Skip to content
2000
image of Putative Antianxiety Property of Oral Enalapril Formulation in Mice: a Preclinical and in silico Study

Abstract

Introduction

Anxiety disorders, characterized by overwhelming fear, affect more than 30% of the global population. Recent evidence indicates that antihypertensive medications could offer symptomatic relief for anxiety, supporting their potential for repurposing. The objective is to investigate the anxiolytic-like effects of an enalapril formulation.

Methods

60 Swiss mice (30 ± 5 g, aged 6-8 weeks) were randomly assigned to groups and received oral treatments with either vehicle (10 mL/kg), diazepam (DZP, 5 mg/kg), reference enalapril (ENAR), enalapril formulation (ENAF), losartan (LOS), or propranolol (PRO), each at a dose of 10 mg/kg. After 60 minutes, the animals were exposed to 5 minutes of exploratory activity in the open field, elevated plus maze (EPM), light-dark box (LDB), and a minute of rotarod.

Results

One-way ANOVA demonstrated differences for the total crossing (0.0001), freezing time (0.0001), number of rearing (0.002), time spent (0.002), and crossing at the center (0.0001) of the open field. Unlike in the rotarod (>0.05), the ENAR, ENAF, LOS, and PRO elicit increases (0.05) in the total number of arm entries and time spent on the open arms of EPM while increasing the number of transitions (0.05) and time spent in the light area of the LDB (0.001). screening suggests stability of interaction with several amino acid residues overlapping with the flumazenil binding site, with the binding energy (Δ = −22.59kcal/mol towards the benzodiazepine binding site (flumazenil Δ = −43.92kcal/mol).

Discussion

The repositioning of drugs available to the population is an interesting approach toward the discovery of alternative or add-on treatments for anxiety. Ongoing resort to repurposing, reusing, reprofiling, and rediscovery of “old” drugs for a new indication seems to be an interesting way out of failures, the expensive and slow pace of new drug discovery.

Conclusion

Enalapril demonstrates anxiolytic-like properties, further insights into the GABAergic-renin-angiotensin-aldosterone mechanistic hypothesis.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273375375251114045754
2026-01-23
2026-01-29
Loading full text...

Full text loading...

References

  1. Tabacova S.A. Kimmel C.A. Enalapril: Pharmacokinetic/dynamic inferences for comparative developmental toxicity. A review. Reprod. Toxicol. 2001 15 5 467 478 10.1016/S0890‑6238(01)00161‑7 11780954
    [Google Scholar]
  2. Lim L.F. Solmi M. Cortese S. Association between anxiety and hypertension in adults: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2021 131 96 119 10.1016/j.neubiorev.2021.08.031 34481847
    [Google Scholar]
  3. Johnson E.O. Kamilaris T.C. Chrousos G.P. Gold P.W. Mechanisms of stress: A dynamic overview of hormonal and behavioral homeostasis. Neurosci. Biobehav. Rev. 1992 16 2 115 130 10.1016/S0149‑7634(05)80175‑7 1630726
    [Google Scholar]
  4. Daviu N. Bruchas M.R. Moghaddam B. Sandi C. Beyeler A. Neurobiological links between stress and anxiety. Neurobiol. Stress 2019 11 100191 10.1016/j.ynstr.2019.100191 31467945
    [Google Scholar]
  5. Chrousos G.P. Stress and disorders of the stress system. Nat. Rev. Endocrinol. 2009 5 7 374 381 10.1038/nrendo.2009.106 19488073
    [Google Scholar]
  6. Esler M Kaye D Sympathetic nervous system activation in essential hypertension, cardiac failure and psychosomatic heart disease. J Cardiovasc Pharmacol 2000 35 7 S1 7 (Suppl. 4) 10.1097/00005344‑200000004‑00001 11346214
    [Google Scholar]
  7. Yan J. Pan Y. Cai W. Cheng Q. Dong W. An T. Association between anxiety and hypertension: A systematic review and meta-analysis of epidemiological studies. Neuropsychiatr. Dis. Treat. 2015 11 1121 1130 10.2147/NDT.S77710 25960656
    [Google Scholar]
  8. White W.B. Baker L.H. Ambulatory blood pressure monitoring in patients with panic disorder. Arch. Intern. Med. 1987 147 11 1973 1975 10.1001/archinte.1987.00370110101015 3675099
    [Google Scholar]
  9. Kaplan N.M. Anxiety-induced hyperventilation. Arch. Intern. Med. 1997 157 9 945 948 10.1001/archinte.1997.00440300023002 9140264
    [Google Scholar]
  10. Herman J. Flak J. Jankord R. Chronic stress plasticity in the hypothalamic paraventricular nucleus. Prog Brain Res 2008 170 353 64 10.1016/S0079‑6123(08)00429‑9] 18655895
    [Google Scholar]
  11. Klenowski P.M. Zhao-Shea R. Freels T.G. A neuronal coping mechanism linking stress-induced anxiety to motivation for reward. Sci. Adv. 2023 9 49 eadh9620 10.1126/sciadv.adh9620 38055830
    [Google Scholar]
  12. Solanki B. Goel R. Gupta L.K. Benzodiazepines reduce blood pressure in short term: A systematic review and meta-analysis. Curr. Hypertens. Rep. 2023 25 10 335 341 10.1007/s11906‑023‑01256‑2 37581768
    [Google Scholar]
  13. Vian J. Pereira C. Chavarria V. The renin–angiotensin system: A possible new target for depression. BMC Med. 2017 15 1 144 10.1186/s12916‑017‑0916‑3 28760142
    [Google Scholar]
  14. Cortese S. Solmi M. Arrondo G. Association between mental disorders and somatic conditions: Protocol for an umbrella review. Evid. Based Ment. Health 2020 23 4 135 139 10.1136/ebmental‑2020‑300158 32900790
    [Google Scholar]
  15. Bruno R.M. Pucci G. Rosticci M. Association between lifestyle and systemic arterial hypertension in young adults: A national, survey-based, cross-sectional study. High Blood Press. Cardiovasc. Prev. 2016 23 1 31 40 10.1007/s40292‑016‑0135‑6 26909755
    [Google Scholar]
  16. Gould C.E. O’Hara R. Goldstein M.K. Beaudreau S.A. Multimorbidity is associated with anxiety in older adults in the Health and Retirement Study. Int. J. Geriatr. Psychiatry 2016 31 10 1105 1115 10.1002/gps.4532 27441851
    [Google Scholar]
  17. Maatouk I. Herzog W. Böhlen F. Association of hypertension with depression and generalized anxiety symptoms in a large population-based sample of older adults. J. Hypertens. 2016 34 9 1711 1720 10.1097/HJH.0000000000001006 27341438
    [Google Scholar]
  18. Mok D. Bednarz J. Zieren J. Double the prevalence of stage 2 hypertension readings in a small group of american pre-clinical medical students compared to young adults diagnosed with stage 2 Hypertension in the United States. Cureus 2020 12 3 e7448 10.7759/cureus.7448 32351827
    [Google Scholar]
  19. Sandström Y.K. Ljunggren G. Wändell P. Wahlström L. Carlsson A.C. Psychiatric comorbidities in patients with hypertension; A study of registered diagnoses 2009–2013 in the total population in Stockholm County, Sweden. J. Hypertens. 2016 34 3 414 420 10.1097/HJH.0000000000000824 26766563
    [Google Scholar]
  20. Fajemiroye J.O. Polepally P.R. Chaurasiya N.D. Tekwani B.L. Zjawiony J.K. Costa E.A. Oleanolic acid acrylate elicits antidepressant-like effect mediated by 5-HT1A receptor. Sci. Rep. 2015 5 1 11582 10.1038/srep11582 26199018
    [Google Scholar]
  21. Moreira C.V. Faria A.L. Silva D.P. Heteroaromatic Salvinorin a analogue (P-3l) Elicits antinociceptive and anxiolytic-like effects. SSRN 2022 10.2139/ssrn.4238692
    [Google Scholar]
  22. Moreira C.V.L. Faria A.L.G. Silva D.P.B. Heteroaromatic salvinorin A analogue (P-3 l) elicits antinociceptive and anxiolytic-like effects. Fitoterapia 2023 167 105488 10.1016/j.fitote.2023.105488 36990290
    [Google Scholar]
  23. Fajemiroye J.O. Galdino P.M. Florentino I.F. Plurality of anxiety and depression alteration mechanism by oleanolic acid. J. Psychopharmacol. 2014 28 10 923 934 10.1177/0269881114536789 24920136
    [Google Scholar]
  24. Fajemiroye J.O. Adam K. Jordan K.Z. Alves C.E. Aderoju A.A. Evaluation of anxiolytic and antidepressant-like activity of aqueous leaf extract of nymphaea lotus linn. In mice. Iran. J. Pharm. Res. 2018 17 2 613 626 29881419
    [Google Scholar]
  25. Percie du Sert N. Ahluwalia A. Alam S. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020 18 7 e3000411 10.1371/journal.pbio.3000411 32663221
    [Google Scholar]
  26. Wilson M.A. Burghardt P.R. Ford K.A. Wilkinson M.B. Primeaux S.D. Primeaux, anxiolytic effects of diazepam and ethanol in two behavioral models: comparison of males and females. Pharmacol. Biochem. Behav. 2004 78 445 458 10.1016/j.pbb.2004.04.017
    [Google Scholar]
  27. Cabral I.B. de Lima Moreira C.V. Rodrigues A.C.C. Preclinical data on morpholine (3,5-di-tertbutyl-4-hydroxyphenyl) methanone induced anxiolysis. Naunyn Schmiedebergs Arch. Pharmacol. 2023 396 11 2957 2975 10.1007/s00210‑023‑02502‑9 37097335
    [Google Scholar]
  28. Hogg S. A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol. Biochem. Behav. 1996 3057 95 02126 10.1016/0091‑3057(95)02126‑4
    [Google Scholar]
  29. Jones B.J. Roberts D.J. A rotarod suitable for quantitative measurements of motor incoordination in naive mice. Naunyn Schmiedebergs Arch. Pharmacol. 1968 259 2 211 10.1007/BF00537801 4232694
    [Google Scholar]
  30. de Brito A.F. Martins J.L.R. Fajemiroye J.O. Central pharmacological activity of a new piperazine derivative: 4-(1-Phenyl-1h-pyrazol-4-ylmethyl)-piperazine-1-carboxylic acid ethyl ester. Life Sci. 2012 90 23-24 910 916 10.1016/j.lfs.2012.04.037 22564406
    [Google Scholar]
  31. Shi X. Bai H. Wang J. Behavioral Assessment of sensory, motor, emotion, and cognition in rodent models of intracerebral hemorrhage. Front. Neurol. 2021 12 667511 10.3389/fneur.2021.667511 34220676
    [Google Scholar]
  32. Thompson M.A. Molecular docking using arguslab, an efficient shape-based search algorithm and the a score scoring function. ACS Meeting. Philadelphia 2004
    [Google Scholar]
  33. Nunes J.A. Santos-Júnior P.F.S. Gomes M.C. Nanomolar activity of coumarin-3-thiosemicarbazones targeting Trypanosoma cruzi cruzain and the T. brucei cathepsin L-like protease. Eur. J. Med. Chem. 2025 283 117109 10.1016/j.ejmech.2024.117109 39653622
    [Google Scholar]
  34. Bursch M. Mewes J.M. Hansen A. Grimme S. Best-Practice DFT protocols for basic molecular computational chemistry. Angew. Chem. Int. Ed. 2022 61 e202205735 10.1002/anie.202205735
    [Google Scholar]
  35. Martin J.M.L. Santra G. Empirical double-hybrid density functional theory: A ‘Third Way’ in between WFT and DFT. Isr. J. Chem. 2020 60 8-9 787 804 10.1002/ijch.201900114
    [Google Scholar]
  36. Silva-Junior E.F. Barcellos Franca P.H. Quintans-Junior L.J. Dynamic simulation, docking and dft studies applied to a set of anti-acetylcholinesterase inhibitors in the enzyme β-Secretase (BACE-1): An important therapeutic target in alzheimer’s disease. Curr. Computeraided Drug Des. 2017 13 4 266 274 10.2174/1573409913666170406150905 28382866
    [Google Scholar]
  37. Braga T.C. Silva T.F. Maciel T.M.S. Ionic liquid-assisted synthesis of dihydropyrimidin(thi)one Biginelli adducts and investigation of their mechanism of urease inhibition. New J. Chem. 2019 43 38 15187 15200 10.1039/C9NJ03556G
    [Google Scholar]
  38. Smith D.G.A. Burns L.A. Patkowski K. Sherrill C.D. Revised damping parameters for the d3 dispersion correction to density functional theory. J. Phys. Chem. Lett. 2016 7 12 2197 2203 10.1021/acs.jpclett.6b00780 27203625
    [Google Scholar]
  39. Goerigk L.A. A comprehensive overview of the DFT-D3 london-dispersion correction. Non-Covalent Interactions in Quantum Chemistry and Physics. Elsevier 2017 195 219 10.1016/B978‑0‑12‑809835‑6.00007‑4
    [Google Scholar]
  40. Stoychev G.L. Auer A.A. Neese F. Automatic generation of auxiliary basis sets. J. Chem. Theory Comput. 2017 13 2 554 562 10.1021/acs.jctc.6b01041 28005364
    [Google Scholar]
  41. Neese F. Software update: The ORCA program system—Version 5.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022 12 5 e1606 10.1002/wcms.1606
    [Google Scholar]
  42. Fukui K. Role of frontier orbitals in chemical reactions. Science 1982 218 4574 747 10.1126/science.218.4574.747
    [Google Scholar]
  43. Guha S. Majumdar D. Bhattacharjee A.K. Molecular electrostatic potential: A tool for the prediction of the pharmacophoric pattern of drug molecules. J. Mol. Struct. THEOCHEM 1992 256 61 74 10.1016/0166‑1280(92)87158‑V
    [Google Scholar]
  44. Weth F.R. Hoggarth G.B. Weth A.F. Unlocking hidden potential: Advancements, approaches, and obstacles in repurposing drugs for cancer therapy. Br. J. Cancer 2024 130 5 703 715 10.1038/s41416‑023‑02502‑9 38012383
    [Google Scholar]
  45. Toumi M. Rémuzat C. Value added medicines: What value repurposed medicines might bring to society? J. Mark. Access Health Policy 2017 5 1 1264717 10.1080/20016689.2017.1264717 28265347
    [Google Scholar]
  46. Sá Filho A. Barsanulfo S. Faria S. Inácio P. Ayatizadeh F. Machado S. Exerkines: A crosstalk between lactate production, exercise and mental health. CNS Neurol. Disord. Drug Targets 2023 1 1 4 37842902
    [Google Scholar]
  47. Lamego M.K. Lattari E. Sá Filho A.S. Aerobic exercise reduces anxiety symptoms and improves fitness in patients with panic disorder. MedicalExpress 2016 3 3 M160306 10.5935/MedicalExpress.2016.03.06
    [Google Scholar]
  48. de Souza Moura A. Lamego M. Paes F. Effects of aerobic exercise on anxiety disorders: A systematic review. CNS Neurol. Disord. Drug Targets 2015 14 9 1184 1193 10.2174/1871527315666151111121259
    [Google Scholar]
  49. Srinivasan J. Suresh B. Ramanathan M. Differential anxiolytic effect of enalapril and losartan in normotensive and renal hypertensive rats. Physiol. Behav. 2003 78 4-5 585 591 10.1016/S0031‑9384(03)00036‑2 12782212
    [Google Scholar]
  50. Fontanella B.J.B. Social anxiety and propranolol abuse: A case study. Braz J. Psychiatry 2003 25 4 228 10.1590/s1516‑44462003000400009
    [Google Scholar]
  51. Watzman N. Barry H. Buckley J.P. Kinnard W.J. Semiautomatic system for timing rotarod performance. J. Pharm. Sci. 1964 53 11 1429 1430 10.1002/jps.2600531142 14253619
    [Google Scholar]
  52. Pritchett K. The Rotarod. J American Assoc Laborat Animal Sci 2003 42 6 49
    [Google Scholar]
  53. Rodgers R.J. Dalvi A. Anxiety, defence and the elevated plus-maze. Neurosci. Biobehav. Rev. 1997 21 6 801 10.1016/S0149‑7634(96)00058‑9
    [Google Scholar]
  54. Cryan J.F. Holmes A. The ascent of mouse: Advances in modelling human depression and anxiety. Nat. Rev. Drug Discov. 2005 4 9 775 790 10.1038/nrd1825 16138108
    [Google Scholar]
  55. Li M. Reimers J.R. Ford M.J. Kobayashi R. Amos R.D. Accurate prediction of the properties of materials using the CAM-B3LYP density functional. J. Comput. Chem. 2021 42 21 1486 1497 10.1002/jcc.26558 34013573
    [Google Scholar]
  56. Andrade J.C. Monteiro Á.B. Andrade H.H.N. Involvement of GABAA receptors in the anxiolytic-like effect of hydroxycitronellal. BioMed Res. Int. 2021 2021 1 9929805 10.1155/2021/9929805 34222487
    [Google Scholar]
  57. Kim J.J. Gharpure A. Teng J. Shared structural mechanisms of general anaesthetics and benzodiazepines. Nature 2020 585 7824 303 308 10.1038/s41586‑020‑2654‑5 32879488
    [Google Scholar]
  58. Pickel V.M. Chan J. Co-localization of angiotensin II and gamma-aminobutyric acid in axon terminals in the rat subfornical organ. Neurosci. Lett. 1995 193 2 89 92 10.1016/0304‑3940(95)11673‑K 7478166
    [Google Scholar]
  59. Reinhold J.A. Rickels K. Pharmacological treatment for generalized anxiety disorder in adults: An update. Expert Opin. Pharmacother. 2015 16 11 1669 1681 10.1517/14656566.2015.1059424 26159446
    [Google Scholar]
  60. Prendergast B.J. Onishi K.G. Zucker I. Female mice liberated for inclusion in neuroscience and biomedical research. Neurosci. Biobehav. Rev. 2014 40 1 5 10.1016/j.neubiorev.2014.01.001 24456941
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273375375251114045754
Loading
/content/journals/cnsnddt/10.2174/0118715273375375251114045754
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: binding site ; Hypertension ; biological stress ; drug evaluation ; anxiety ; pharmacology
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test