Skip to content
2000
image of Trends and Advancements in Smart Electrospun Food Fibers for the Management of Neurological Disorders

Abstract

Neurological disorders are complex conditions characterized by impairment of the nervous system, affecting motor, cognitive, and sensory functions. Current treatments meet substantial obstacles, primarily due to the difficulty of transporting drugs across the blood-brain barrier and ineffective therapy for nerve regeneration. Emerging technologies, such as electrospinning, offer innovative solutions to overcome these challenges. The study explores the potential of electrospun food fibers in managing and treating neurological disorders, concentrating on their role in drug delivery and nerve tissue regeneration. Electrospinning allows for the generation of nanofibers from diverse natural and synthetic polymers that imitate the extracellular matrix and stimulate brain healing. These fibers may be loaded with therapeutic drugs, permitting controlled, localized drug release while limiting systemic toxicity. For instance, electrospun fibers loaded with neuroprotective drugs, such as donepezil and levodopa, have exhibited better drug stability, enhanced bioavailability, and prolonged therapeutic efficacy in treating syndromes such as Alzheimer’s and Parkinson’s diseases. Furthermore, the biodegradable and biocompatible nature of food-based polymers like chitosan, cellulose, and zein makes them great candidates for medicinal applications, minimizing the risk of inflammation and unfavorable immunological reactions. In conclusion, electrospun food fibers show tremendous promise in resolving the issues of drug delivery and nerve regeneration in neurological illnesses. Their capacity to boost therapeutic results targeted and regulated drug release makes them a possible alternative to established treatment procedures, bringing renewed hope to patients suffering from neurodegenerative disorders.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273375873250829060106
2025-09-08
2025-11-13
Loading full text...

Full text loading...

References

  1. Pena S.A. Iyengar R. Eshraghi R.S. Gene therapy for neurological disorders: Challenges and recent advancements. J. Drug Target. 2020 28 2 111 128 10.1080/1061186X.2019.1630415 31195838
    [Google Scholar]
  2. Adcock A. Frey J.E. Can telemedicine address neurologic health disparities in rural Guatemala: A health promotor educational intervention study. Health Promot. Int. 2022 37 1 daab072 10.1093/heapro/daab072 34148095
    [Google Scholar]
  3. Cottler L.B. Zunt J. Weiss B. Kamal A.K. Vaddiparti K. Building global capacity for brain and nervous system disorders research. Nature 2015 527 7578 S207 S213 10.1038/nature16037 26580329
    [Google Scholar]
  4. Sweeney M.D. Sagare A.P. Zlokovic B.V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 2018 14 3 133 150 10.1038/nrneurol.2017.188 29377008
    [Google Scholar]
  5. Du W. Wang T. Hu S. Engineering of electrospun nanofiber scaffolds for repairing brain injury. Engineered Regeneration 2023 4 3 289 303 10.1016/j.engreg.2023.04.001
    [Google Scholar]
  6. Schmidt C.E. Leach J.B. Neural tissue engineering: Strategies for repair and regeneration. Annu. Rev. Biomed. Eng. 2003 5 1 293 347 10.1146/annurev.bioeng.5.011303.120731 14527315
    [Google Scholar]
  7. Nisbet D.R. Rodda A.E. Horne M.K. Forsythe J.S. Finkelstein D.I. Neurite infiltration and cellular response to electrospun polycaprolactone scaffolds implanted into the brain. Biomaterials 2009 30 27 4573 4580 10.1016/j.biomaterials.2009.05.011 19500836
    [Google Scholar]
  8. Pakulska M.M. Ballios B.G. Shoichet M.S. Injectable hydrogels for central nervous system therapy. Biomed. Mater. 2012 7 2 024101 10.1088/1748‑6041/7/2/024101 22456684
    [Google Scholar]
  9. Barchet T.M. Amiji M.M. Challenges and opportunities in CNS delivery of therapeutics for neurodegenerative diseases. Expert Opin. Drug Deliv. 2009 6 3 211 225 10.1517/17425240902758188 19290842
    [Google Scholar]
  10. Strazielle N. Ghersi-Egea J.F. Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol. Pharm. 2013 10 5 1473 1491 10.1021/mp300518e 23298398
    [Google Scholar]
  11. Verheggen I.C.M. Freeze W.M. de Jong J.J.A. Application of contrast-enhanced magnetic resonance imaging in the assessment of blood-cerebrospinal fluid barrier integrity. Neurosci. Biobehav. Rev. 2021 127 171 183 10.1016/j.neubiorev.2021.04.025 33930471
    [Google Scholar]
  12. Zhong Y. Bellamkonda R.V. Biomaterials for the central nervous system. J. R. Soc. Interface 2008 5 26 957 975 10.1098/rsif.2008.0071 18477539
    [Google Scholar]
  13. Amiri M. Jafari S. Kurd M. Engineered solid lipid nanoparticles and nanostructured lipid carriers as new generations of blood–brain barrier transmitters. ACS Chem. Neurosci. 2021 12 24 4475 4490 10.1021/acschemneuro.1c00540 34841846
    [Google Scholar]
  14. Rogawski M.A. Convection-enhanced delivery in the treatment of epilepsy. Neurotherapeutics 2009 6 2 344 351 10.1016/j.nurt.2009.01.017 19332329
    [Google Scholar]
  15. Mahumane G.D. Kumar P. Pillay V. Choonara Y.E. Repositioning N-acetylcysteine (NAC): NAC-loaded electrospun drug delivery scaffolding for potential neural tissue engineering application. Pharmaceutics 2020 12 10 934 10.3390/pharmaceutics12100934 33007830
    [Google Scholar]
  16. Kasinathan N. Jagani H.V. Alex A.T. Volety S.M. Rao J.V. Strategies for drug delivery to the central nervous system by systemic route. Drug Deliv. 2015 22 3 243 257 10.3109/10717544.2013.878858 24471801
    [Google Scholar]
  17. Akhtar A. Andleeb A. Waris T.S. Neurodegenerative diseases and effective drug delivery: A review of challenges and novel therapeutics. J. Control. Release 2021 330 1152 1167 10.1016/j.jconrel.2020.11.021 33197487
    [Google Scholar]
  18. Qu Y. Wang B. Chu B. Injectable and thermosensitive hydrogel and PDLLA electrospun nanofiber membrane composites for guided spinal fusion. ACS Appl. Mater. Interfaces 2018 10 5 4462 4470 10.1021/acsami.7b17020 29338185
    [Google Scholar]
  19. Li L. Zhang X. Zhou J. Zhang L. Xue J. Tao W. Non‐invasive thermal therapy for tissue engineering and regenerative medicine. Small 2022 18 36 2107705 10.1002/smll.202107705 35475541
    [Google Scholar]
  20. Kim S.M. Lee S.K. Lee J.H. Peripheral nerve regeneration using a three dimensionally cultured schwann cell conduit. J. Craniofac. Surg. 2007 18 3 475 488 10.1097/01.scs.0000249362.41170.f3 17538306
    [Google Scholar]
  21. Pabari A. Yang S.Y. Mosahebi A. Seifalian A.M. Recent advances in artificial nerve conduit design: Strategies for the delivery of luminal fillers. J. Control. Release 2011 156 1 2 10 10.1016/j.jconrel.2011.07.001 21763371
    [Google Scholar]
  22. Gresham R.C.H. Bahney C.S. Leach J.K. Growth factor delivery using extracellular matrix-mimicking substrates for musculoskeletal tissue engineering and repair. Bioact. Mater. 2021 6 7 1945 1956 10.1016/j.bioactmat.2020.12.012 33426369
    [Google Scholar]
  23. Soleman S. Filippov M.A. Dityatev A. Fawcett J.W. Targeting the neural extracellular matrix in neurological disorders. Neuroscience 2013 253 194 213 10.1016/j.neuroscience.2013.08.050 24012743
    [Google Scholar]
  24. Mu Y. Wu F. Lu Y. Wei L. Yuan W. Progress of electrospun fibers as nerve conduits for neural tissue repair. Nanomedicine 2014 9 12 1869 1883 10.2217/nnm.14.70 25325242
    [Google Scholar]
  25. Cunha C. Panseri S. Antonini S. Emerging nanotechnology approaches in tissue engineering for peripheral nerve regeneration. Nanomedicine 2011 7 1 50 59 10.1016/j.nano.2010.07.004 20692373
    [Google Scholar]
  26. Kijeńska E. Prabhakaran M.P. Swieszkowski W. Kurzydlowski K.J. Ramakrishna S. Electrospun bio‐composite P(LLA‐CL)/collagen I/collagen III scaffolds for nerve tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2012 100B 4 1093 1102 10.1002/jbm.b.32676 22438340
    [Google Scholar]
  27. Matthews J.A. Wnek G.E. Simpson D.G. Bowlin G.L. Electrospinning of collagen nanofibers. Biomacromolecules 2002 3 2 232 238 10.1021/bm015533u 11888306
    [Google Scholar]
  28. Wang W. Itoh S. Matsuda A. Enhanced nerve regeneration through a bilayered chitosan tube: The effect of introduction of glycine spacer into the CYIGSR sequence. J. Biomed. Mater. Res. A 2008 85A 4 919 928 10.1002/jbm.a.31522 17896768
    [Google Scholar]
  29. Cao H. Liu T. Chew S.Y. The application of nanofibrous scaffolds in neural tissue engineering. Adv. Drug Deliv. Rev. 2009 61 12 1055 1064 10.1016/j.addr.2009.07.009 19643156
    [Google Scholar]
  30. Nadaf A. Gupta A. Hasan N. Recent update on electrospinning and electrospun nanofibers: Current trends and their applications. RSC Advances 2022 12 37 23808 23828 10.1039/D2RA02864F 36093244
    [Google Scholar]
  31. Chen L. Wang S. Yu Q. Topham P.D. Chen C. Wang L. A comprehensive review of electrospinning block copolymers. Soft Matter 2019 15 12 2490 2510 10.1039/C8SM02484G 30860535
    [Google Scholar]
  32. Yang J. Biomedical applications and research progress of electrospinning technology and electrospinning nanofibers. Preprints 2022
    [Google Scholar]
  33. Li X. Chen W. Qian Q. Electrospinning‐based strategies for battery materials. Adv. Energy Mater. 2021 11 2 2000845 10.1002/aenm.202000845
    [Google Scholar]
  34. Magisetty R. Kumar P. Gore P.M. Electronic properties of Poly(1,6-heptadiynes) electrospun fibrous non-woven mat. Mater. Chem. Phys. 2019 223 343 352 10.1016/j.matchemphys.2018.11.020
    [Google Scholar]
  35. Li Y. Zhu J. Cheng H. Developments of advanced electrospinning techniques: A critical review. Adv. Mater. Technol. 2021 6 11 2100410 10.1002/admt.202100410
    [Google Scholar]
  36. Ma F. Zhang N. Wei X. Yang J. Wang Y. Zhou Z. Blend-electrospun poly(vinylidene fluoride)/polydopamine membranes: Self-polymerization of dopamine and the excellent adsorption/separation abilities. J. Mater. Chem. A Mater. Energy Sustain. 2017 5 27 14430 14443 10.1039/C7TA02845H
    [Google Scholar]
  37. Bhattarai R.S. Bachu R.D. Boddu S.H.S. Bhaduri S. Biomedical applications of electrospun nanofibers: Drug and nanoparticle delivery. Pharmaceutics 2018 11 1 5 10.3390/pharmaceutics11010005 30586852
    [Google Scholar]
  38. Muerza-Cascante M.L. Haylock D. Hutmacher D.W. Dalton P.D. Melt electrospinning and its technologization in tissue engineering. Tissue Eng. Part B Rev. 2015 21 2 187 202 10.1089/ten.teb.2014.0347 25341031
    [Google Scholar]
  39. Steyaert I. Van der Schueren L. Rahier H. De Clerck K. An alternative solvent system for blend electrospinning of polycaprolactone/chitosan nanofibres. Macromol. Symp. 2012 321 1 71 75 10.1002/masy.201251111
    [Google Scholar]
  40. Nikmaram N. Roohinejad S. Hashemi S. Emulsion-based systems for fabrication of electrospun nanofibers: Food, pharmaceutical and biomedical applications. RSC Advances 2017 7 46 28951 28964 10.1039/C7RA00179G
    [Google Scholar]
  41. Kai D. Liow S.S. Loh X.J. Biodegradable polymers for electrospinning: Towards biomedical applications. Mater. Sci. Eng. C 2014 45 45 659 670 10.1016/j.msec.2014.04.051 25491875
    [Google Scholar]
  42. Yu D.G. Chian W. Wang X. Li X.Y. Li Y. Liao Y.Z. Linear drug release membrane prepared by a modified coaxial electrospinning process. J. Membr. Sci. 2013 428 428 150 156 10.1016/j.memsci.2012.09.062
    [Google Scholar]
  43. Merkle V.M. Zeng L. Slepian M.J. Wu X. Core‐shell nanofibers: Integrating the bioactivity of gelatin and the mechanical property of polyvinyl alcohol. Biopolymers 2014 101 4 336 346 10.1002/bip.22367 23913748
    [Google Scholar]
  44. Vaidya P. Grove T. Edgar K.J. Goldstein A.S. Surface grafting of chitosan shell, polycaprolactone core fiber meshes to confer bioactivity. J. Bioact. Compat. Polym. 2015 30 3 258 274 10.1177/0883911515571147
    [Google Scholar]
  45. McClellan P Landis WJ Recent applications of coaxial and emulsion electrospinning methods in the field of tissue engineering. Biores Open Access 2016 5 1 212 27 10.1089/biores.2016.0022 27610268
    [Google Scholar]
  46. Luo X. Xie C. Wang H. Liu C. Yan S. Li X. Antitumor activities of emulsion electrospun fibers with core loading of hydroxycamptothecin via intratumoral implantation. Int. J. Pharm. 2012 425 1-2 19 28 10.1016/j.ijpharm.2012.01.012 22265915
    [Google Scholar]
  47. Zhang X. Wang M. Effects of emulsion electrospinning parameters on the morphology and structure of core-shell structured PLLA fibers. Adv. Mat. Res. 2012 15 410 386 389
    [Google Scholar]
  48. Wang C. Tong S.N. Tse Y.H. Wang M. Conventional electrospinning vs. emulsion electrospinning: A comparative study on the development of nanofibrous drug/biomolecule delivery vehicles. Adv. Mat. Res. 2012 15 410 118 121
    [Google Scholar]
  49. Agarwal S. Greiner A. Wendorff J.H. Functional materials by electrospinning of polymers. Prog. Polym. Sci. 2013 38 6 963 991 10.1016/j.progpolymsci.2013.02.001
    [Google Scholar]
  50. Juncos Bombin A.D. Dunne N.J. McCarthy H.O. Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Mater. Sci. Eng. C 2020 114 110994 10.1016/j.msec.2020.110994 32993991
    [Google Scholar]
  51. Ding B. Wang X. Yu J. Electrospinning: Nanofabrication and applications. William Andrew 2018 12
    [Google Scholar]
  52. Raza Z.A. Munim S.A. Ayub A. Recent developments in polysaccharide-based electrospun nanofibers for environmental applications. Carbohydr. Res. 2021 510 108443 10.1016/j.carres.2021.108443 34597980
    [Google Scholar]
  53. Gruppuso M. Turco G. Marsich E. Porrelli D. Polymeric wound dressings, an insight into polysaccharide-based electrospun membranes. Appl. Mater. Today 2021 24 101148 10.1016/j.apmt.2021.101148
    [Google Scholar]
  54. Luo C.J. Nangrejo M. Edirisinghe M. A novel method of selecting solvents for polymer electrospinning. Polymer 2010 51 7 1654 1662 10.1016/j.polymer.2010.01.031
    [Google Scholar]
  55. Capulli A.K. MacQueen L.A. Sheehy S.P. Parker K.K. Fibrous scaffolds for building hearts and heart parts. Adv. Drug Deliv. Rev. 2016 96 96 83 102 10.1016/j.addr.2015.11.020 26656602
    [Google Scholar]
  56. Yu D.G. Li J.J. Williams G.R. Zhao M. Electrospun amorphous solid dispersions of poorly water-soluble drugs: A review. J. Control. Release 2018 292 292 91 110 10.1016/j.jconrel.2018.08.016 30118788
    [Google Scholar]
  57. Li H. Wang M. Electrospinning and nanofibrous structures for biomedical applications. In: Bioceramics. Elsevier 2021 1 401 36
    [Google Scholar]
  58. Li H. Liu K. Sang Q. A thermosensitive drug delivery system prepared by blend electrospinning. Colloids and Surfaces B: Biointerfaces 2017 159 277 283
    [Google Scholar]
  59. Tian J. Deng H. Huang M. Liu R. Yi Y. Dong X. Electrospun nanofibers for food and food packaging technology. In: Electrospinning: Nanofabrication and applications. William Andrew Publishing 2019 455 516
    [Google Scholar]
  60. Bikiaris N.D. Koumentakou I. Michailidou G. Investigation of molecular weight, polymer concentration and process parameters factors on the sustained release of the anti-multiple-sclerosis agent teriflunomide from poly (ε-caprolactone) electrospun nanofibrous matrices. Pharmaceutics 2022 14 8 1693
    [Google Scholar]
  61. Weng L. Xie J. Smart electrospun nanofibers for controlled drug release: Recent advances and new perspectives. Curr. Pharm. Des. 2015 21 15 1944 1959 10.2174/1381612821666150302151959 25732665
    [Google Scholar]
  62. Kumar S. Malviya R. Sundram S. Nutritional neurology: Unraveling cellular mechanisms of natural supplements in brain health. Human Nutrition & Metabolism 2024 35 200232 10.1016/j.hnm.2023.200232
    [Google Scholar]
  63. Li H. Liu K. Williams G.R. Dual temperature and pH responsive nanofiber formulations prepared by electrospinning. Colloids Surf. B Biointerfaces 2018 171 171 142 149 10.1016/j.colsurfb.2018.07.020 30025376
    [Google Scholar]
  64. Bai Y. He L. Lou X. Quan D. Electrospun bioactive composites for neural tissue engineering applications. Electrospun Polym Compos 2021 1 43
    [Google Scholar]
  65. Salles G.N. Pereira F.A. Pacheco-Soares C. A novel bioresorbable device as a controlled release system for protecting cells from oxidative stress from Alzheimer’s Disease. Molecular Neurobiology 2017 54 9 6827 6838
    [Google Scholar]
  66. Jack C.R. Bennett D.A. Blennow K. NIA‐AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018 14 4 535 562 10.1016/j.jalz.2018.02.018 29653606
    [Google Scholar]
  67. Topal F. Ertas B. Guler E. A novel multi-target strategy for Alzheimer’s disease treatment via sublingual route: Donepezil/] memantine/curcumin-loaded nanofibers. Biomaterials Advances 2022 138 212870 10.1016/j.bioadv.2022.212870 35913251
    [Google Scholar]
  68. DeTure M.A. Dickson D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 2019 14 1 32 10.1186/s13024‑019‑0333‑5 31375134
    [Google Scholar]
  69. AnjiReddy K Karpagam S. Chitosan nanofilm and electrospun nanofiber for quick drug release in the treatment of Alzheimer’s disease: In vitro and in vivo evaluation. Int. J. Biol. Macromol. 2017 105 131 142
    [Google Scholar]
  70. Salles G.N. Calió M.L. Afewerki S. Prolonged drug-releasing fibers attenuate Alzheimer’s disease-like pathogenesis. ACS Appl. Mater. Interfaces 2018 10 43 36693 36702 10.1021/acsami.8b12649 30298718
    [Google Scholar]
  71. Zivari-Ghader T. Recent progresses in natural based therapeutic materials for Alzheimer’s disease. Heliyon 2024
    [Google Scholar]
  72. Ansari A.Q. Ansari S.J. Khan M.Q. Electrospun Zein nanofibers as drug carriers for controlled delivery of Levodopa in Parkinson syndrome. Mater. Res. Express 2019 6 7 075405
    [Google Scholar]
  73. Mehrali F. Ziyadi H. Hekmati M. Faridi-Majidi R. Qomi M. Electrospun kefiran biocomposite nanofibers as a novel transdermal carrier of pramipexole. Nanomed Res J 2023 8 2 193 209
    [Google Scholar]
  74. Kouli A. Parkinson’s disease: Etiology, neuropathology, and pathogenesis. Exon Publications 2018 21 3 26
    [Google Scholar]
  75. Stefanis L. α-Synuclein in Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2012 2 2 a009399 10.1101/cshperspect.a009399 22355802
    [Google Scholar]
  76. Yi S. Wang L. Wang H. Ho M.S. Zhang S. Pathogenesis of α-synuclein in Parkinson’s disease: From a neuron-glia crosstalk perspective. Int. J. Mol. Sci. 2022 23 23 14753 10.3390/ijms232314753 36499080
    [Google Scholar]
  77. Puhl D.L. Funnell J.L. D’Amato A.R. Aligned fingolimod-releasing electrospun fibers increase dorsal root ganglia neurite extension and decrease Schwann cell expression of promyelinating factors. Front. Bioeng. Biotechnol. 2020 8 937
    [Google Scholar]
  78. Puhl D.L. Funnell J.L. Nelson D.W. Gottipati M.K. Gilbert R.J. Electrospun fiber scaffolds for engineering glial cell behavior to promote neural regeneration. Bioengineering 2020 8 1 4
    [Google Scholar]
  79. Gregory H.N. Guillemot-Legris O. Crouch D. Williams G. Phillips J.B. Electrospun aligned tacrolimus-loaded polycaprolactone biomaterials for peripheral nerve repair. Regen. Med. 2024 19 4 171 187 10.2217/rme‑2023‑0151 37818696
    [Google Scholar]
  80. Porwal S. Malviya R. Sridhar S.B. Shareef J. Warsi M.H. Processing and biomedical applications of sustainable rice straw polysaccharide biomaterials: Waste to wealth. Food Biosci. 2024 2024 105778
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273375873250829060106
Loading
/content/journals/cnsnddt/10.2174/0118715273375873250829060106
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test