Skip to content
2000
Volume 24, Issue 11
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Introduction

Prenatal depression is a prevalent mental disorder that affects women during pregnancy. Alterations in the maternal microbiota have been linked to changes in the composition of the intestinal microbiota of foetus, which can have long-term consequences for the child's health. The gut-brain axis, which involves bidirectional communication between the gut and the brain, is believed to play a role in the development of depression.

Methods

This study aimed to gather evidence for both the influence of microbiota and immunity on depression during pregnancy, using integrated bioinformatics analysis. A set of 219 differentially expressed genes (DEGs) associated with prenatal depression was established to correlate with gut inflammation. DEG data were collected from different bibliographic sources with fold change >1 and adjusted -value <0.05. Moreover, 205 DEGs were annotated using String software.

Results

The protein-protein interaction networks of DEGs obtained were determined by 16 main genes: , and The enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways was conducted using SRplot and clusterProfiler. They were significantly involved in prenatal depression and associated with inflammation and gut microbiota.

Discussion

The identified genes highlight key molecular interactions between the immune system, microbiota, and brain function during pregnancy. These findings support the involvement of inflammatory and microbial pathways in the development of prenatal depression.

Conclusion

This study identified core genes that contribute to the understanding of the molecular mechanisms involved in the development of prenatal depression, which may serve as targets for early diagnosis, prevention, and treatment.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273371682250421053159
2025-05-12
2026-01-02
Loading full text...

Full text loading...

References

  1. GondaX. HullamG. AntalP. Significance of risk polymorphisms for depression depends on stress exposure.Sci. Rep.201881394610.1038/s41598‑018‑22221‑z 29500446
    [Google Scholar]
  2. AlshayaD.S. Genetic and epigenetic factors associated with depression: An updated overview.Saudi J. Biol. Sci.202229810331110.1016/j.sjbs.2022.103311 35762011
    [Google Scholar]
  3. Che Mohd NassirC.M.N. Che RamliM.D. Mohamad GhazaliM. The microbiota-gut-brain axis: Key mechanisms driving glymphopathy and cerebral small vessel disease.Life (Basel)2024151310.3390/life15010003 39859943
    [Google Scholar]
  4. Medina-RodriguezE.M. CruzA.A. De AbreuJ.C. BeurelE. Stress, inflammation, microbiome and depression.Pharmacol. Biochem. Behav.2023227-22817356110.1016/j.pbb.2023.173561 37148918
    [Google Scholar]
  5. MargolisK.G. CryanJ.F. MayerE.A. The microbiota-gut-brain axis: From motility to mood.Gastroenterology202116051486150110.1053/j.gastro.2020.10.066 33493503
    [Google Scholar]
  6. MohanA. GoduguS. JoshiS.S. Gut-brain axis: Altered microbiome and depression - review.Ann. Med. Surg. (Lond.)20238551784178910.1097/MS9.0000000000000573 37228982
    [Google Scholar]
  7. BeurelE. ToupsM. NemeroffC.B. The bidirectional relationship of depression and inflammation: Double trouble.Neuron2020107223425610.1016/j.neuron.2020.06.002 32553197
    [Google Scholar]
  8. ZhuX. HanY. DuJ. LiuR. JinK. YiW. Microbiota-gut-brain axis and the central nervous system.Oncotarget2017832538295383810.18632/oncotarget.17754 28881854
    [Google Scholar]
  9. ClappM. AuroraN. HerreraL. BhatiaM. WilenE. WakefieldS. Gut microbiota’s effect on mental health: The gut-brain axis.Clin. Pract.20177498710.4081/cp.2017.987 29071061
    [Google Scholar]
  10. Borrego-RuizA. BorregoJ.J. An updated overview on the relationship between human gut microbiome dysbiosis and psychiatric and psychological disorders.Prog. Neuropsychopharmacol. Biol. Psychiatry202412811086110.1016/j.pnpbp.2023.110861 37690584
    [Google Scholar]
  11. CarlessiA.S. BorbaL.A. ZugnoA.I. QuevedoJ. RéusG.Z. Gut microbiota-brain axis in depression: The role of neuroinflammation.Eur. J. Neurosci.202153122223510.1111/ejn.14631 31785168
    [Google Scholar]
  12. AnandN. GorantlaV.R. ChidambaramS.B. The role of gut dysbiosis in the pathophysiology of neuropsychiatric disorders.Cells20221215410.3390/cells12010054 36611848
    [Google Scholar]
  13. CapucoA. UritsI. HasoonJ. Current perspectives on gut microbiome dysbiosis and depression.Adv. Ther.20203741328134610.1007/s12325‑020‑01272‑7 32130662
    [Google Scholar]
  14. ZhangX. QiaoY. WangM. The influence of genetic and acquired factors on the vulnerability to develop depression: A review.Biosci. Rep.2023435233021
    [Google Scholar]
  15. MillerC.H. DavisE.G. KingL.S. SacchetM.D. Grill-SpectorK. GotlibI.H. The structure of depressive symptoms and characteristics and their relation to overall severity in major depressive disorder.Psychia Res.202029411339910.1016/j.psychres.2020.113399
    [Google Scholar]
  16. KozyraM. NowińskaM. KlasJ. PytkaM. ŁopuszańskaU. The latest research on risk factors and pathomechanisms of depression - review.J. Educ. Health Sport20201011506010.12775/JEHS.2020.10.11.005
    [Google Scholar]
  17. AgrawalI. MehendaleA.M. MalhotraR. Risk factors of postpartum depression.Cureus20221410e3089810.7759/cureus.30898 36465774
    [Google Scholar]
  18. SavitzJ. FrankM.B. VictorT. Inflammation and neurological disease-related genes are differentially expressed in depressed patients with mood disorders and correlate with morphometric and functional imaging abnormalities.Brain Behav. Immun.20133116117110.1016/j.bbi.2012.10.007 23064081
    [Google Scholar]
  19. SzpunarM.J. MalaktarisA. BacaS.A. HaugerR.L. LangA.J. Are alterations in estradiol, cortisol, and inflammatory cytokines associated with depression during pregnancy and postpartum? An exploratory study.Brain Behav. Immun. Health20211610030910.1016/j.bbih.2021.100309 34589801
    [Google Scholar]
  20. Flores-RamosM. Galindo-SevillaN. BarriosA. GelmanP. FuentesC. Mancilla-RamírezJ. Depression and anxiety during pregnancy: Clinical aspects.Curr. Psychiatry Rev.20139432533010.2174/15734005113096660010
    [Google Scholar]
  21. LevinG. Ein-DorT. A unified model of the biology of peripartum depression.Transl. Psychiatry202313113810.1038/s41398‑023‑02439‑w 37117197
    [Google Scholar]
  22. SongJ. ZhouB. KanJ. Gut microbiota: Linking nutrition and perinatal depression.Front. Cell. Infect. Microbiol.20221293230910.3389/fcimb.2022.932309 36093196
    [Google Scholar]
  23. RodriguezN. TunH.M. FieldC.J. MandhaneP.J. ScottJ.A. KozyrskyjA.L. Prenatal depression, breastfeeding, and infant gut microbiota.Front. Microbiol.20211266425710.3389/fmicb.2021.664257 34394021
    [Google Scholar]
  24. 42 Depression-associated alterations in the maternal microbiome during pregnancy: Priming for adverse infant outcomes? ProQuest.2023Available from: https://www.proquest.com/openview/6db28d0f9377e9a11a15544070c6fc69/1?pq-origsite=gscholar&cbl=2041069 (Accessed on: December 24, 2023).
  25. LambertM. GressierF. Inflammatory biomarkers and postpartum depression: A systematic review of literature.Can. J. Psychiatry201964747148110.1177/0706743719828970 30808206
    [Google Scholar]
  26. Gut microbiota-brain axis in depression: The role of neuroinflammation - Carlessi - 2021 - European Journal of Neuroscience.2021Available from: https://onlinelibrary.wiley.com/doi/10.1111/ejn.14631 (Accessed on: December 5, 2023).
  27. WuY. ZhangH. WangC. Inflammatory modulation of the associations between prenatal maternal depression and neonatal brain.Neuropsychopharmacology202146247047710.1038/s41386‑020‑0774‑0 32688365
    [Google Scholar]
  28. EdvinssonÅ. HellgrenC. Kunovac KallakT. The effect of antenatal depression and antidepressant treatment on placental tissue: A protein-validated gene expression study.BMC Pregnancy Childbirth201919147910.1186/s12884‑019‑2586‑y 31805950
    [Google Scholar]
  29. WittenbergG.M. GreeneJ. VértesP.E. DrevetsW.C. BullmoreE.T. Major depressive disorder is associated with differential expression of innate immune and neutrophil-related gene networks in peripheral blood: A quantitative review of whole-genome transcriptional data from case-control studies.Biol. Psychiatry202088862563710.1016/j.biopsych.2020.05.006 32653108
    [Google Scholar]
  30. ClusterProfiler: An R Package for Comparing Biological Themes Among Gene Clusters | OMICS: A Journal of Integrative Biology.2023Available from: https://www.liebertpub.com/doi/10.1089/omi.2011.0118 (Accessed on: December 30, 2023).
  31. LiuY. BéliveauA. WeiY. A gentle introduction to bayesian network meta-analysis using an automated R package.Multivariate Behav. Res.202358470672210.1080/00273171.2022.2115965 36254763
    [Google Scholar]
  32. IJERPH | Free Full-Text | Psychological Stress Perceived by Pregnant Women in the Last Trimester of Pregnancy.2024Available from: https://www.mdpi.com/1660-4601/19/14/8315 (Accessed on: January 1, 2024).
  33. GowdaDDM KashyapDK KatteDDV Stress and psychiatric morbidity in working and non-working pregnant women in third trimester.Int J Psychiat Res202242071610.33545/26648962.2022.v4.i2a.46
    [Google Scholar]
  34. DaglarG. BilgicD. Aydin ÖzkanS. Factors affecting the quality of life among pregnant women during third trimester of pregnancy.Cukur Med J201944377278110.17826/cumj.482553
    [Google Scholar]
  35. MorG. CardenasI. AbrahamsV. GullerS. Inflammation and pregnancy: The role of the immune system at the implantation site.Ann. N. Y. Acad. Sci.201112211808710.1111/j.1749‑6632.2010.05938.x 21401634
    [Google Scholar]
  36. RossK.M. ColeS.W. CarrollJ.E. Dunkel SchetterC. Elevated pro-inflammatory gene expression in the third trimester of pregnancy in mothers who experienced stressful life events.Brain Behav. Immun.2019769710310.1016/j.bbi.2018.11.009 30447280
    [Google Scholar]
  37. ZhangS. LuB. WangG. The role of gut microbiota in the pathogenesis and treatment of postpartum depression.Ann. Gen. Psychiatry20232213610.1186/s12991‑023‑00469‑8 37759312
    [Google Scholar]
  38. GalleyJ.D. Mashburn-WarrenL. BlalockL.C. Maternal anxiety, depression and stress affects offspring gut microbiome diversity and bifidobacterial abundances.Brain Behav. Immun.202310725326410.1016/j.bbi.2022.10.005 36240906
    [Google Scholar]
  39. XieT. FanX. PangH. Association between gut microbiota and its functional metabolites with prenatal depression in women.Neurobiol. Stress20242810059210.1016/j.ynstr.2023.100592 38075020
    [Google Scholar]
  40. StillingR.M. DinanT.G. CryanJ.F. Microbial genes, brain & behaviour - epigenetic regulation of the gut-brain axis.Genes Brain Behav.2014131698610.1111/gbb.12109 24286462
    [Google Scholar]
  41. de Assis PinheiroJ. FreitasF.V. BorçoiA.R. Alcohol consumption, depression, overweight and cortisol levels as determining factors for NR3C1 gene methylation.Sci. Rep.2021111676810.1038/s41598‑021‑86189‑z 33762648
    [Google Scholar]
  42. BraithwaiteE.C. RamchandaniP.G. LaneT.A. MurphyS.E. Symptoms of prenatal depression are associated with raised salivary alpha-amylase levels.Psychoneuroendocrinology20156016317210.1016/j.psyneuen.2015.06.013 26150358
    [Google Scholar]
  43. PaiY.C. LiY.H. TurnerJ.R. YuL.C.H. Transepithelial barrier dysfunction drives microbiota dysbiosis to initiate epithelial clock-driven inflammation.J. Crohn’s Colitis20231791471148810.1093/ecco‑jcc/jjad064 37004200
    [Google Scholar]
  44. BarbaraG. BarbaroM.R. FuschiD. Inflammatory and microbiota-related regulation of the intestinal epithelial barrier.Front. Nutr.2021871835610.3389/fnut.2021.718356 34589512
    [Google Scholar]
  45. CristoforiF. DargenioV.N. DargenioC. MinielloV.L. BaroneM. FrancavillaR. Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: A door to the body.Front. Immunol.20211257838610.3389/fimmu.2021.578386 33717063
    [Google Scholar]
  46. YiC. SunW. DingL. Short-chain fatty acids weaken ox-ldl-induced cell inflammatory injury by inhibiting the NLRP3/caspase-1 pathway and affecting cellular metabolism in THP-1 cells.Molecules20222724880110.3390/molecules27248801 36557935
    [Google Scholar]
  47. WangW. DernstA. MartinB. Butyrate and propionate are microbial danger signals that activate the NLRP3 inflammasome in human macrophages upon TLR stimulation.Cell Rep.202443911473610.1016/j.celrep.2024.114736 39277863
    [Google Scholar]
  48. PorbahaieM. HummelA. SaouadogoH. Short-chain fatty acids inhibit the activation of T lymphocytes and myeloid cells and induce innate immune tolerance.Benef. Microbes202314440141910.1163/18762891‑20220113 38661366
    [Google Scholar]
  49. HuangS. GaoY. WangZ. YangX. WangJ. ZhengN. Anti‐inflammatory actions of acetate, propionate, and butyrate in fetal mouse jejunum cultures ex vivo and immature small intestinal cells in vitro.Food Sci. Nutr.202210256457610.1002/fsn3.2682 35154692
    [Google Scholar]
  50. HongC-J. ChenS-Y. HsuY-H. YenG-C. Protective effect of fermented okara on the regulation of inflammation, the gut microbiota, and SCFAs production in rats with TNBS-induced colitis.Food Res. Int.202215711139010.1016/j.foodres.2022.111390
    [Google Scholar]
  51. SultanS. El-MowafyM. ElgamlA. AhmedT.A.E. HassanH. MottaweaW. Metabolic influences of gut microbiota dysbiosis on inflammatory bowel disease.Front. Physiol.20211271550610.3389/fphys.2021.715506 34646151
    [Google Scholar]
  52. BarnesJ. MondelliV. ParianteC.M. Genetic contributions of inflammation to depression.Neuropsychopharmacology2017421819810.1038/npp.2016.169 27555379
    [Google Scholar]
  53. 2724https://www.mdpi.com/1420-3049/27/24/880110.3390/molecules27248801
  54. HassamalS. Chronic stress, neuroinflammation, and depression: An overview of pathophysiological mechanisms and emerging anti-inflammatories.Front. Psychiatry202314113098910.3389/fpsyt.2023.1130989 37252156
    [Google Scholar]
  55. AnachadO. TaouilA. TahaW. BennisF. ChegdaniF. The implication of short-chain fatty acids in obesity and diabetes.Microbiol. Insights2023161178636123116272010.1177/11786361231162720 36994236
    [Google Scholar]
  56. AbelairaH.M. SilvaR.H. CarlessiA.S. QuevedoJ. RéusG.Z. Chapter 8 -Neuro-Immune Interactions in Depression: Mechanisms and Translational Implications.In: Neurobiology of Depression.Cambridge, USAcademic Press2019758810.1016/B978‑0‑12‑813333‑0.00008‑1
    [Google Scholar]
  57. OsipovaE.D. Semyachkina-GlushkovskayaO.V. MorgunA.V. Gliotransmitters and cytokines in the control of blood-brain barrier permeability.Rev. Neurosci.201829556759110.1515/revneuro‑2017‑0092 29306934
    [Google Scholar]
  58. SunesonK. LindahlJ. Chamli HårsmarS. SöderbergG. LindqvistD. Inflammatory depression—mechanisms and non-pharmacological interventions.Int. J. Mol. Sci.2021224164010.3390/ijms22041640 33561973
    [Google Scholar]
  59. KoubaB.R. Gil-MohapelJ. S Rodrigues AL. NLRP3 inflammasome: From pathophysiology to therapeutic target in major depressive disorder.Int. J. Mol. Sci.202224113310.3390/ijms24010133 36613574
    [Google Scholar]
  60. KonishiH. OkamotoT. HaraY. Astrocytic phagocytosis is a compensatory mechanism for microglial dysfunction.EMBO J.20203922e10446410.15252/embj.2020104464 32959911
    [Google Scholar]
  61. XiaC.Y. GuoY.X. LianW.W. The NLRP3 inflammasome in depression: Potential mechanisms and therapies.Pharmacol. Res.202318710662510.1016/j.phrs.2022.106625 36563870
    [Google Scholar]
  62. RussoE. GiudiciF. FiorindiC. FicariF. ScaringiS. AmedeiA. Immunomodulating activity and therapeutic effects of short chain fatty acids and tryptophan post-biotics in inflammatory bowel disease.Front. Immunol.201910275410.3389/fimmu.2019.02754 31824517
    [Google Scholar]
  63. TroubatR. BaroneP. LemanS. Neuroinflammation and depression: A review.Eur. J. Neurosci.202153115117110.1111/ejn.14720 32150310
    [Google Scholar]
  64. MeierT.B. SavitzJ. The kynurenine pathway in traumatic brain injury: Implications for psychiatric outcomes.Biol. Psychiatry202291544945810.1016/j.biopsych.2021.05.021 34266671
    [Google Scholar]
  65. SubletteM.E. PostolacheT.T. Neuroinflammation and depression.Psychosom. Med.201274766867210.1097/PSY.0b013e318268de9f 22923699
    [Google Scholar]
  66. LahiriP. DhawareD. SinghA. PanchagnulaV. GhoshD. Quantitation of neurotoxic metabolites of the kynurenine pathway by laser desorption ionization mass spectrometry (LDI-MS).Methods Mol. Biol.2019199611312910.1007/978‑1‑4939‑9488‑5_11 31127552
    [Google Scholar]
  67. WalkerA.K. WingE. BanksW.A. DantzerR. 84. Targeting the kynurenine blood-to-brain transport system to treat inflammation-induced fatigue and depression.Brain Behav. Immun.201440e24e2510.1016/j.bbi.2014.06.104
    [Google Scholar]
  68. ChenY. GuilleminG. ChenY. GuilleminG. The Kynurenine Pathway.In: Amyotrophic Lateral Sclerosis.London, UKIntechOpen201235737410.5772/32332
    [Google Scholar]
  69. MaY. XuP. BaiZ. FangJ. Microbiome‐gut‐brain axis as a novel hotspot in depression.Brain‐X202423e4310.1002/brx2.43
    [Google Scholar]
  70. LiuH. ZhuK. YangC. The intersection between tryptophan-kynurenine pathway metabolites and immune inflammation, hormones, and gut microbiota in perinatal depression.Actas Esp. Psiquiatr.202452573374010.62641/aep.v52i5.1748 39403906
    [Google Scholar]
  71. FanX. ZangT. WuN. The mediating effect of maternal gut microbiota between prenatal psychological distress and neurodevelopment of infants.J. Affect. Disord.202436289390210.1016/j.jad.2024.07.045 39013520
    [Google Scholar]
  72. XuQ. SunL. ChenQ. Gut microbiota dysbiosis contributes to depression-like behaviors via hippocampal NLRP3-mediated neuroinflammation in a postpartum depression mouse model.Brain Behav. Immun.202411922023510.1016/j.bbi.2024.04.002 38599497
    [Google Scholar]
  73. FrerichsN.M. de MeijT.G.J. NiemarktH.J. Microbiome and its impact on fetal and neonatal brain development: Current opinion in pediatrics.Curr. Opin. Clin. Nutr. Metab. Care202427329730310.1097/MCO.0000000000001028 38488112
    [Google Scholar]
  74. SongJ. ZhouB. KanJ. Corrigendum: Gut microbiota: Linking nutrition and perinatal depression.Front. Cell. Infect. Microbiol.202212105355310.3389/fcimb.2022.1053553 36439221
    [Google Scholar]
  75. FangQ. TuY. FanX. Inflammatory cytokines and prenatal depression: Is there a mediating role of maternal gut microbiota?J. Psychiatr. Res.202316445846710.1016/j.jpsychires.2023.06.034 37437318
    [Google Scholar]
  76. MusilloC. BerryA. CirulliF. Prenatal psychological or metabolic stress increases the risk for psychiatric disorders: The “funnel effect” model.Neurosci. Biobehav. Rev.202213610462410.1016/j.neubiorev.2022.104624 35304226
    [Google Scholar]
  77. YeramilliV. CheddadiR. ShahJ. BrawnerK. MartinC. A review of the impact of maternal prenatal stress on offspring microbiota and metabolites.Metabolites202313453510.3390/metabo13040535 37110193
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273371682250421053159
Loading
/content/journals/cnsnddt/10.2174/0118715273371682250421053159
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test