Skip to content
2000
image of Tau Pathology in Alzheimer's Disease: Bridging Molecular Mechanisms and Targeted Therapies

Abstract

Alzheimer’s disease (AD), the leading cause of dementia, is characterized by β-amyloid (Aβ) plaques and neurofibrillary tangles of hyperphosphorylated tau. While Aβ-targeting therapies have been a primary focus of drug development, their long-term efficacy remains uncertain. Emerging evidence suggests that tauopathy is more closely linked to cognitive decline, positioning tau as a promising therapeutic target. Tauopathies, a group of neurodegenerative disorders marked by tau dysfunction and aggregation, were historically attributed to a toxic gain-of-function. However, clinical trials targeting tau have yielded limited success, likely due to the heterogeneity of tau pathology, variable patient responses, and suboptimal therapeutic strategies. Here, we underline the need for a refined understanding of tau biology to develop effective interventions. Advancing precision medicine approaches and identifying optimal tau species for therapeutic intervention could transform tau-targeting therapies into a cornerstone in managing tauopathies. By integrating insights from genetics, pathology, and translational research, future efforts may overcome current challenges and unlock novel treatment avenues, ultimately improving patient outcomes.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273376581250626003322
2025-07-09
2025-09-30
Loading full text...

Full text loading...

References

  1. Livingston G. Huntley J. Sommerlad A. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020 396 10248 413 446 10.1016/S0140‑6736(20)30367‑6 32738937
    [Google Scholar]
  2. Chen Y. Yu Y. Tau and neuroinflammation in Alzheimer’s disease: Interplay mechanisms and clinical translation. J. Neuroinflammation 2023 20 1 165 10.1186/s12974‑023‑02853‑3 37452321
    [Google Scholar]
  3. Gu J. Liu F. Tau in Alzheimer’s disease: Pathological alterations and an attractive therapeutic target. Curr. Med. Sci. 2020 40 6 1009 1021 10.1007/s11596‑020‑2282‑1 33428128
    [Google Scholar]
  4. Orr M.E. Sullivan A.C. Frost B. A brief overview of tauopathy: Causes, consequences, and therapeutic strategies. Trends Pharmacol. Sci. 2017 38 7 637 648 10.1016/j.tips.2017.03.011 28455089
    [Google Scholar]
  5. Olfati N. Shoeibi A. Litvan I. Clinical spectrum of tauopathies. Front. Neurol. 2022 13 944806 10.3389/fneur.2022.944806 35911892
    [Google Scholar]
  6. Tracy T.E. Madero-Pérez J. Swaney D.L. Tau interactome maps synaptic and mitochondrial processes associated with neurodegeneration. Cell 2022 185 4 712 728.e14 10.1016/j.cell.2021.12.041 35063084
    [Google Scholar]
  7. Brotzakis Z.F. Lindstedt P.R. Taylor R.J. A structural ensemble of a tau-microtubule complex reveals regulatory tau phosphorylation and acetylation mechanisms. ACS Cent. Sci. 2021 7 12 1986 1995 10.1021/acscentsci.1c00585 34963892
    [Google Scholar]
  8. Imbimbo B. Balducci C. Ippati S. Watling M. Initial failures of anti-tau antibodies in Alzheimer’s disease are reminiscent of the amyloid-story. Neural Regen. Res. 2023 18 1 117 118 10.4103/1673‑5374.340409 35799522
    [Google Scholar]
  9. Strang K.H. Golde T.E. Giasson B.I. MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Lab. Invest. 2019 99 7 912 928 10.1038/s41374‑019‑0197‑x 30742061
    [Google Scholar]
  10. Guo T. Noble W. Hanger D.P. Roles of tau protein in health and disease. Acta Neuropathol. 2017 133 5 665 704 10.1007/s00401‑017‑1707‑9 28386764
    [Google Scholar]
  11. Höglinger G.U. Respondek G. Kovacs G.G. New classification of tauopathies. Rev. Neurol. 2018 174 9 664 668 10.1016/j.neurol.2018.07.001 30098799
    [Google Scholar]
  12. Götz J. Halliday G. Nisbet R.M. Molecular pathogenesis of the tauopathies. Annu. Rev. Pathol. 2019 14 1 239 261 10.1146/annurev‑pathmechdis‑012418‑012936 30355155
    [Google Scholar]
  13. Hamlett E.D. LaRosa A. Mufson E.J. Fortea J. Ledreux A. Granholm A.C. Exosome release and cargo in down syndrome. Dev. Neurobiol. 2019 79 7 639 655 10.1002/dneu.22712 31347291
    [Google Scholar]
  14. Rawat P. Sehar U. Bisht J. Selman A. Culberson J. Reddy P.H. Phosphorylated tau in Alzheimer’s disease and other tauopathies. Int. J. Mol. Sci. 2022 23 21 12841 10.3390/ijms232112841 36361631
    [Google Scholar]
  15. Kumar H. Udgaonkar J.B. Mechanistic approaches to understand the prion-like propagation of aggregates of the human tau protein. Biochim. Biophys. Acta. Proteins Proteomics 2019 1867 10 922 932 10.1016/j.bbapap.2019.04.004 30986567
    [Google Scholar]
  16. Alquezar C. Arya S. Kao A.W. Tau post-translational modifications: Dynamic transformers of tau function, degradation, and aggregation. Front. Neurol. 2021 11 595532 10.3389/fneur.2020.595532 33488497
    [Google Scholar]
  17. Dujardin S. Commins C. Lathuiliere A. Tau molecular diversity contributes to clinical heterogeneity in Alzheimer’s disease. Nat. Med. 2020 26 8 1256 1263 10.1038/s41591‑020‑0938‑9 32572268
    [Google Scholar]
  18. Trushina N.I. Bakota L. Mulkidjanian A.Y. Brandt R. The evolution of tau phosphorylation and interactions. Front. Aging Neurosci. 2019 11 256 10.3389/fnagi.2019.00256 31619983
    [Google Scholar]
  19. Zhang X. Wang J. Zhang Z. Ye K. Tau in neurodegenerative diseases: Molecular mechanisms, biomarkers, and therapeutic strategies. Transl. Neurodegener. 2024 13 1 40 10.1186/s40035‑024‑00429‑6 39107835
    [Google Scholar]
  20. Zheng H. Sun H. Cai Q. Tai H.C. The enigma of tau protein aggregation: Mechanistic insights and future challenges. Int. J. Mol. Sci. 2024 25 9 4969 10.3390/ijms25094969 38732197
    [Google Scholar]
  21. Feki A. Hibaoui Y. DYRK1A protein, a promising therapeutic target to improve cognitive deficits in down syndrome. Brain Sci. 2018 8 10 187 10.3390/brainsci8100187 30332747
    [Google Scholar]
  22. Melchior B. Mittapalli G.K. Lai C. Tau pathology reduction with SM07883, a novel, potent, and selective oral DYRK1A inhibitor: A potential therapeutic for Alzheimer’s disease. Aging Cell 2019 18 5 e13000 10.1111/acel.13000 31267651
    [Google Scholar]
  23. Zhu B. Parsons T. Foley C. DYRK1A antagonists rescue degeneration and behavioural deficits of in vivo models based on amyloid- Tau and DYRK1A neurotoxicity. Sci. Rep. 2022 12 1 15847 10.1038/s41598‑022‑19967‑y 36151233
    [Google Scholar]
  24. Iqbal K. Liu F. Gong C.X. Recent developments with tau-based drug discovery. Expert Opin. Drug Discov. 2018 13 5 399 410 10.1080/17460441.2018.1445084 29493301
    [Google Scholar]
  25. Chu D. Liu F. Pathological changes of tau related to Alzheimer’s disease. ACS Chem. Neurosci. 2019 10 2 931 944 10.1021/acschemneuro.8b00457 30346708
    [Google Scholar]
  26. Chidambaram H. Chinnathambi S. G-protein coupled receptors and tau-different roles in Alzheimer’s disease. Neuroscience 2020 438 198 214 10.1016/j.neuroscience.2020.04.019 32335218
    [Google Scholar]
  27. Neddens J. Temmel M. Flunkert S. Phosphorylation of different tau sites during progression of Alzheimer’s disease. Acta Neuropathol. Commun. 2018 6 1 52 10.1186/s40478‑018‑0557‑6 29958544
    [Google Scholar]
  28. Xia D. Li C. Götz J. Pseudophosphorylation of tau at distinct epitopes or the presence of the P301L mutation targets the microtubule-associated protein Tau to dendritic spines. Biochim. Biophys. Acta Mol. Basis Dis. 2015 1852 5 913 924 10.1016/j.bbadis.2014.12.017 25558816
    [Google Scholar]
  29. Wang J.Z. Grundke-Iqbal I. Iqbal K. Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur. J. Neurosci. 2007 25 1 59 68 10.1111/j.1460‑9568.2006.05226.x 17241267
    [Google Scholar]
  30. Jin N. Yin X. Gu J. Truncation and activation of dual specificity tyrosine phosphorylation-regulated kinase 1A by calpain I. J. Biol. Chem. 2015 290 24 15219 15237 10.1074/jbc.M115.645507 25918155
    [Google Scholar]
  31. Llorach-Pares L. Nonell-Canals A. Avila C. Sanchez-Martinez M. Kororamides, convolutamines, and indole derivatives as possible tau and dual-specificity kinase inhibitors for Alzheimer’s disease: A computational study. Mar. Drugs 2018 16 10 386 10.3390/md16100386 30332805
    [Google Scholar]
  32. Reimer L. Betzer C. Kofoed R.H. PKR kinase directly regulates tau expression and Alzheimer’s disease tau phosphorylation. Brain Pathol. 2021 31 1 103 119 10.1111/bpa.12883 32716602
    [Google Scholar]
  33. Muralidar S. Ambi S.V. Sekaran S. Thirumalai D. Palaniappan B. Role of tau protein in Alzheimer’s disease: The prime pathological player. Int. J. Biol. Macromol. 2020 163 1599 1617 10.1016/j.ijbiomac.2020.07.327 32784025
    [Google Scholar]
  34. Wasik U. Schneider G. Mietelska-Porowska A. Calcyclin binding protein and Siah-1 interacting protein in Alzheimer’s disease pathology: Neuronal localization and possible function. Neurobiol. Aging 2013 34 5 1380 1388 10.1016/j.neurobiolaging.2012.11.007 23260124
    [Google Scholar]
  35. Díaz-Hernández M. Gómez-Ramos A. Rubio A. Tissue-nonspecific alkaline phosphatase promotes the neurotoxicity effect of extracellular tau. J. Biol. Chem. 2010 285 42 32539 32548 10.1074/jbc.M110.145003 20634292
    [Google Scholar]
  36. Qian W. Shi J. Yin X. PP2A regulates tau phosphorylation directly and also indirectly via activating GSK-3beta. J. Alzheimers Dis. 2010 19 4 1221 1229 10.3233/JAD‑2010‑1317 20308788
    [Google Scholar]
  37. Chu D. Tan J. Xie S. GSK-3 is dephosphorylated by PP2A in a Leu309 methylation-independent manner. J. Alzheimers Dis. 2015 49 2 365 375 10.3233/JAD‑150497 26484916
    [Google Scholar]
  38. Hernaiz A. Toivonen J.M. Bolea R. Martín-Burriel I. Epigenetic changes in prion and prion-like neurodegenerative diseases: Recent advances, potential as biomarkers, and future perspectives. Int. J. Mol. Sci. 2022 23 20 12609 10.3390/ijms232012609 36293477
    [Google Scholar]
  39. Braak H. Braak E. Diagnostic criteria for neuropathologic assessment of Alzheimer’s disease. Neurobiol. Aging 1997 18 4 S85 S88 (Suppl.) 10.1016/S0197‑4580(97)00062‑6 9330992
    [Google Scholar]
  40. Niewiadomska G. Niewiadomski W. Steczkowska M. Gasiorowska A. Tau oligomers neurotoxicity. Life 2021 11 1 28 10.3390/life11010028 33418848
    [Google Scholar]
  41. Su J. Xiao Y. Wang X. Zheng J. Wang J.Z. Development of tau phosphorylation-targeting therapies for the treatment of neurodegenerative diseases. Medicine Plus 2024 1 4 100060 10.1016/j.medp.2024.100060
    [Google Scholar]
  42. Peeraer E. Bottelbergs A. Van Kolen K. Intracerebral injection of preformed synthetic tau fibrils initiates widespread tauopathy and neuronal loss in the brains of tau transgenic mice. Neurobiol. Dis. 2015 73 83 95 10.1016/j.nbd.2014.08.032 25220759
    [Google Scholar]
  43. Alonso A.D. Beharry C. Corbo C.P. Cohen L.S. Molecular mechanism of prion like tau induced neurodegeneration. Alzheimers Dement. 2016 12 10 1090 1097 10.1016/j.jalz.2015.12.014 27126544
    [Google Scholar]
  44. Dai C. Hu W. Tung Y.C. Liu F. Gong C.X. Iqbal K. Tau passive immunization blocks seeding and spread of Alzheimer hyperphosphorylated tau-induced pathology in 3 × Tg-AD mice. Alzheimers Res. Ther. 2018 10 1 13 10.1186/s13195‑018‑0341‑7 29386065
    [Google Scholar]
  45. Iba M. McBride J.D. Guo J.L. Zhang B. Trojanowski J.Q. Lee V.M.Y. Tau pathology spread in PS19 tau transgenic mice following locus coeruleus (LC) injections of synthetic tau fibrils is determined by the LC’s afferent and efferent connections. Acta Neuropathol. 2015 130 3 349 362 10.1007/s00401‑015‑1458‑4 26150341
    [Google Scholar]
  46. Sokolow S. Henkins K.M. Bilousova T. Pre synaptic C terminal truncated tau is released from cortical synapses in Alzheimer’s disease. J. Neurochem. 2015 133 3 368 379 10.1111/jnc.12991 25393609
    [Google Scholar]
  47. Polanco J.C. Götz J. Exosomal and vesicle-free tau seeds-propagation and convergence in endolysosomal permeabilization. FEBS J. 2022 289 22 6891 6907 10.1111/febs.16055 34092031
    [Google Scholar]
  48. Wegmann S. Maury E.A. Kirk M.J. Removing endogenous tau does not prevent tau propagation yet reduces its neurotoxicity. EMBO J. 2015 34 24 3028 3041 10.15252/embj.201592748 26538322
    [Google Scholar]
  49. Pérez M. Avila J. Hernández F. Propagation of tau via extracellular vesicles. Front. Neurosci. 2019 13 698 10.3389/fnins.2019.00698 31312118
    [Google Scholar]
  50. McInnes J. Wierda K. Snellinx A. Synaptogyrin-3 mediates presynaptic dysfunction induced by tau. Neuron 2018 97 4 823 835.e8 10.1016/j.neuron.2018.01.022 29398363
    [Google Scholar]
  51. Leyns C.E.G. Gratuze M. Narasimhan S. TREM2 function impedes tau seeding in neuritic plaques. Nat. Neurosci. 2019 22 8 1217 1222 10.1038/s41593‑019‑0433‑0 31235932
    [Google Scholar]
  52. Meldolesi J. Extracellular vesicles (exosomes and ectosomes) play key roles in the pathology of brain diseases. Mol. Biomed. 2021 2 1 18 10.1186/s43556‑021‑00040‑5 35006460
    [Google Scholar]
  53. Rauch J.N. Luna G. Guzman E. LRP1 is a master regulator of tau uptake and spread. Nature 2020 580 7803 381 385 10.1038/s41586‑020‑2156‑5 32296178
    [Google Scholar]
  54. Wang Y. Balaji V. Kaniyappan S. The release and trans-synaptic transmission of Tau via exosomes. Mol. Neurodegener. 2017 12 1 5 10.1186/s13024‑016‑0143‑y 28086931
    [Google Scholar]
  55. Liu S. Geng D. Key developments and hotspots of exosomes in Alzheimer’s disease: A bibliometric study spanning 2003 to 2023. Front. Aging Neurosci. 2024 16 1377672 10.3389/fnagi.2024.1377672 38752210
    [Google Scholar]
  56. Wu J.W. Hussaini S.A. Bastille I.M. Neuronal activity enhances tau propagation and tau pathology in vivo. Nat. Neurosci. 2016 19 8 1085 1092 10.1038/nn.4328 27322420
    [Google Scholar]
  57. Asai H. Ikezu S. Tsunoda S. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat. Neurosci. 2015 18 11 1584 1593 10.1038/nn.4132 26436904
    [Google Scholar]
  58. Santello M. Toni N. Volterra A. Astrocyte function from information processing to cognition and cognitive impairment. Nat. Neurosci. 2019 22 2 154 166 10.1038/s41593‑018‑0325‑8 30664773
    [Google Scholar]
  59. Kinney J.W. Bemiller S.M. Murtishaw A.S. Leisgang A.M. Salazar A.M. Lamb B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. 2018 4 1 575 590 10.1016/j.trci.2018.06.014 30406177
    [Google Scholar]
  60. Salter M.W. Stevens B. Microglia emerge as central players in brain disease. Nat. Med. 2017 23 9 1018 1027 10.1038/nm.4397 28886007
    [Google Scholar]
  61. Yu Y. Ye R.D. Microglial Aβ receptors in Alzheimer’s disease. Cell. Mol. Neurobiol. 2015 35 1 71 83 10.1007/s10571‑014‑0101‑6 25149075
    [Google Scholar]
  62. Pan J. Zhong J. Geng J. Oberhauser J. Shi S. Wan J. Microglial Lyzl4 facilitates β-amyloid clearance in Alzheimer’s disease. Adv. Sci. 2025 12 2 2412184 10.1002/advs.202412184 39555667
    [Google Scholar]
  63. Da Pozzo E. Tremolanti C. Costa B. Microglial pro-inflammatory and anti-inflammatory phenotypes are modulated by translocator protein activation. Int. J. Mol. Sci. 2019 20 18 4467 10.3390/ijms20184467 31510070
    [Google Scholar]
  64. Meraz-Ríos M.A. Toral-Rios D. Franco-Bocanegra D. Villeda-Hernández J. Campos-Peña V. Inflammatory process in Alzheimer’s disease. Front. Integr. Nuerosci. 2013 7 59 10.3389/fnint.2013.00059 23964211
    [Google Scholar]
  65. Bonvento G. Bolaños J.P. Astrocyte-neuron metabolic cooperation shapes brain activity. Cell Metab. 2021 33 8 1546 1564 10.1016/j.cmet.2021.07.006 34348099
    [Google Scholar]
  66. Jiang H. Hampel H. Prvulovic D. Elevated CSF levels of TACE activity and soluble TNF receptors in subjects with mild cognitive impairment and patients with Alzheimer’s disease. Mol. Neurodegener. 2011 6 1 69 10.1186/1750‑1326‑6‑69 21978728
    [Google Scholar]
  67. Schuitemaker A. Dik M.G. Veerhuis R. Inflammatory markers in AD and MCI patients with different biomarker profiles. Neurobiol. Aging 2009 30 11 1885 1889 10.1016/j.neurobiolaging.2008.01.014 18378357
    [Google Scholar]
  68. Laurent C. Buée L. Blum D. Tau and neuroinflammation: What impact for Alzheimer’s disease and tauopathies? Biomed. J. 2018 41 1 21 33 10.1016/j.bj.2018.01.003 29673549
    [Google Scholar]
  69. Castro-Sánchez S. García-Yagüe Á.J. Kügler S. Lastres-Becker I. CX3CR1-deficient microglia shows impaired signalling of the transcription factor NRF2: Implications in tauopathies. Redox Biol. 2019 22 101118 10.1016/j.redox.2019.101118 30769286
    [Google Scholar]
  70. Jin M. Shiwaku H. Tanaka H. Tau activates microglia via the PQBP1-cGAS-STING pathway to promote brain inflammation. Nat. Commun. 2021 12 1 6565 10.1038/s41467‑021‑26851‑2 34782623
    [Google Scholar]
  71. Wang C. Fan L. Khawaja R.R. Microglial NF-#954;B drives tau spreading and toxicity in a mouse model of tauopathy. Nat. Commun. 2022 13 1 1969 10.1038/s41467‑022‑29552‑6 35413950
    [Google Scholar]
  72. Barthel H. First tau PET tracer approved: Toward accurate in vivo diagnosis of alzheimer disease. J. Nucl. Med. 2020 61 10 1409 1410 10.2967/jnumed.120.252411 33004646
    [Google Scholar]
  73. Soleimani-Meigooni D.N. Iaccarino L. La Joie R. 18F-flortaucipir PET to autopsy comparisons in Alzheimer’s disease and other neurodegenerative diseases. Brain 2020 143 11 3477 3494 10.1093/brain/awaa276 33141172
    [Google Scholar]
  74. Yushkevich P.A. Muñoz López M. Iñiguez de Onzoño Martin M.M. Three-dimensional mapping of neurofibrillary tangle burden in the human medial temporal lobe. Brain 2021 144 9 2784 2797 10.1093/brain/awab262 34259858
    [Google Scholar]
  75. Ossenkoppele R. van der Kant R. Hansson O. Tau biomarkers in Alzheimer’s disease: Towards implementation in clinical practice and trials. Lancet Neurol. 2022 21 8 726 734 10.1016/S1474‑4422(22)00168‑5 35643092
    [Google Scholar]
  76. Leuzy A. Smith R. Cullen N.C. Biomarker-based prediction of longitudinal tau positron emission tomography in Alzheimer disease. JAMA Neurol. 2022 79 2 149 158 10.1001/jamaneurol.2021.4654 34928318
    [Google Scholar]
  77. Thijssen E.H. La Joie R. Strom A. Plasma phosphorylated tau 217 and phosphorylated tau 181 as biomarkers in Alzheimer’s disease and frontotemporal lobar degeneration: A retrospective diagnostic performance study. Lancet Neurol. 2021 20 9 739 752 10.1016/S1474‑4422(21)00214‑3 34418401
    [Google Scholar]
  78. Jack C.R. Knopman D.S. Jagust W.J. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010 9 1 119 128 10.1016/S1474‑4422(09)70299‑6 20083042
    [Google Scholar]
  79. Mattsson-Carlgren N. Grinberg L.T. Boxer A. Cerebrospinal fluid biomarkers in autopsy-confirmed alzheimer disease and frontotemporal lobar degeneration. Neurology 2022 98 11 e1137 e1150 10.1212/WNL.0000000000200040 35173015
    [Google Scholar]
  80. Horie K. Barthélemy N.R. Spina S. CSF tau microtubule-binding region identifies pathological changes in primary tauopathies. Nat. Med. 2022 28 12 2547 2554 10.1038/s41591‑022‑02075‑9 36424467
    [Google Scholar]
  81. VandeVrede L. Boxer A.L. Polydoro M. Targeting tau: Clinical trials and novel therapeutic approaches. Neurosci. Lett. 2020 731 134919 10.1016/j.neulet.2020.134919 32380145
    [Google Scholar]
  82. Dubois B. von Arnim C.A.F. Burnie N. Bozeat S. Cummings J. Biomarkers in Alzheimer’s disease: Role in early and differential diagnosis and recognition of atypical variants. Alzheimers Res. Ther. 2023 15 1 175 10.1186/s13195‑023‑01314‑6 37833762
    [Google Scholar]
  83. Cummings J. The role of biomarkers in Alzheimer’s disease drug development. Adv. Exp. Med. Biol. 2019 1118 29 61 10.1007/978‑3‑030‑05542‑4_2 30747416
    [Google Scholar]
  84. Zhang J. Zhang Y. Wang J. Xia Y. Zhang J. Chen L. Recent advances in Alzheimer’s disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct. Target. Ther. 2024 9 1 211 10.1038/s41392‑024‑01911‑3 39174535
    [Google Scholar]
  85. Bolós M. Pallas-Bazarra N. Terreros-Roncal J. Soluble tau has devastating effects on the structural plasticity of hippocampal granule neurons. Transl. Psychiatry 2017 7 12 1267 10.1038/s41398‑017‑0013‑6 29217824
    [Google Scholar]
  86. Shi Y. Zhang W. Yang Y. Structure-based classification of tauopathies. Nature 2021 598 7880 359 363 10.1038/s41586‑021‑03911‑7 34588692
    [Google Scholar]
  87. Novak P. Kovacech B. Katina S. ADAMANT: A placebo-controlled randomized phase 2 study of AADvac1, an active immunotherapy against pathological tau in Alzheimer’s disease. Nat. Aging 2021 1 6 521 534 10.1038/s43587‑021‑00070‑2 37117834
    [Google Scholar]
  88. Mukadam A.S. Miller L.V.C. Smith A.E. Cytosolic antibody receptor TRIM21 is required for effective tau immunotherapy in mouse models. Science 2023 379 6639 1336 1341 10.1126/science.abn1366 36996217
    [Google Scholar]
  89. Allen J.C. Toapanta F.R. Chen W. Tennant S.M. Understanding immunosenescence and its impact on vaccination of older adults. Vaccine 2020 38 52 8264 8272 10.1016/j.vaccine.2020.11.002 33229108
    [Google Scholar]
  90. Ishida K. Yamada K. Nishiyama R. Glymphatic system clears extracellular tau and protects from tau aggregation and neurodegeneration. J. Exp. Med. 2022 219 3 e20211275 10.1084/jem.20211275 35212707
    [Google Scholar]
  91. van Dyck C.H. Nygaard H.B. Chen K. Effect of AZD0530 on cerebral metabolic decline in Alzheimer disease. JAMA Neurol. 2019 76 10 1219 1229 10.1001/jamaneurol.2019.2050 31329216
    [Google Scholar]
  92. DeVos S.L. Miller R.L. Schoch K.M. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci. Transl. Med. 2017 9 374 eaag0481 10.1126/scitranslmed.aag0481 28123067
    [Google Scholar]
  93. Pollack S.J. Trigg J. Khanom T. Paired helical filament-forming region of tau (297-391) influences endogenous tau protein and accumulates in acidic compartments in human neuronal cells. J. Mol. Biol. 2020 432 17 4891 4907 10.1016/j.jmb.2020.05.027 32681841
    [Google Scholar]
  94. Morimoto B.H. Schmechel D. Hirman J. Blackwell A. Keith J. Gold M. A double-blind, placebo-controlled, ascending-dose, randomized study to evaluate the safety, tolerability and effects on cognition of AL-108 after 12 weeks of intranasal administration in subjects with mild cognitive impairment. Dement. Geriatr. Cogn. Disord. 2013 35 5-6 325 339 10.1159/000348347 23594991
    [Google Scholar]
  95. Samudra N. Lane-Donovan C. VandeVrede L. Boxer A.L. Tau pathology in neurodegenerative disease: Disease mechanisms and therapeutic avenues. J. Clin. Invest. 2023 133 12 e168553 10.1172/JCI168553 37317972
    [Google Scholar]
  96. Parra Bravo C. Naguib S.A. Gan L. Cellular and pathological functions of tau. Nat. Rev. Mol. Cell Biol. 2024 25 11 845 864 10.1038/s41580‑024‑00753‑9 39014245
    [Google Scholar]
  97. Roy S. Batra L. Protein phosphatase 2A: Role in T cells and diseases. J. Immunol. Res. 2023 2023 1 11 10.1155/2023/4522053 37234102
    [Google Scholar]
  98. Yamada K. Extracellular tau and its potential role in the propagation of tau pathology. Front. Neurosci. 2017 11 667 10.3389/fnins.2017.00667 29238289
    [Google Scholar]
  99. Chen L. Deng H. Cui H. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018 9 6 7204 7218 10.18632/oncotarget.23208 29467962
    [Google Scholar]
  100. Tian M. Civelek A.C. Carrio I. International consensus on the use of tau PET imaging agent 18 F-flortaucipir in Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging 2022 49 3 895 904 10.1007/s00259‑021‑05673‑w 34978595
    [Google Scholar]
  101. Ji C. Sigurdsson E.M. Current status of clinical trials on tau immunotherapies. Drugs 2021 81 10 1135 1152 10.1007/s40265‑021‑01546‑6 34101156
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273376581250626003322
Loading
/content/journals/cnsnddt/10.2174/0118715273376581250626003322
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test