Skip to content
2000
image of Trends in Nanoparticle-based Strategies for the Management of Neuroinflammation

Abstract

Neuroinflammation, characterised by an overactive immune system in the brain and spinal cord, has now been tied to several neurodegenerative diseases. Here, immune cells invade into the brain, activating astrocytes and microglia. Neuroinflammation is a common symptom of many neurodegenerative illnesses, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). This inflammatory reaction occurs within the central nervous system (CNS). Neurological dysfunction results from the inflammatory response, which arises in reaction to any kind of brain injury. Regulating neuroinflammation can be useful for controlling brain disorders associated with neuroinflammation. Several targeted drug delivery systems attempt to treat neuroinflammation caused by neurodegenerative illnesses or brain tumours by targeting the microglia and other immune cells in the central nervous system. Therefore, biodegradable and biocompatible NPs (nanoparticles) could be developed as a treatment for neurodegenerative diseases caused by neuroinflammation or as a less invasive means of transporting other drugs across the blood-brain barrier. Numerous applications of gold nanoparticles (AuNPs) in the treatment of neurological diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), are studied in this article. To prevent neuroinflammation and microglia over-activation, some NPs have recently been found to be effective anti-inflammatory medication carriers that cross the blood-brain barrier.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273373041250707012835
2025-07-23
2025-09-30
Loading full text...

Full text loading...

References

  1. Ghavami S. Shojaei S. Yeganeh B. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog. Neurobiol. 2014 112 24 49 10.1016/j.pneurobio.2013.10.004 24211851
    [Google Scholar]
  2. Guzman-Martinez L. Maccioni R.B. Andrade V. Navarrete L.P. Pastor M.G. Ramos-Escobar N. Neuroinflammation as a common feature of neurodegenerative disorders. Front. Pharmacol. 2019 10 1008 10.3389/fphar.2019.01008 31572186
    [Google Scholar]
  3. Lopes Pinheiro M.A. Kooij G. Mizee M.R. Immune cell trafficking across the barriers of the central nervous system in multiple sclerosis and stroke. Biochim. Biophys. Acta Mol. Basis Dis. 2016 1862 3 461 471 10.1016/j.bbadis.2015.10.018
    [Google Scholar]
  4. Biber K. Bhattacharya A. Campbell B.M. Microglial drug targets in AD: Opportunities and challenges in drug discovery and development. Front. Pharmacol. 2019 10 840 10.3389/fphar.2019.00840 31507408
    [Google Scholar]
  5. Sharma B. Satija G. Madan A. Role of NLRP3 inflammasome and its inhibitors as emerging therapeutic drug candidate for Alzheimer’s disease: A review of mechanism of activation, regulation, and inhibition. Inflammation 2023 46 1 56 87 10.1007/s10753‑022‑01730‑0 36006570
    [Google Scholar]
  6. Ronaldson P.T. Davis T.P. Regulation of blood–brain barrier integrity by microglia in health and disease: A therapeutic opportunity. J. Cereb. Blood Flow Metab. 2020 40 1_suppl S6 S24.(Suppl.) 10.1177/0271678X20951995 32928017
    [Google Scholar]
  7. Ransohoff R.M. How neuroinflammation contributes to neurodegeneration. Science 2016 353 6301 777 783 10.1126/science.aag2590 27540165
    [Google Scholar]
  8. Zhang F. Lin Y.A. Kannan S. Kannan R.M. Targeting specific cells in the brain with nanomedicines for CNS therapies. J. Control. Release 2016 240 212 226 10.1016/j.jconrel.2015.12.013 26686078
    [Google Scholar]
  9. Jiang N. Immune engineering: From systems immunology to engineering immunity. Curr. Opin. Biomed. Eng. 2017 1 54 62 10.1016/j.cobme.2017.03.002 29038795
    [Google Scholar]
  10. Bors L.A. Erdő F. Overcoming the blood–brain barrier. Challenges and tricks for CNS drug delivery. Sci. Pharm. 2019 87 1 6 10.3390/scipharm87010006
    [Google Scholar]
  11. Sadegh Malvajerd S. Izadi Z. Azadi A. Neuroprotective potential of curcumin-loaded nanostructured lipid carrier in an animal model of Alzheimer’s disease: Behavioral and biochemical evidence. J. Alzheimers Dis. 2019 69 3 671 686 10.3233/JAD‑190083 31156160
    [Google Scholar]
  12. Saraiva C. Praça C. Ferreira R. Santos T. Ferreira L. Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. J. Control. Release 2016 235 34 47 10.1016/j.jconrel.2016.05.044 27208862
    [Google Scholar]
  13. Mozafari N. Farjadian F. Mohammadi Samani S. Azadi S. Azadi A. Simvastatin-chitosan-citicoline conjugates nanoparticles as the co-delivery system in Alzheimer susceptible patients. Int. J. Biol. Macromol. 2020 156 1396 1407 10.1016/j.ijbiomac.2019.11.180 31760027
    [Google Scholar]
  14. Teleanu D.M. Chircov C. Grumezescu A.M. Volceanov A. Teleanu R.I. Blood-brain delivery methods using nanotechnology. Pharmaceutics 2018 10 4 269 10.3390/pharmaceutics10040269 30544966
    [Google Scholar]
  15. Hohnholt M.C. Geppert M. Luther E.M. Petters C. Bulcke F. Dringen R. Handling of iron oxide and silver nanoparticles by astrocytes. Neurochem. Res. 2013 38 2 227 239 23224777
    [Google Scholar]
  16. Azadi A. Hamidi M. Khoshayand M.R. Amini M. Rouini M.R. Preparation and optimization of surface-treated methotrexate-loaded nanogels intended for brain delivery. Carbohydr. Polym. 2012 90 1 462 471 10.1016/j.carbpol.2012.05.066 24751066
    [Google Scholar]
  17. Poh L. Sim W.L. Jo D.G. The role of inflammasomes in vascular cognitive impairment. Mol. Neurodegener. 2022 17 1 4 10.1186/s13024‑021‑00506‑8 35000611
    [Google Scholar]
  18. Streit W.J. Mrak R.E. Griffin W.S.T. Microglia and neuroinflammation: A pathological perspective. J. Neuroinflammation 2004 1 1 14 10.1186/1742‑2094‑1‑14 15285801
    [Google Scholar]
  19. Mayer C.L. Huber B.R. Peskind E. Traumatic brain injury, neuroinflammation, and post-traumatic headaches. Headache 2013 53 9 1523 1530 10.1111/head.12173 24090534
    [Google Scholar]
  20. Storer P.D. Xu J. Chavis J. Drew P.D. Peroxisome proliferator-activated receptor-gamma agonists inhibit the activation of microglia and astrocytes: Implications for multiple sclerosis. J. Neuroimmunol. 2005 161 1-2 113 122 10.1016/j.jneuroim.2004.12.015 15748950
    [Google Scholar]
  21. Xu M. Wang J. Zhang X. Polysaccharide from Schisandra chinensis acts via LRP-1 to reverse microglia activation through suppression of the NF-κB and MAPK signaling. J. Ethnopharmacol. 2020 256 112798 10.1016/j.jep.2020.112798 32251761
    [Google Scholar]
  22. Miller K. Dixit S. Bredlau A.L. Moore A. McKinnon E. Broome A.M. Delivery of a drug cache to glioma cells overexpressing platelet-derived growth factor receptor using lipid nanocarriers. Nanomedicine 2016 11 6 581 595 10.2217/nnm.15.218 27003178
    [Google Scholar]
  23. Zhao Y. Ren W. Zhong T. Tumor-specific pH-responsive peptide-modified pH-sensitive liposomes containing doxorubicin for enhancing glioma targeting and anti-tumor activity. J. Control. Release 2016 222 56 66 10.1016/j.jconrel.2015.12.006 26682502
    [Google Scholar]
  24. Xu Q. He C. Xiao C. Chen X. Reactive oxygen species (ROS) responsive polymers for biomedical applications. Macromol. Biosci. 2016 16 5 635 646 10.1002/mabi.201500440 26891447
    [Google Scholar]
  25. Le W. Rowe D. Xie W. Ortiz I. He Y. Appel S.H. Microglial activation and dopaminergic cell injury: An in vitro model relevant to Parkinson’s disease. J. Neurosci. 2001 21 21 8447 8455 10.1523/JNEUROSCI.21‑21‑08447.2001 11606633
    [Google Scholar]
  26. Li R Huang YG Fang D Le WD (−)‐Epigallocatechin gallate inhibits lipopolysaccharide‐induced microglial activation and protects against inflammation‐mediated dopaminergic neuronal injury. J. Neurosci. Res. 2004 78 5 723 731 10.1002/jnr.20315 15478178
    [Google Scholar]
  27. Colton C.A. Heterogeneity of microglial activation in the innate immune response in the brain. J. Neuroimmune Pharmacol. 2009 4 4 399 418 10.1007/s11481‑009‑9164‑4 19655259
    [Google Scholar]
  28. Block M.L. Zecca L. Hong J.S. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat. Rev. Neurosci. 2007 8 1 57 69 10.1038/nrn2038 17180163
    [Google Scholar]
  29. Bazan N.G. Halabi A. Ertel M. Petasis N.A. Neuroinflammation. Basic Neurochemistry. United States Academic Press 2012 610 620
    [Google Scholar]
  30. Tohidpour A. Morgun A.V. Boitsova E.B. Neuroinflammation and infection: Molecular mechanisms associated with dysfunction of neurovascular unit. Front. Cell. Infect. Microbiol. 2017 7 276 10.3389/fcimb.2017.00276 28676848
    [Google Scholar]
  31. Arango Duque G. Descoteaux A. Macrophage cytokines: Involvement in immunity and infectious diseases. Front. Immunol. 2014 5 491 10.3389/fimmu.2014.00491 25339958
    [Google Scholar]
  32. Neurath M.F. New targets for mucosal healing and therapy in inflammatory bowel diseases. Mucosal Immunol. 2014 7 1 6 19 24084775
    [Google Scholar]
  33. Olmos G. Lladó J. Tumor necrosis factor alpha: A link between neuroinflammation and excitotoxicity. Mediators Inflamm. 2014 2014 1 861231 10.1155/2014/861231 24966471
    [Google Scholar]
  34. McCoy M.K. Tansey M.G. TNF signaling inhibition in the CNS: Implications for normal brain function and neurodegenerative disease. J. Neuroinflammation 2008 5 1 45 10.1186/1742‑2094‑5‑45 18925972
    [Google Scholar]
  35. Probert L. TNF and its receptors in the CNS: The essential, the desirable and the deleterious effects. Neuroscience 2015 302 2 22 10.1016/j.neuroscience.2015.06.038 26117714
    [Google Scholar]
  36. Kim Y.K. Na K.S. Myint A.M. Leonard B.E. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016 64 277 284 10.1016/j.pnpbp.2015.06.008 26111720
    [Google Scholar]
  37. Novellino F. Saccà V. Donato A. Innate immunity: A common denominator between neurodegenerative and neuropsychiatric diseases. Int. J. Mol. Sci. 2020 21 3 1115 10.3390/ijms21031115 32046139
    [Google Scholar]
  38. Duan L. Li X. Ji R. Nanoparticle-based drug delivery systems: An inspiring therapeutic strategy for neurodegenerative diseases. Polymers 2023 15 9 2196 37177342
    [Google Scholar]
  39. Pandit R. Chen L. Götz J. The blood-brain barrier: Physiology and strategies for drug delivery. Adv. Drug Deliv. Rev. 2020 165-166 1 14 10.1016/j.addr.2019.11.009 31790711
    [Google Scholar]
  40. Gribkoff V.K. Kaczmarek L.K. The need for new approaches in CNS drug discovery: Why drugs have failed, and what can be done to improve outcomes. Neuropharmacology 2017 120 11 19 10.1016/j.neuropharm.2016.03.021 26979921
    [Google Scholar]
  41. Tulsulkar J. Shah Z.A. Ginkgo biloba prevents transient global ischemia-induced delayed hippocampal neuronal death through antioxidant and anti-inflammatory mechanism. Neurochem. Int. 2013 62 2 189 197 10.1016/j.neuint.2012.11.017 23228346
    [Google Scholar]
  42. Sil S. Ghosh T. Gupta P. Ghosh R. Kabir S.N. Roy A. Dual role of vitamin C on the neuroinflammation mediated neurodegeneration and memory impairments in colchicine induced rat model of Alzheimer disease. J. Mol. Neurosci. 2016 60 4 421 435 27665568
    [Google Scholar]
  43. Cain D.W. Cidlowski J.A. Immune regulation by glucocorticoids. Nat. Rev. Immunol. 2017 17 4 233 247 28192415
    [Google Scholar]
  44. Kumar S. Singh N.N. Singh A. Singh N. Sinha R.K. Use of Curcuma longa L. extract to stain various tissue samples for histological studies. Ayu 2014 35 4 447 451 10.4103/0974‑8520.159027 26195911
    [Google Scholar]
  45. Aggarwal B.B. Yuan W. Li S. Gupta S.C. Curcumin-free turmeric exhibits anti-inflammatory and anticancer activities: Identification of novel components of turmeric. Mol. Nutr. Food Res. 2013 57 9 1529 1542 23847105
    [Google Scholar]
  46. Kumar S. Pandey A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal 2013 2013 1 162750 10.1155/2013/162750 24470791
    [Google Scholar]
  47. Lv W. Xu J. Wang X. Li X. Xu Q. Xin H. Bioengineered boronic ester modified dextran polymer nanoparticles as reactive oxygen species responsive nanocarrier for ischemic stroke treatment. ACS Nano 2018 12 6 5417 5426 29869497
    [Google Scholar]
  48. Shen Y. Cao B. Snyder N.R. Woeppel K.M. Eles J.R. Cui X.T. ROS responsive resveratrol delivery from LDLR peptide conjugated PLA-coated mesoporous silica nanoparticles across the blood-brain barrier. J. Nanobiotechnology 2018 16 1 13 10.1186/s12951‑018‑0340‑7 29433522
    [Google Scholar]
  49. Rajput S. Malviya R. Srivastava S. Ahmad I. Rab S.O. Uniyal P. Cardiovascular disease and thrombosis: Intersections with the immune system, inflammation, and the coagulation system. Annales Pharmaceutiques Françaises. Amsterdam, Netherlands Elsevier 2024 1 7
    [Google Scholar]
  50. Burda JE Bernstein AM Sofroniew MV Astrocyte roles in traumatic brain injury. Exp Neurol 2016 275 0 3 305 315 25828533
    [Google Scholar]
  51. Xiao S. Chan P. Wang T. A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer’s dementia. Alzheimers Res. Ther. 2021 13 1 62 33731209
    [Google Scholar]
  52. Becher B. Spath S. Goverman J. Cytokine networks in neuroinflammation. Nat. Rev. Immunol. 2017 17 1 49 59 10.1038/nri.2016.123 27916979
    [Google Scholar]
  53. Samuel S. Nguyen T. Choi H.A. Pharmacologic characteristics of corticosteroids. J Neurocrit Care 2017 10 2 53 59
    [Google Scholar]
  54. Bracken M.B. Shepard M.J. Holford T.R. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury: Results of the third national acute spinal cord injury randomised controlled trial. JAMA 1997 277 20 1597 1604 9168289
    [Google Scholar]
  55. Block M.L. Calderón-Garcidueñas L. Air pollution: Mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 2009 32 9 506 516 19716187
    [Google Scholar]
  56. Kohman R.A. Bhattacharya T.K. Wojcik E. Rhodes J.S. Exercise reduces activation of microglia isolated from hippocampus and brain of aged mice. J. Neuroinflammation 2013 10 1 885 10.1186/1742‑2094‑10‑114 24044641
    [Google Scholar]
  57. Janowitz D. Habes M. Toledo J.B. Inflammatory markers and imaging patterns of advanced brain aging in the general population. Brain Imaging Behav. 2020 14 4 1108 1117 10.1007/s11682‑019‑00058‑y 30820858
    [Google Scholar]
  58. Clayton K.A. Van Enoo A.A. Ikezu T. Alzheimer’s disease: The role of microglia in brain homeostasis and proteopathy. Front. Neurosci. 2017 11 680 10.3389/fnins.2017.00680 29311768
    [Google Scholar]
  59. McQuade A. Blurton-Jones M. Microglia in Alzheimer’s disease: Exploring how genetics and phenotype influence risk. J. Mol. Biol. 2019 431 9 1805 1817 30738892
    [Google Scholar]
  60. Chandra G. Rangasamy S.B. Roy A. Kordower J.H. Pahan K. Neutralization of RANTES and eotaxin prevents the loss of dopaminergic neurons in a mouse model of Parkinson disease. J. Biol. Chem. 2016 291 29 15267 15281 10.1074/jbc.M116.714824 27226559
    [Google Scholar]
  61. Liu H. Wang X.P. Alternative Therapies for Non-Motor Symptoms in Parkinson’s Disease: A Mini Review. Neuropsychiatr. Dis. Treat. 2024 20 2585 2591 39723118
    [Google Scholar]
  62. Liu J.Q. Zhao M. Zhang Z. Rg1 improves LPS-induced Parkinsonian symptoms in mice via inhibition of NF-κB signaling and modulation of M1/M2 polarization. Acta Pharmacol. Sin. 2020 41 4 523 534 32203085
    [Google Scholar]
  63. Kaur D. Sharma V. Deshmukh R. Activation of microglia and astrocytes: A roadway to neuroinflammation and Alzheimer’s disease. Inflammopharmacology 2019 27 4 663 677 30874945
    [Google Scholar]
  64. Han L. Xie Y.H. Wu R. Chen C. Zhang Y. Wang X.P. Traditional Chinese medicine for modern treatment of Parkinson’s disease. Chin. J. Integr. Med. 2017 23 8 635 640 28108911
    [Google Scholar]
  65. Kim A. Lalonde K. Truesdell A. New avenues for the treatment of Huntington’s disease. Int. J. Mol. Sci. 2021 22 16 8363 34445070
    [Google Scholar]
  66. Jia Q. Li S. Li X.J. Yin P. Neuroinflammation in Huntington’s disease: From animal models to clinical therapeutics. Front. Immunol. 2022 13 1088124 36618375
    [Google Scholar]
  67. Palpagama T.H. Waldvogel H.J. Faull R.L.M. Kwakowsky A. The role of microglia and astrocytes in Huntington’s disease. Front. Mol. Neurosci. 2019 12 258 31708741
    [Google Scholar]
  68. Wilton D.K. Stevens B. The contribution of glial cells to Huntington’s disease pathogenesis. Neurobiol. Dis. 2020 143 104963 32593752
    [Google Scholar]
  69. Papiri G. D’Andreamatteo G. Cacchiò G. Multiple sclerosis: Inflammatory and neuroglial aspects. Curr. Issues Mol. Biol. 2023 45 2 1443 1470 36826039
    [Google Scholar]
  70. Mayne K. White J.A. McMurran C.E. Rivera F.J. de la Fuente A.G. Aging and neurodegenerative disease: Is the adaptive immune system a friend or foe? Front. Aging Neurosci. 2020 12 572090 33173502
    [Google Scholar]
  71. Rajput S. Malviya R. Uniyal P. Advancements in the diagnosis, prognosis, and treatment of retinoblastoma. Can. J. Ophthalmol. 2024 59 5 281 299 38369298
    [Google Scholar]
  72. Li C. Zhao Z. Luo Y. Macrophage-disguised manganese dioxide nanoparticles for neuroprotection by reducing oxidative stress and modulating inflammatory microenvironment in acute ischemic stroke. Adv. Sci. 2021 8 20 2101526 34436822
    [Google Scholar]
  73. Marcos-Contreras O.A. Brenner J.S. Kiseleva R.Y. Combining vascular targeting and the local first pass provides 100-fold higher uptake of ICAM-1-targeted vs untargeted nanocarriers in the inflamed brain. J. Control. Release 2019 301 54 61 10.1016/j.jconrel.2019.03.008 30871995
    [Google Scholar]
  74. Xue J. Zhao Z. Zhang L. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat. Nanotechnol. 2017 12 7 692 700 10.1038/nnano.2017.54 28650441
    [Google Scholar]
  75. Zhao Y. Li Q. Niu J. Neutrophil membrane-camouflaged polyprodrug nanomedicine for inflammation suppression in ischemic stroke therapy. Adv. Mater. 2024 36 21 2311803 10.1002/adma.202311803 38519052
    [Google Scholar]
  76. Chen B. Luo M. Liang J. Surface modification of PGP for a neutrophil–nanoparticle co-vehicle to enhance the anti-depressant effect of baicalein. Acta Pharm. Sin. B 2018 8 1 64 73 10.1016/j.apsb.2017.11.012 29872623
    [Google Scholar]
  77. Qin J. Yang X. Zhang R.X. Monocyte mediated brain targeting delivery of macromolecular drug for the therapy of depression. Nanomedicine 2015 11 2 391 400 10.1016/j.nano.2014.09.012 25461282
    [Google Scholar]
  78. Goldsmith M. Abramovitz L. Peer D. Precision nanomedicine in neurodegenerative diseases. ACS Nano 2014 8 3 1958 1965 10.1021/nn501292z 24660817
    [Google Scholar]
  79. Cerqueira S.R. Ayad N.G. Lee J.K. Neuroinflammation treatment via targeted delivery of nanoparticles. Front. Cell. Neurosci. 2020 14 576037 10.3389/fncel.2020.576037 33192321
    [Google Scholar]
  80. Nady D.S. Bakowsky U. Fahmy S.A. Recent advances in brain delivery of synthetic and natural nano therapeutics: Reviving hope for Alzheimer’s disease patients. J. Drug Deliv. Sci. Technol. 2023 89 105047 10.1016/j.jddst.2023.105047
    [Google Scholar]
  81. Ekhator C. Qureshi M.Q. Zuberi A.W. Advances and opportunities in nanoparticle drug delivery for central nervous system disorders: A review of current advances. Cureus 2023 15 8 44302 37649926
    [Google Scholar]
  82. Popovich P.G. Guan Z. Wei P. Huitinga I. van Rooijen N. Stokes B.T. Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp. Neurol. 1999 158 2 351 365 10.1006/exnr.1999.7118 10415142
    [Google Scholar]
  83. Lee S.M. Rosen S. Weinstein P. van Rooijen N. Noble-Haeusslein L.J. Prevention of both neutrophil and monocyte recruitment promotes recovery after spinal cord injury. J. Neurotrauma 2011 28 9 1893 1907 10.1089/neu.2011.1860 21657851
    [Google Scholar]
  84. Zhu Y. Soderblom C. Krishnan V. Ashbaugh J. Bethea J.R. Lee J.K. Hematogenous macrophage depletion reduces the fibrotic scar and increases axonal growth after spinal cord injury. Neurobiol. Dis. 2015 74 114 125 25461258
    [Google Scholar]
  85. Tong H.I. Kang W. Davy P.M. Monocyte trafficking, engraftment, and delivery of nanoparticles and an exogenous gene into the acutely inflamed brain tissue–evaluations on monocyte-based delivery system for the central nervous system. PLoS One 2016 11 4 0154022 10.1371/journal.pone.0154022 27115998
    [Google Scholar]
  86. Han H. Eyal S. Portnoy E. Monocytes as carriers of magnetic nanoparticles for tracking inflammation in the epileptic rat brain. Curr. Drug Deliv. 2019 16 7 637 644 10.2174/1567201816666190619122456 31237208
    [Google Scholar]
  87. Sorrells S.F. Sapolsky R.M. An inflammatory review of glucocorticoid actions in the CNS. Brain Behav. Immun. 2007 21 3 259 272 10.1016/j.bbi.2006.11.006 17194565
    [Google Scholar]
  88. Caruso M.C. Daugherty M.C. Moody S.M. Falcone R.A. Bierbrauer K.S. Geis G.L. Lessons learned from administration of high-dose methylprednisolone sodium succinate for acute pediatric spinal cord injuries. J. Neurosurg. Pediatr. 2017 20 6 567 574 28984538
    [Google Scholar]
  89. Krieger S. Sorrells S.F. Nickerson M. Pace T.W. Mechanistic insights into corticosteroids in multiple sclerosis: War horse or chameleon? Clin. Neurol. Neurosurg. 2014 119 6 16 10.1016/j.clineuro.2013.12.021 24635918
    [Google Scholar]
  90. Cerqueira S.R. Oliveira J.M. Silva N.A. Microglia response and in vivo therapeutic potential of methylprednisolone-loaded dendrimer nanoparticles in spinal cord injury. Small 2013 9 5 738 749 23161735
    [Google Scholar]
  91. Lühder F. Reichardt H. Novel drug delivery systems tailored for improved administration of glucocorticoids. Int. J. Mol. Sci. 2017 18 9 1836 10.3390/ijms18091836 28837059
    [Google Scholar]
  92. Lunov O. Syrovets T. Loos C. Amino-functionalized polystyrene nanoparticles activate the NLRP3 inflammasome in human macrophages. ACS Nano 2011 5 12 9648 9657 10.1021/nn203596e 22111911
    [Google Scholar]
  93. Fiorani M. Guidarelli A. Blasa M. Mitochondria accumulate large amounts of quercetin: Prevention of mitochondrial damage and release upon oxidation of the extramitochondrial fraction of the flavonoid. J. Nutr. Biochem. 2010 21 5 397 404 19278846
    [Google Scholar]
  94. Costa L.G. Garrick J.M. Roquè P.J. Pellacani C. Mechanisms of neuroprotection by quercetin: Counteracting oxidative stress and more. Oxid. Med. Cell. Longev. 2016 2016 1 2986796 10.1155/2016/2986796 26904161
    [Google Scholar]
  95. Chen S. Jiang H. Wu X. Fang J. Therapeutic effects of quercetin on inflammation, obesity, and type 2 diabetes. Mediators Inflamm. 2016 2016 1 9340637 28003714
    [Google Scholar]
  96. Machado M.M.F. Bassani T.B. Cóppola-Segovia V. PPAR-γ agonist pioglitazone reduces microglial proliferation and NF-κB activation in the substantia nigra in the 6-hydroxydopamine model of Parkinson’s disease. Pharmacol. Rep. 2019 71 4 556 564 10.1016/j.pharep.2018.11.005 31132685
    [Google Scholar]
  97. Rajput S. Malviya R. Uniyal P. Advances in the treatment of kidney disorders using mesenchymal stem cells. Curr. Pharm. Des. 2024 30 11 825 840 10.2174/0113816128296105240305110312 38482624
    [Google Scholar]
  98. Roberts I. Yates D. Sandercock P. Effect of intravenous corticosteroids on death within 14 days in 10 008 adults with clinically significant head injury (MRC CRASH trial): Randomised placebo-controlled trial. Lancet 2004 364 9442 1321 1328 10.1016/S0140‑6736(04)17188‑2 15474134
    [Google Scholar]
  99. d’Arcy R. Tirelli N. Fishing for fire: Strategies for biological targeting and criteria for material design in anti-inflammatory therapies. Polym. Adv. Technol. 2014 25 5 478 498 10.1002/pat.3264
    [Google Scholar]
  100. Wang H. Huang Q. Chang H. Xiao J. Cheng Y. Stimuli-responsive dendrimers in drug delivery. Biomater. Sci. 2016 4 3 375 390 10.1039/C5BM00532A 26806314
    [Google Scholar]
  101. Lee Y. Thompson D.H. Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017 9 5 1450 10.1002/wnan.1450 28198148
    [Google Scholar]
  102. Zhou Q. Zhang L. Yang T. Wu H. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int. J. Nanomed 2018 13 2921 2942 10.2147/IJN.S158696 29849457
    [Google Scholar]
  103. M SM Veeranarayanan S, Maekawa T, D SK. External stimulus responsive inorganic nanomaterials for cancer theranostics. Adv. Drug Deliv. Rev. 2019 138 18 40 30321621
    [Google Scholar]
  104. Deirram N. Zhang C. Kermaniyan S.S. Johnston A.P.R. Such G.K. pH-responsive polymer nanoparticles for drug delivery. Macromol. Rapid Commun. 2019 40 10 1800917 30835923
    [Google Scholar]
  105. Mohamed E.A. Ahmed H.I. Zaky H.S. Badr A.M. Sesame oil mitigates memory impairment, oxidative stress, and neurodegeneration in a rat model of Alzheimer’s disease. A pivotal role of NF-κB/p38MAPK/BDNF/PPAR-γ pathways. J. Ethnopharmacol. 2021 267 113468 10.1016/j.jep.2020.113468 33049345
    [Google Scholar]
  106. Hung Y.W. Wang Y. Lee S.L. DPP-4 inhibitor reduces striatal microglial deramification after sensorimotor cortex injury induced by external force impact. FASEB J. 2020 34 5 6950 6964 32246809
    [Google Scholar]
  107. Oh S. Son M. Choi J. Lee S. Byun K. sRAGE prolonged stem cell survival and suppressed RAGE-related inflammatory cell and T lymphocyte accumulations in an Alzheimer’s disease model. Biochem. Biophys. Res. Commun. 2018 495 1 807 813 10.1016/j.bbrc.2017.11.035 29127006
    [Google Scholar]
  108. Wang Q. Xiao B. Cui S. Triptolide treatment reduces Alzheimer’s disease (AD)-like pathology through inhibition of BACE1 in a transgenic mouse model of AD. Dis. Model. Mech. 2014 7 12 1385 1395 10.1242/dmm.018218 25481013
    [Google Scholar]
  109. Aili M. Zhou K. Zhan J. Zheng H. Luo F. Anti-inflammatory role of gold nanoparticles in the prevention and treatment of Alzheimer’s disease. J. Mater. Chem. B Mater. Biol. Med. 2023 11 36 8605 8621 37615596
    [Google Scholar]
  110. Wang G. Shen X. Song X. Wang N. Wo X. Gao Y. Protective mechanism of gold nanoparticles on human neural stem cells injured by β-amyloid protein through miR-21-5p/SOCS6 pathway. Neurotoxicology 2023 95 12 22 10.1016/j.neuro.2022.12.011 36623431
    [Google Scholar]
  111. Poudel P. Park S. Recent advances in the treatment of Alzheimer’s disease using nanoparticle-based drug delivery systems. Pharmaceutics 2022 14 4 835 35456671
    [Google Scholar]
  112. Hou K. Zhao J. Wang H. Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer’s disease. Nat. Commun. 2020 11 1 4790 32963242
    [Google Scholar]
  113. Ling L. Jiang Y. Liu Y. Role of gold nanoparticle from] Cinnamomum verum against 1-methyl-4-phenyl-1,2,3,6-tetrahy-dropyridine (MPTP) induced mice model. J. Photochem. Photobiol. B 2019 201 111657 10.1016/j.jphotobiol.2019.111657 31706085
    [Google Scholar]
  114. Gao G. Chen R. He M. Gold nanoclusters for Parkinson’s disease treatment. Biomaterials 2019 194 36 46 30576972
    [Google Scholar]
  115. Rajput S. Malviya R. Bahadur S. Puri D. Recent updates on the development of therapeutics for the targeted treatment of alzheimer’s disease. Curr. Pharm. Des. 2023 29 35 2802 2813 38018199
    [Google Scholar]
  116. Maity A. Mondal A. Kundu S. Naringenin-functionalized gold nanoparticles and their role in α-synuclein stabilization. Langmuir 2023 39 21 7231 7248 10.1021/acs.langmuir.2c03259 37094111
    [Google Scholar]
  117. Kalčec N. Peranić N. Barbir R. Spectroscopic study of L-DOPA and dopamine binding on novel gold nanoparticles towards more efficient drug-delivery system for Parkinson’s disease. Spectrochim Acta A Mol Biomol Spectrosc 2022 268 120707 10.1016/j.saa.2021.120707 34902692
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273373041250707012835
Loading
/content/journals/cnsnddt/10.2174/0118715273373041250707012835
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test