Skip to content
2000
image of TDP-43 Proteinopathies in ALS and FTLD: Mechanistic Insights and Therapeutic Approaches

Abstract

TAR DNA-binding protein 43 (TDP-43) is a vital RNA/DNA-binding protein involved in RNA metabolism, playing a key role in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Approximately 97% of sporadic ALS (sALS), familial ALS (fALS) and FTLD cases are associated with pathological inclusions of hyperphosphorylated and ubiquitinated TDP-43 and genetic mutations in TAR DNA binding protein (TARDBP). Besides TARDBP, mutations in other genes such as C9ORF72, SOD1, FUS, and NEK1 are also linked to other fALS cases. Cytoplasmic mislocalization, aberrant post-translational modifications, and amyloid-like aggregation characterize TDP-43 pathology. These pathological changes impair essential cellular processes, including gene expression, mRNA stability, and RNA metabolism. Mechanisms of TDP-43-induced toxicity include disruption of endocytosis, mitochondrial dysfunction, and progressive cellular damage. Additionally, liquid-liquid phase separation (LLPS) and prion-like propagation are emerging as central features of its pathological spread. This review summarizes advances in understanding TDP-43's physiological functions and pathological mechanisms in ALS and FTLD. It highlights key processes underlying TDP-43 toxicity, such as aggregation, selective neuronal vulnerability, and regional susceptibility. Finally, this review summarizes evolving therapeutic strategies aimed at mitigating TDP-43-related toxicity through disaggregation, targeting mislocalization, and addressing upstream dysfunctions and challenges faced in the development of effective therapies for ALS and FTLD.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273374466250617085832
2025-07-03
2025-09-30
Loading full text...

Full text loading...

References

  1. de Boer E.M.J. Orie V.K. Williams T. TDP-43 proteinopathies: A new wave of neurodegenerative diseases. J. Neurol. Neurosurg. Psychiatry 2021 92 1 86 95 10.1136/jnnp‑2020‑322983 33177049
    [Google Scholar]
  2. Wang I.F. Wu L.S. Shen C.K.J. TDP-43: An emerging new player in neurodegenerative diseases. Trends Mol. Med. 2008 14 11 479 485 10.1016/j.molmed.2008.09.001 18929508
    [Google Scholar]
  3. Yabata H. Riku Y. Miyahara H. Nuclear expression of TDP-43 is linked with morphology and ubiquitylation of cytoplasmic aggregates in amyotrophic lateral sclerosis. Int. J. Mol. Sci. 2023 24 15 12176 10.3390/ijms241512176 37569549
    [Google Scholar]
  4. Jo M. Lee S. Jeon Y.M. Kim S. Kwon Y. Kim H.J. The role of TDP-43 propagation in neurodegenerative diseases: Integrating insights from clinical and experimental studies. Exp. Mol. Med. 2020 52 10 1652 1662 10.1038/s12276‑020‑00513‑7 33051572
    [Google Scholar]
  5. Xu Z. Yang C. TDP-43-The key to understanding amyotrophic lateral sclerosis. Rare Dis. 2014 2 1 e944443 10.4161/21675511.2014.944443 26942097
    [Google Scholar]
  6. Prasad A. Bharathi V. Sivalingam V. Girdhar A. Patel B.K. Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Front. Mol. Neurosci. 2019 12 25 10.3389/fnmol.2019.00025 30837838
    [Google Scholar]
  7. Warraich S.T. Yang S. Nicholson G.A. Blair I.P. TDP-43: A DNA and RNA binding protein with roles in neurodegenerative diseases. Int. J. Biochem. Cell Biol. 2010 42 10 1606 1609 10.1016/j.biocel.2010.06.016 20601083
    [Google Scholar]
  8. Sreedharan J. Blair I.P. Tripathi V.B. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 2008 319 5870 1668 1672 10.1126/science.1154584 18309045
    [Google Scholar]
  9. Kawakami I. Arai T. Hasegawa M. The basis of clinicopathological heterogeneity in TDP-43 proteinopathy. Acta Neuropathol. 2019 138 5 751 770 10.1007/s00401‑019‑02077‑x 31555895
    [Google Scholar]
  10. Lagier-Tourenne C. Polymenidou M. Cleveland D.W. TDP-43 and FUS/TLS: Emerging roles in RNA processing and neurodegeneration. Hum. Mol. Genet. 2010 19 R1 R46 R64 10.1093/hmg/ddq137 20400460
    [Google Scholar]
  11. François-Moutal L. Perez-Miller S. Scott D.D. Miranda V.G. Mollasalehi N. Khanna M. Structural insights into TDP-43 and effects of post-translational modifications. Front. Mol. Neurosci. 2019 12 301 10.3389/fnmol.2019.00301 31920533
    [Google Scholar]
  12. Afroz T. Hock E.M. Ernst P. Functional and dynamic polymerization of the ALS-linked protein TDP-43 antagonizes its pathologic aggregation. Nat. Commun. 2017 8 1 45 10.1038/s41467‑017‑00062‑0 28663553
    [Google Scholar]
  13. Josephs K.A. Dementia and the TAR DNA binding protein 43. Clin. Pharmacol. Ther. 2010 88 4 555 558 10.1038/clpt.2010.112 20739922
    [Google Scholar]
  14. Scotter E.L. Chen H.J. Shaw C.E. TDP-43 proteinopathy and ALS: Insights into disease mechanisms and therapeutic targets. Neurotherapeutics 2015 12 2 352 363 10.1007/s13311‑015‑0338‑x 25652699
    [Google Scholar]
  15. Laferrière F. Maniecka Z. Pérez-Berlanga M. TDP-43 extracted from frontotemporal lobar degeneration subject brains displays distinct aggregate assemblies and neurotoxic effects reflecting disease progression rates. Nat. Neurosci. 2019 22 1 65 77 10.1038/s41593‑018‑0294‑y 30559480
    [Google Scholar]
  16. Conicella A.E. Dignon G.L. Zerze G.H. TDP-43 α-helical structure tunes liquid–liquid phase separation and function. Proc. Natl. Acad. Sci. USA 2020 117 11 5883 5894 10.1073/pnas.1912055117 32132204
    [Google Scholar]
  17. Deshimaru M. Kinoshita-Kawada M. Kubota K. DCTN1 binds to TDP-43 and regulates TDP-43 aggregation. Int. J. Mol. Sci. 2021 22 8 3985 10.3390/ijms22083985 33924373
    [Google Scholar]
  18. Tollervey J.R. Curk T. Rogelj B. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat. Neurosci. 2011 14 4 452 458 10.1038/nn.2778 21358640
    [Google Scholar]
  19. Izumikawa K. Nobe Y. Yoshikawa H. TDP-43 stabilises the processing intermediates of mitochondrial transcripts. Sci. Rep. 2017 7 1 7709 10.1038/s41598‑017‑06953‑y 28794432
    [Google Scholar]
  20. Weskamp K Barmada SJ TDP43 and RNA instability in amyotrophic lateral sclerosis. Brain Res 2018 1693 Pt A 67 74 10.1016/j.brainres.2018.01.015 29395044
    [Google Scholar]
  21. Sephton C.F. Good S.K. Atkin S. TDP-43 is a developmentally regulated protein essential for early embryonic development. J. Biol. Chem. 2010 285 9 6826 6834 10.1074/jbc.M109.061846 20040602
    [Google Scholar]
  22. Briese M. Saal-Bauernschubert L. Lüningschrör P. Loss of Tdp-43 disrupts the axonal transcriptome of motoneurons accompanied by impaired axonal translation and mitochondria function. Acta Neuropathol. Commun. 2020 8 1 116 10.1186/s40478‑020‑00987‑6 32709255
    [Google Scholar]
  23. Chou C.C. Zhang Y. Umoh M.E. TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat. Neurosci. 2018 21 2 228 239 10.1038/s41593‑017‑0047‑3 29311743
    [Google Scholar]
  24. Neumann M. Sampathu D.M. Kwong L.K. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006 314 5796 130 133 10.1126/science.1134108 17023659
    [Google Scholar]
  25. Josephs K.A. Murray M.E. Whitwell J.L. Staging TDP-43 pathology in Alzheimer’s disease. Acta Neuropathol. 2014 127 3 441 450 10.1007/s00401‑013‑1211‑9 24240737
    [Google Scholar]
  26. Eck R.J. Kraemer B.C. Liachko N.F. Regulation of TDP-43 phosphorylation in aging and disease. Geroscience 2021 43 4 1605 1614 10.1007/s11357‑021‑00383‑5 34032984
    [Google Scholar]
  27. Koyama A. Sugai A. Kato T. Increased cytoplasmic TARDBP mRNA in affected spinal motor neurons in ALS caused by abnormal autoregulation of TDP-43. Nucleic Acids Res. 2016 44 12 5820 5836 10.1093/nar/gkw499 27257061
    [Google Scholar]
  28. Nilaver B.I. Urbanski H.F. Mechanisms underlying TDP-43 pathology and neurodegeneration: An updated Mini-Review. Front. Aging Neurosci. 2023 15 1142617 10.3389/fnagi.2023.1142617 36967829
    [Google Scholar]
  29. Brettschneider J. Del Tredici K. Toledo J.B. Stages of pTDP‐43 pathology in amyotrophic lateral sclerosis. Ann. Neurol. 2013 74 1 20 38 10.1002/ana.23937 23686809
    [Google Scholar]
  30. Vucic S. Higashihara M. Sobue G. ALS is a multistep process in South Korean, Japanese, and Australian patients. Neurology 2020 94 15 e1657 e1663 10.1212/WNL.0000000000009015 32071166
    [Google Scholar]
  31. Chiò A. Mazzini L. D’Alfonso S. The multistep hypothesis of ALS revisited. Neurology 2018 91 7 e635 e642 10.1212/WNL.0000000000005996 30045958
    [Google Scholar]
  32. Klim J.R. Williams L.A. Limone F. ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. Nat. Neurosci. 2019 22 2 167 179 10.1038/s41593‑018‑0300‑4 30643292
    [Google Scholar]
  33. Krus K.L. Strickland A. Yamada Y. Loss of Stathmin-2, a hallmark of TDP-43-associated ALS, causes motor neuropathy. Cell Rep. 2022 39 13 111001 10.1016/j.celrep.2022.111001 35767949
    [Google Scholar]
  34. Barmada S.J. Skibinski G. Korb E. Rao E.J. Wu J.Y. Finkbeiner S. Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J. Neurosci. 2010 30 2 639 649 10.1523/JNEUROSCI.4988‑09.2010 20071528
    [Google Scholar]
  35. Wang W. Wang L. Lu J. The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity. Nat. Med. 2016 22 8 869 878 10.1038/nm.4130 27348499
    [Google Scholar]
  36. Brady O.A. Meng P. Zheng Y. Mao Y. Hu F. Regulation of TDP-43 aggregation by phosphorylation andp62/SQSTM1. J. Neurochem. 2011 116 2 248 259 10.1111/j.1471‑4159.2010.07098.x 21062285
    [Google Scholar]
  37. Li H.Y. Yeh P.A. Chiu H.C. Tang C.Y. Tu B.P. Hyperphosphorylation as a defense mechanism to reduce TDP-43 aggregation. PLoS One 2011 6 8 e23075 10.1371/journal.pone.0023075 21850253
    [Google Scholar]
  38. Liachko N.F. McMillan P.J. Guthrie C.R. Bird T.D. Leverenz J.B. Kraemer B.C. CDC7 inhibition blocks pathological TDP‐43 phosphorylation and neurodegeneration. Ann. Neurol. 2013 74 1 39 52 10.1002/ana.23870 23424178
    [Google Scholar]
  39. Nonaka T. Masuda-Suzukake M. Arai T. Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep. 2013 4 1 124 134 10.1016/j.celrep.2013.06.007 23831027
    [Google Scholar]
  40. Fang Y.S. Tsai K.J. Chang Y.J. Full-length TDP-43 forms toxic amyloid oligomers that are present in frontotemporal lobar dementia-TDP patients. Nat. Commun. 2014 5 1 4824 10.1038/ncomms5824 25215604
    [Google Scholar]
  41. Feiler M.S. Strobel B. Freischmidt A. TDP-43 is intercellularly transmitted across axon terminals. J. Cell Biol. 2015 211 4 897 911 10.1083/jcb.201504057 26598621
    [Google Scholar]
  42. Fujishiro H. Uchikado H. Arai T. Accumulation of phosphorylated TDP-43 in brains of patients with argyrophilic grain disease. Acta Neuropathol. 2009 117 2 151 158 10.1007/s00401‑008‑0463‑2 19039597
    [Google Scholar]
  43. Snowden J.S. Rollinson S. Thompson J.C. Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain 2012 135 3 693 708 10.1093/brain/awr355 22300873
    [Google Scholar]
  44. Arnold E.S. Ling S.C. Huelga S.C. ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc. Natl. Acad. Sci. USA 2013 110 8 E736 E745 10.1073/pnas.1222809110 23382207
    [Google Scholar]
  45. Austin J.A. Wright G.S.A. Watanabe S. Disease causing mutants of TDP-43 nucleic acid binding domains are resistant to aggregation and have increased stability and half-life. Proc. Natl. Acad. Sci. USA 2014 111 11 4309 4314 10.1073/pnas.1317317111 24591609
    [Google Scholar]
  46. Saxena S. Caroni P. Selective neuronal vulnerability in neurodegenerative diseases: From stressor thresholds to degeneration. Neuron 2011 71 1 35 48 10.1016/j.neuron.2011.06.031 21745636
    [Google Scholar]
  47. Braun R.J. Sommer C. Carmona-Gutierrez D. Neurotoxic 43-kDa TAR DNA-binding protein (TDP-43) triggers mitochondrion-dependent programmed cell death in yeast. J. Biol. Chem. 2011 286 22 19958 19972 10.1074/jbc.M110.194852 21471218
    [Google Scholar]
  48. Wang Y.T. Kuo P.H. Chiang C.H. The truncated C-terminal RNA recognition motif of TDP-43 protein plays a key role in forming proteinaceous aggregates. J. Biol. Chem. 2013 288 13 9049 9057 10.1074/jbc.M112.438564 23372158
    [Google Scholar]
  49. Stribl C. Samara A. Trümbach D. Mitochondrial dysfunction and decrease in body weight of a transgenic knock-in mouse model for TDP-43. J. Biol. Chem. 2014 289 15 10769 10784 10.1074/jbc.M113.515940 24515116
    [Google Scholar]
  50. Duan W. Li X. Shi J. Guo Y. Li Z. Li C. Mutant TAR DNA-binding protein-43 induces oxidative injury in motor neuron-like cell. Neuroscience 2010 169 4 1621 1629 10.1016/j.neuroscience.2010.06.018 20600671
    [Google Scholar]
  51. Tian Y.P. Che F.Y. Su Q.P. Effects of mutant TDP-43 on the Nrf2/ARE pathway and protein expression of MafK and JDP2 in NSC-34 cells. Genet. Mol. Res. 2017 16 2 10.4238/gmr16029638 28510254
    [Google Scholar]
  52. Carrì M.T. Valle C. Bozzo F. Cozzolino M. Oxidative stress and mitochondrial damage: Importance in non-SOD1 ALS. Front. Cell. Neurosci. 2015 9 41 10.3389/fncel.2015.00041 25741238
    [Google Scholar]
  53. Zhan L. Xie Q. Tibbetts R.S. Opposing roles of p38 and JNK in a Drosophila model of TDP-43 proteinopathy reveal oxidative stress and innate immunity as pathogenic components of neurodegeneration. Hum. Mol. Genet. 2015 24 3 757 772 10.1093/hmg/ddu493 25281658
    [Google Scholar]
  54. Chang C. Chiang M. Toh E.K.W. Chang C.F. Huang T. Molecular mechanism of oxidation‐induced TDP‐43 RRM1 aggregation and loss of function. FEBS Lett. 2013 587 6 575 582 10.1016/j.febslet.2013.01.038 23384725
    [Google Scholar]
  55. Zeineddine R. Farrawell N.E. Lambert-Smith I.A. Yerbury J.J. Addition of exogenous SOD1 aggregates causes TDP-43 mislocalisation and aggregation. Cell Stress Chaperones 2017 22 6 893 902 10.1007/s12192‑017‑0804‑y 28560609
    [Google Scholar]
  56. Jeon G.S. Shim Y.M. Lee D.Y. Pathological modification of TDP-43 in amyotrophic lateral sclerosis with SOD1 mutations. Mol. Neurobiol. 2019 56 3 2007 2021 10.1007/s12035‑018‑1218‑2 29982983
    [Google Scholar]
  57. Stoica R. De Vos K.J. Paillusson S. ER–mitochondria associations are regulated by the VAPB–PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat. Commun. 2014 5 1 3996 10.1038/ncomms4996 24893131
    [Google Scholar]
  58. Buratti E. Targeting TDP‐43 proteinopathy with drugs and drug‐like small molecules. Br. J. Pharmacol. 2021 178 6 1298 1315 10.1111/bph.15148 32469420
    [Google Scholar]
  59. Bright F. Chan G. van Hummel A. Ittner L.M. Ke Y.D. TDP-43 and inflammation: Implications for amyotrophic lateral sclerosis and frontotemporal dementia. Int. J. Mol. Sci. 2021 22 15 7781 10.3390/ijms22157781 34360544
    [Google Scholar]
  60. Zhao W. Beers D.R. Bell S. TDP-43 activates microglia through NF-κB and NLRP3 inflammasome. Exp. Neurol. 2015 273 24 35 10.1016/j.expneurol.2015.07.019 26222336
    [Google Scholar]
  61. Cihankaya H. Bader V. Winklhofer K.F. Elevated NLRP3 inflammasome activation is associated with motor neuron degeneration in ALS. Cells 2024 13 12 995 10.3390/cells13120995 38920626
    [Google Scholar]
  62. Liu Z. Bai Y. Xu B. TDP43 augments astrocyte inflammatory activity through mtDNA-cGAS-STING axis in NMOSD. J. Neuroinflammation 2025 22 1 14 10.1186/s12974‑025‑03348‑z 39844196
    [Google Scholar]
  63. van Es M.A. Hardiman O. Chio A. Amyotrophic lateral sclerosis. Lancet 2017 390 10107 2084 2098 10.1016/S0140‑6736(17)31287‑4 28552366
    [Google Scholar]
  64. Dugger B.N. Dickson D.W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 2017 9 7 a028035 10.1101/cshperspect.a028035 28062563
    [Google Scholar]
  65. Wilson C.M. Grace G.M. Munoz D.G. He B.P. Strong M.J. Cognitive impairment in sporadic ALS. Neurology 2001 57 4 651 657 10.1212/WNL.57.4.651 11524474
    [Google Scholar]
  66. Williams S.M. Khan G. Harris B.T. Ravits J. Sierks M.R. TDP-43 protein variants as biomarkers in amyotrophic lateral sclerosis. BMC Neurosci. 2017 18 1 20 10.1186/s12868‑017‑0334‑7 28122516
    [Google Scholar]
  67. Gregory J.M. McDade K. Bak T.H. Executive, language and fluency dysfunction are markers of localised TDP-43 cerebral pathology in non-demented ALS. J. Neurol. Neurosurg. Psychiatry 2020 91 2 149 157 10.1136/jnnp‑2019‑320807 31515300
    [Google Scholar]
  68. Braak H. Ludolph A. Thal D.R. Del Tredici K. Amyotrophic lateral sclerosis: Dash-like accumulation of phosphorylated TDP-43 in somatodendritic and axonal compartments of somatomotor neurons of the lower brainstem and spinal cord. Acta Neuropathol. 2010 120 1 67 74 10.1007/s00401‑010‑0683‑0 20379728
    [Google Scholar]
  69. Buratti E. Functional significance of TDP-43 mutations in disease. Adv. Genet. 2015 91 1 53 10.1016/bs.adgen.2015.07.001 26410029
    [Google Scholar]
  70. Moreno F. Rabinovici G.D. Karydas A. A novel mutation P112H in the TARDBP gene associated with frontotemporal lobar degeneration without motor neuron disease and abundant neuritic amyloid plaques. Acta Neuropathol. Commun. 2015 3 1 19 10.1186/s40478‑015‑0190‑6 25853458
    [Google Scholar]
  71. Johnson B.S. Snead D. Lee J.J. McCaffery J.M. Shorter J. Gitler A.D. TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J. Biol. Chem. 2009 284 30 20329 20339 10.1074/jbc.M109.010264 19465477
    [Google Scholar]
  72. Zhu L. Xu M. Yang M. An ALS-mutant TDP-43 neurotoxic peptide adopts an anti-parallel β-structure and induces TDP-43 redistribution. Hum. Mol. Genet. 2014 23 25 6863 6877 10.1093/hmg/ddu409 25113748
    [Google Scholar]
  73. Sun Z. Diaz Z. Fang X. Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol. 2011 9 4 e1000614 10.1371/journal.pbio.1000614 21541367
    [Google Scholar]
  74. Guo W. Chen Y. Zhou X. Kar A. Ray P. Chen X. An ALS-associated mutation affecting TDP-43 enhances protein aggregation, fibril formation and neurotoxicity. Nat. Struct. Mol. Biol. 2011 18 7 822 830 10.1038/nsmb.2053 21666678
    [Google Scholar]
  75. Liu-Yesucevitz L. Lin A.Y. Ebata A. ALS-linked mutations enlarge TDP-43-enriched neuronal RNA granules in the dendritic arbor. J. Neurosci. 2014 34 12 4167 4174 10.1523/JNEUROSCI.2350‑13.2014 24647938
    [Google Scholar]
  76. McDonald K.K. Aulas A. Destroismaisons L. TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1. Hum. Mol. Genet. 2011 20 7 1400 1410 10.1093/hmg/ddr021 21257637
    [Google Scholar]
  77. Dewey C.M. Cenik B. Sephton C.F. TDP-43 is directed to stress granules by sorbitol, a novel physiological osmotic and oxidative stressor. Mol. Cell. Biol. 2011 31 5 1098 1108 10.1128/MCB.01279‑10 21173160
    [Google Scholar]
  78. Nonaka T. Arai T. Buratti E. Baralle F.E. Akiyama H. Hasegawa M. Phosphorylated and ubiquitinated TDP‐43 pathological inclusions in ALS and FTLD‐U are recapitulated in SH‐SY5Y cells. FEBS Lett. 2009 583 2 394 400 10.1016/j.febslet.2008.12.031 19111550
    [Google Scholar]
  79. Ling S.C. Albuquerque C.P. Han J.S. ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS. Proc. Natl. Acad. Sci. USA 2010 107 30 13318 13323 10.1073/pnas.1008227107 20624952
    [Google Scholar]
  80. Watanabe S. Kaneko K. Yamanaka K. Accelerated disease onset with stabilized familial amyotrophic lateral sclerosis (ALS)-linked mutant TDP-43 proteins. J. Biol. Chem. 2013 288 5 3641 3654 10.1074/jbc.M112.433615 23235148
    [Google Scholar]
  81. Burrell J.R. Halliday G.M. Kril J.J. The frontotemporal dementia-motor neuron disease continuum. Lancet 2016 388 10047 919 931 10.1016/S0140‑6736(16)00737‑6 26987909
    [Google Scholar]
  82. Cairns N.J. Neumann M. Bigio E.H. TDP-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. Am. J. Pathol. 2007 171 1 227 240 10.2353/ajpath.2007.070182 17591968
    [Google Scholar]
  83. Bathgate D. Snowden J.S. Varma A. Blackshaw A. Neary D. Behaviour in frontotemporal dementia, Alzheimer’s disease and vascular dementia. Acta Neurol. Scand. 2001 103 6 367 378 10.1034/j.1600‑0404.2001.2000236.x 11421849
    [Google Scholar]
  84. Davidson Y. Kelley T. Mackenzie I.R.A. Ubiquitinated pathological lesions in frontotemporal lobar degeneration contain the TAR DNA-binding protein, TDP-43. Acta Neuropathol. 2007 113 5 521 533 10.1007/s00401‑006‑0189‑y 17219193
    [Google Scholar]
  85. Snowden J. Neary D. Mann D. Frontotemporal lobar degeneration: Clinical and pathological relationships. Acta Neuropathol. 2007 114 1 31 38 10.1007/s00401‑007‑0236‑3 17569065
    [Google Scholar]
  86. Lee E.B. Porta S. Michael Baer G. Expansion of the classification of FTLD-TDP: Distinct pathology associated with rapidly progressive frontotemporal degeneration. Acta Neuropathol. 2017 134 1 65 78 10.1007/s00401‑017‑1679‑9 28130640
    [Google Scholar]
  87. Baker M. Mackenzie I.R. Pickering-Brown S.M. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 2006 442 7105 916 919 10.1038/nature05016 16862116
    [Google Scholar]
  88. Kabashi E. Valdmanis P.N. Dion P. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat. Genet. 2008 40 5 572 574 10.1038/ng.132 18372902
    [Google Scholar]
  89. Watts G.D.J. Wymer J. Kovach M.J. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat. Genet. 2004 36 4 377 381 10.1038/ng1332 15034582
    [Google Scholar]
  90. Mackenzie I.R.A. Frick P. Neumann M. The neuropathology associated with repeat expansions in the C9ORF72 gene. Acta Neuropathol. 2014 127 3 347 357 10.1007/s00401‑013‑1232‑4 24356984
    [Google Scholar]
  91. DeJesus-Hernandez M. Mackenzie I.R. Boeve B.F. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011 72 2 245 256 10.1016/j.neuron.2011.09.011 21944778
    [Google Scholar]
  92. van der Zee J. Van Langenhove T. Kovacs G.G. Rare mutations in SQSTM1 modify susceptibility to frontotemporal lobar degeneration. Acta Neuropathol. 2014 128 3 397 410 10.1007/s00401‑014‑1298‑7 24899140
    [Google Scholar]
  93. Freischmidt A. Wieland T. Richter B. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat. Neurosci. 2015 18 5 631 636 10.1038/nn.4000 25803835
    [Google Scholar]
  94. Bannwarth S. Ait-El-Mkadem S. Chaussenot A. A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain 2014 137 8 2329 2345 10.1093/brain/awu138 24934289
    [Google Scholar]
  95. Mackenzie I.R. Nicholson A.M. Sarkar M. TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics. Neuron 2017 95 4 808 816.e9 10.1016/j.neuron.2017.07.025 28817800
    [Google Scholar]
  96. Williams K.L. Topp S. Yang S. CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia. Nat. Commun. 2016 7 1 11253 10.1038/ncomms11253 27080313
    [Google Scholar]
  97. Bury J.J. Highley J.R. Cooper-Knock J. Oligogenic inheritance of optineurin (OPTN) and C9ORF72 mutations in ALS highlights localisation of OPTN in the TDP‐43‐negative inclusions of C9ORF72 ‐ALS. Neuropathology 2016 36 2 125 134 10.1111/neup.12240 26303227
    [Google Scholar]
  98. Al-Chalabi A. Hardiman O. The epidemiology of ALS: A conspiracy of genes, environment and time. Nat. Rev. Neurol. 2013 9 11 617 628 10.1038/nrneurol.2013.203 24126629
    [Google Scholar]
  99. Hardy J Rogaeva E Motor neuron disease and frontotemporal dementia: Sometimes related, sometimes not. Exp Neurol 2014 262 Pt B 75 85 10.1016/j.expneurol.2013.11.006 24246281
    [Google Scholar]
  100. Brettschneider J. Del Tredici K. Irwin D.J. Sequential distribution of pTDP-43 pathology in behavioral variant frontotemporal dementia (bvFTD). Acta Neuropathol. 2014 127 3 423 439 10.1007/s00401‑013‑1238‑y 24407427
    [Google Scholar]
  101. Baralle M. Buratti E. Baralle F.E. The role of TDP-43 in the pathogenesis of ALS and FTLD. Biochem. Soc. Trans. 2013 41 6 1536 1540 10.1042/BST20130186 24256250
    [Google Scholar]
  102. Richards D. Morren J.A. Pioro E.P. Time to diagnosis and factors affecting diagnostic delay in amyotrophic lateral sclerosis. J. Neurol. Sci. 2020 417 117054 10.1016/j.jns.2020.117054 32763509
    [Google Scholar]
  103. Löscher W. Gericke B. Novel intrinsic mechanisms of active drug extrusion at the blood-brain barrier: Potential targets for enhancing drug delivery to the brain? Pharmaceutics 2020 12 10 966 10.3390/pharmaceutics12100966 33066604
    [Google Scholar]
  104. Wasielewska J.M. Chaves J.C.S. Cabral-da-Silva M.C. A patient-derived amyotrophic lateral sclerosis blood-brain barrier model for focused ultrasound-mediated anti-TDP-43 antibody delivery. Fluids Barriers CNS 2024 21 1 65 10.1186/s12987‑024‑00565‑1 39138578
    [Google Scholar]
  105. Ashhurst J.F. Tu S. Timmins H.C. Kiernan M.C. Progress, development, and challenges in amyotrophic lateral sclerosis clinical trials. Expert Rev. Neurother. 2022 22 11-12 905 913 10.1080/14737175.2022.2161893 36543326
    [Google Scholar]
  106. Denali Therapeutics’ trial of DNL343 fails to meet primary endpoint. 2025 https://www.clinicaltrialsarena.com/news/denali-als-trial-fails-endpoint/
  107. Lauffer M.C. van Roon-Mom W. Aartsma-Rus A. Possibilities and limitations of antisense oligonucleotide therapies for the treatment of monogenic disorders. Commun. Med. 2024 4 1 6 10.1038/s43856‑023‑00419‑1 38182878
    [Google Scholar]
  108. Gagliardi M. Ashizawa A.T. The challenges and strategies of antisense oligonucleotide drug delivery. Biomedicines 2021 9 4 433 10.3390/biomedicines9040433 33923688
    [Google Scholar]
  109. Wu H. Wahane A. Alhamadani F. Nephrotoxicity of marketed antisense oligonucleotide drugs. Curr. Opin. Toxicol. 2022 32 100373 10.1016/j.cotox.2022.100373 37193356
    [Google Scholar]
  110. Hayes L.R. Kalab P. Emerging therapies and novel targets for TDP-43 proteinopathy in ALS/FTD. Neurotherapeutics 2022 19 4 1061 1084 10.1007/s13311‑022‑01260‑5 35790708
    [Google Scholar]
  111. François-Moutal L. Felemban R. Scott D.D. Small molecule targeting TDP-43’s RNA recognition motifs reduces locomotor defects in a drosophila model of amyotrophic lateral sclerosis (ALS). ACS Chem. Biol. 2019 14 9 2006 2013 10.1021/acschembio.9b00481 31241884
    [Google Scholar]
  112. Mollasalehi N. Francois-Moutal L. Scott D.D. An allosteric modulator of RNA binding targeting the N-terminal domain of TDP-43 yields neuroprotective properties. ACS Chem. Biol. 2020 15 11 2854 2859 10.1021/acschembio.0c00494 33044808
    [Google Scholar]
  113. Lee B.H. Lee M.J. Park S. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 2010 467 7312 179 184 10.1038/nature09299 20829789
    [Google Scholar]
  114. Guo L. Shorter J. Biology and pathobiology of TDP-43 and emergent therapeutic strategies. Cold Spring Harb. Perspect. Med. 2017 7 9 a024554 10.1101/cshperspect.a024554 27920024
    [Google Scholar]
  115. Kalmar B. Novoselov S. Gray A. Cheetham M.E. Margulis B. Greensmith L. Late stage treatment with arimoclomol delays disease progression and prevents protein aggregation in the SOD1G93A mouse model of ALS. J. Neurochem. 2008 107 2 339 350 10.1111/j.1471‑4159.2008.05595.x 18673445
    [Google Scholar]
  116. Kieran D. Kalmar B. Dick J.R.T. Riddoch-Contreras J. Burnstock G. Greensmith L. Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nat. Med. 2004 10 4 402 405 10.1038/nm1021 15034571
    [Google Scholar]
  117. Kalmar B. Greensmith L. Cellular chaperones as therapeutic targets in ALS to restore protein homeostasis and improve cellular function. Front. Mol. Neurosci. 2017 10 251 10.3389/fnmol.2017.00251 28943839
    [Google Scholar]
  118. Tariq A. Lin J. Jackrel M.E. Mining disaggregase sequence space to safely counter TDP-43, FUS, and α-synuclein proteotoxicity. Cell Rep. 2019 28 8 2080 2095.e6 10.1016/j.celrep.2019.07.069 31433984
    [Google Scholar]
  119. Zeballos C.M.A. Moore H.J. Smith T.J. Mitigating a TDP-43 proteinopathy by targeting ataxin-2 using RNA-targeting CRISPR effector proteins. Nat. Commun. 2023 14 1 6492 10.1038/s41467‑023‑42147‑z 37838698
    [Google Scholar]
  120. Takeuchi T. Maeta K. Ding X. Sustained therapeutic benefits by transient reduction of TDP-43 using ENA-modified antisense oligonucleotides in ALS/FTD mice. Mol. Ther. Nucleic Acids 2023 31 353 366 10.1016/j.omtn.2023.01.006 36817728
    [Google Scholar]
  121. Mehta P.R. Brown A.L. Ward M.E. Fratta P. The era of cryptic exons: Implications for ALS-FTD. Mol. Neurodegener. 2023 18 1 16 10.1186/s13024‑023‑00608‑5 36922834
    [Google Scholar]
  122. Malik R. Wiedau M. Therapeutic approaches targeting protein aggregation in amyotrophic lateral sclerosis. Front. Mol. Neurosci. 2020 13 98 10.3389/fnmol.2020.00098 32581709
    [Google Scholar]
  123. Riemenschneider H. Simonetti F. Sheth U. Targeting the glycine-rich domain of TDP-43 with antibodies prevents its aggregation in vitro and reduces neurofilament levels in vivo. Acta Neuropathol. Commun. 2023 11 1 112 10.1186/s40478‑023‑01592‑z 37434215
    [Google Scholar]
  124. Huang C. Yan S. Zhang Z. Maintaining the balance of TDP-43, mitochondria, and autophagy: A promising therapeutic strategy for neurodegenerative diseases. Transl. Neurodegener. 2020 9 1 40 10.1186/s40035‑020‑00219‑w 33126923
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273374466250617085832
Loading
/content/journals/cnsnddt/10.2174/0118715273374466250617085832
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test