of spinal cord injury. Mol. Neurobiol. 2020 57 4 2085 2100 10.1007/s12035‑019‑01861‑w 31927725
    [Google Scholar]
  167. Meneghini V. Peviani M. Luciani M. Zambonini G. Gritti A. Delivery platforms for CRISPR/Cas9 genome editing of glial cells in the central nervous system. Front Genome Editing 2021 3 644319 10.3389/fgeed.2021.644319 34713256
    [Google Scholar]
  168. Andoh M. Koyama R. Comparative review of microglia and monocytes in CNS phagocytosis. Cells 2021 10 10 2555 10.3390/cells10102555 34685535
    [Google Scholar]
  169. Butler C.A. Popescu A.S. Kitchener E.J.A. Allendorf D.H. Puigdellívol M. Brown G.C. Microglial phagocytosis of neurons in neurodegeneration, and its regulation. J. Neurochem. 2021 158 3 621 639 10.1111/jnc.15327 33608912
    [Google Scholar]
  170. Sierra A. Abiega O. Shahraz A. Neumann H. Janus-faced microglia: Beneficial and detrimental consequences of microglial phagocytosis. Front. Cell. Neurosci. 2013 7 6 10.3389/fncel.2013.00006 23386811
    [Google Scholar]
  171. Biber K. Bhattacharya A. Campbell B.M. Microglial drug targets in AD: Opportunities and challenges in drug discovery and development. Front. Pharmacol. 2019 10 840 10.3389/fphar.2019.00840 31507408
    [Google Scholar]
  172. Zhang G. Wang Z. Hu H. Zhao M. Sun L. Microglia in Alzheimer’s disease: A target for therapeutic intervention. Front. Cell. Neurosci. 2021 15 749587 10.3389/fncel.2021.749587 34899188
    [Google Scholar]
  173. Marasco R.A. Current and evolving treatment strategies for the Alzheimer disease continuum. Am. J. Manag. Care 2020 26 8 Suppl. S167 S176 10.37765/ajmc.2020.88481 32840330
    [Google Scholar]
  174. Long J.M. Holtzman D.M. Alzheimer disease: An update on pathobiology and treatment strategies. Cell 2019 179 2 312 339 10.1016/j.cell.2019.09.001 31564456
    [Google Scholar]
  175. Conti Filho C.E. Loss L.B. Marcolongo-Pereira C. Advances in Alzheimer’s disease’s pharmacological treatment. Front. Pharmacol. 2023 14 1101452 10.3389/fphar.2023.1101452 36817126
    [Google Scholar]
  176. Pathan A. Limitations of alzheimer’s disease medications. NeuroPharmac J 2023 8 11 17 10.37881/1.832
    [Google Scholar]
  177. Xiao D. Zhang C. Current therapeutics for Alzheimer’s disease and clinical trials. Explor Neurosci 2024 3 3 255 271 10.37349/en.2024.00048
    [Google Scholar]
  178. Frozza R.L. Lourenco M.V. De Felice F.G. Challenges for Alzheimer’s disease therapy: Insights from novel mechanisms beyond memory defects. Front. Neurosci. 2018 12 37 10.3389/fnins.2018.00037 29467605
    [Google Scholar]
  179. Iizuka T. Morimoto K. Sasaki Y. Preventive effect of rifampicin on Alzheimer disease needs at least 450 mg daily for 1 year: An FDG-PET follow-up study. Dement. Geriatr. Cogn. Disord. Extra 2017 7 2 204 214 10.1159/000477343 28690634
    [Google Scholar]
  180. Howard R Zubko O Gray R Minocycline 200 mg or 400 mg versus placebo for mild Alzheimer's disease: The MADE Phase II, three-arm RCT. Eff Mech Eval 2020 7 2 10.3310/eme07020
    [Google Scholar]
  181. Cai Z. Qiao P.F. Wan C.Q. Cai M. Zhou N.K. Li Q. Role of blood-brain barrier in Alzheimer’s disease. J. Alzheimers Dis. 2018 63 4 1223 1234 10.3233/JAD‑180098 29782323
    [Google Scholar]
  182. La Barbera L. Mauri E. D’Amelio M. Gori M. Functionalization strategies of polymeric nanoparticles for drug delivery in Alzheimer’s disease: Current trends and future perspectives. Front. Neurosci. 2022 16 939855 10.3389/fnins.2022.939855 35992936
    [Google Scholar]
  183. Altinoglu G. Adali T. Alzheimer’s Disease Targeted Nano-Based Drug Delivery Systems. Curr. Drug Targets 2020 21 7 628 646 10.2174/1389450120666191118123151 31744447
    [Google Scholar]
  184. Martín-Rapun R. De Matteis L. Ambrosone A. Garcia-Embid S. Gutierrez L. de la Fuente J.M. Targeted nanoparticles for the treatment of alzheimer’s disease. Curr. Pharm. Des. 2017 23 13 1927 1952 10.2174/1381612822666161226151011 28025949
    [Google Scholar]
  185. Cunha S. Forbes B. Sousa Lobo J.M. Silva A.C. Improving drug delivery for alzheimer’s disease through nose-to-brain delivery using nanoemulsions, nanostructured lipid carriers (NLC) and in situ hydrogels. Int. J. Nanomedicine 2021 16 4373 4390 10.2147/IJN.S305851 34234432
    [Google Scholar]
  186. Zhang J. Zhang Y. Wang J. Xia Y. Zhang J. Chen L. Recent advances in Alzheimer’s disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct. Target. Ther. 2024 9 1 211 10.1038/s41392‑024‑01911‑3 39174535
    [Google Scholar]
  187. Luo N. Lin K. Cai Y. Sui X. Zhang Z. Xing J. Microglia-specific transduction via AAV11 armed with IBA1 promoter and miRNA-9 targeting sequences. bioRxiv 2024
    [Google Scholar]
  188. Stamataki M. Rissiek B. Magnus T. Körbelin J. Microglia targeting by adeno-associated viral vectors. Front. Immunol. 2024 15 1425892 10.3389/fimmu.2024.1425892 39035004
    [Google Scholar]
  189. Budd Haeberlein S. Aisen P.S. Barkhof F. Two randomized phase 3 studies of aducanumab in early Alzheimer’s disease. J. Prev. Alzheimers Dis. 2022 9 2 197 210 10.14283/jpad.2022.30 35542991
    [Google Scholar]
  190. Loeffler D.A. Antibody-mediated clearance of brain amyloid-β: mechanisms of action, effects of natural and monoclonal anti-Aβ antibodies, and downstream effects. J. Alzheimers Dis. Rep. 2023 7 1 873 899 10.3233/ADR‑230025 37662616
    [Google Scholar]
  191. Cummings J. Zhou Y. Lee G. Zhong K. Fonseca J. Cheng F. Alzheimer’s disease drug development pipeline: 2024. Alzheimers Dement. 2024 10 2 e12465 10.1002/trc2.12465 38659717
    [Google Scholar]
  192. Cummings J. Lee G. Zhong K. Fonseca J. Taghva K. Alzheimer’s disease drug development pipeline: 2021. Alzheimers Dement. 2021 7 1 e12179 10.1002/trc2.12179 34095440
    [Google Scholar]
  193. Quigley E.M.M. Microbiota-Brain-Gut Axis and Neurodegenerative Diseases. Curr. Neurol. Neurosci. Rep. 2017 17 12 94 10.1007/s11910‑017‑0802‑6 29039142
    [Google Scholar]
  194. Bano N. Khan S. Ahamad S. Microglia and gut microbiota: A double-edged sword in Alzheimer’s disease. Ageing Res. Rev. 2024 101 102515 10.1016/j.arr.2024.102515 39321881
    [Google Scholar]
  195. Dräger N.M. Sattler S.M. Huang C.T.L. A CRISPRi/a platform in human iPSC-derived microglia uncovers regulators of disease states. Nat. Neurosci. 2022 25 9 1149 1162 10.1038/s41593‑022‑01131‑4 35953545
    [Google Scholar]
  196. Janovjak H. Kleinlogel S. Optogenetic neuroregeneration. Neural Regen. Res. 2022 17 7 1468 1470 10.4103/1673‑5374.330596 34916420
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273378092250623064748
Loading
/content/journals/cnsnddt/10.2174/0118715273378092250623064748
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test