Skip to content
2000
image of Mechanism of Glioblastoma Treatment Targeting Growth Factors: IGF-I Case Using Gene, Immune, Phytochemicals, and Nanotechnologies

Abstract

(GBM), a fatal malignant brain tumor, represents a challenge in terms of developing new treatments. Solutions have been proposed in connection with anti-tumor immune responses, generally T cell strategies, including techniques targeting growth factors, particularly IGF-I, the primary cancer growth factor, and its signal transduction pathways. The objective of this review is to assess the immunogene mechanism targeting IGF-I, which constitutes the basis of the described cancer gene therapy for GBM, stemming from brain neoplastic development studies. The GBM gene therapy, based on new strategies of anti-gene IGF-I techniques, including antisense or triple helix, has been combined with phytochemicals (phenolics) and nanotechnologies (theranostic nanoparticles). The three approaches have modulated IGF-I expression together, inducing common signal transduction pathways: IGF-I-R, TK/PI3K/AKT/TLR/MAPK & JAK/STAT. These signals have transformed neoplastic glioma cells into immunogenic cells. These immunogenic cells, which express MHC-1 and B7, produce a strong T CD8 anti-tumour immune response after injection. The combined strategy of anti-IGF-I/phytochemical/nanotechnology vaccines has shown promising clinical results, with patient survival of up to two and three years in some cases. The obtained results are discussed in parallel with other immunotherapies and anti-tumour vaccine studies that involve the immunogenicity mechanism.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273368842251113060453
2026-01-15
2026-02-03
Loading full text...

Full text loading...

References

  1. Love S. Perry A. Ironside J. Budka H. Greenfield’s Neuropathology. CRC Press 2015
    [Google Scholar]
  2. Weller M. Wick W. Aldape K. Glioma. Nat. Rev. Dis. Primers 2015 1 1 15017 10.1038/nrdp.2015.17 27188790
    [Google Scholar]
  3. Batash R. Asna N. Schaffer P. Francis N. Schaffer M. Glioblastoma Multiforme, diagnosis and treatment. Recent literature review. Curr. Med. Chem. 2017 24 27 3002 3009 10.2174/0929867324666170516123206 28521700
    [Google Scholar]
  4. Louis D.N. Perry A. Wesseling P. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro-oncol. 2021 23 8 1231 1251 10.1093/neuonc/noab106 34185076
    [Google Scholar]
  5. Miller K.D. Ostrom Q.T. Kruchko C. Brain and other central nervous system tumor statistics, 2021. CA Cancer J. Clin. 2021 71 5 381 406 10.3322/caac.21693 34427324
    [Google Scholar]
  6. Stummer W. Pichlmeier U. Meinel T. Wiestler O.D. Zanella F. Reulen H.J. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: A randomised controlled multicentre phase III trial. Lancet Oncol. 2006 7 5 392 401 10.1016/S1470‑2045(06)70665‑9 16648043
    [Google Scholar]
  7. Hadjipanayis C.G. Widhalm G. Stummer W. What is the surgical benefit of utilizing 5-aminolevulinic acid for fluorescence-guided surgery of malignant gliomas? Neurosurgery 2015 77 5 663 673 10.1227/NEU.0000000000000929 26308630
    [Google Scholar]
  8. Ellingson B.M. Chung C. Pope W.B. Boxerman J.L. Kaufmann T.J. Pseudoprogression, radionecrosis, inflammation or true tumor progression? challenges associated with glioblastoma response assessment in an evolving therapeutic landscape. J. Neurooncol. 2017 134 3 495 504 10.1007/s11060‑017‑2375‑2 28382534
    [Google Scholar]
  9. Jamshidi P. Brat D.J. The 2021 WHO classification of central nervous system tumors: What neurologists need to know. Curr. Opin. Neurol. 2022 35 6 764 771 10.1097/WCO.0000000000001109 36226717
    [Google Scholar]
  10. Webb L.M. Neth B.J. Raghunathan A. A case of long-term survival after glioblastoma, IDH-zild type. Neurologist 2024 29 4 254 258 10.1097/NRL.0000000000000564 38797928
    [Google Scholar]
  11. Kiess W. Lee L. Graham D. Rat C6 glial cells synthesize insulin-like growth factor I (IGF-I) and express IGF-I receptors and IGF-II/mannose 6-phosphate receptors. Endocrinology 1989 124 4 1727 1736 10.1210/endo‑124‑4‑1727 2538309
    [Google Scholar]
  12. Pollak M.N. Schernhammer E.S. Hankinson S.E. Insulin-like growth factors and neoplasia. Nat. Rev. Cancer 2004 4 7 505 518 10.1038/nrc1387 15229476
    [Google Scholar]
  13. Alifieris C. Trafalis D.T. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol. Ther. 2015 152 1 63 82 10.1016/j.pharmthera.2015.05.005 25944528
    [Google Scholar]
  14. Noch E.K. Ramakrishna R. Magge R. Challenges in the treatment of glioblastoma: Multisystem mechanisms of therapeutic resistance. World Neurosurg. 2018 116 1 505 517 10.1016/j.wneu.2018.04.022 30049045
    [Google Scholar]
  15. Ohgaki H. Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am. J. Pathol. 2007 170 5 1445 1453 10.2353/ajpath.2007.070011 17456751
    [Google Scholar]
  16. Chetty R. Gene of the month: GLI-1. J. Clin. Pathol. 2020 73 4 228 230 10.1136/jclinpath‑2020‑206431 31980562
    [Google Scholar]
  17. von Rosenstiel C. Wiestler B. Haller B. Correlation of the quantitative level of MGMT promoter methylation and overall survival in primary diagnosed glioblastomas using the quantitative MethyQESD method. J. Clin. Pathol. 2020 73 2 112 115 10.1136/jclinpath‑2019‑206104 31422371
    [Google Scholar]
  18. Xiong Z. Raphael I. Olin M. Okada H. Li X. Kohanbash G. Glioblastoma vaccines: Past, present, and opportunities. EBioMedicine 2024 100 104963 10.1016/j.ebiom.2023.104963 38183840
    [Google Scholar]
  19. Wick A. Kessler T. Platten M. Superiority of temozolomide over radiotherapy for elderly patients with RTK II methylation class, MGMT promoter methylated malignant astrocytoma. Neuro-oncol. 2020 22 8 1162 1172 10.1093/neuonc/noaa033 32064499
    [Google Scholar]
  20. McLendon R. Friedman A. Bigner D. Van Meir E.G. Brat D.J. Mastrogianakis G.M. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008 455 7216 1061 1068 10.1038/nature07385 18772890
    [Google Scholar]
  21. Haque S. Morris J.C. Transforming growth factor-β: A therapeutic target for cancer. Hum. Vaccin. Immunother. 2017 13 8 1741 1750 10.1080/21645515.2017.1327107 28575585
    [Google Scholar]
  22. Trojan J. Establishment of cancer gene therapy. United Kingdom Cambridge Scholars Publishing 2023
    [Google Scholar]
  23. Elsamadicy A.A. Chongsathidkiet P. Desai R. Prospect of rindopepimut in the treatment of glioblastoma. Expert Opin. Biol. Ther. 2017 17 4 507 513 10.1080/14712598.2017.1299705 28274144
    [Google Scholar]
  24. An Z. Aksoy O. Zheng T. Fan Q.W. Weiss W.A. Epidermal growth factor receptor and EGFRvIII in glioblastoma: Signaling pathways and targeted therapies. Oncogene 2018 37 12 1561 1575 10.1038/s41388‑017‑0045‑7 29321659
    [Google Scholar]
  25. Sampson J.H. Gunn M.D. Fecci P.E. Ashley D.M. Brain immunology and immunotherapy in brain tumours. Nat. Rev. Cancer 2020 20 1 12 25 10.1038/s41568‑019‑0224‑7 31806885
    [Google Scholar]
  26. Trojan A. Lone Y.C. Briceno I. Trojan J. Anti – gene IGF-I vaccines in cancer gene therapy: Review of a case of glioblastoma. Curr. Med. Chem. 2024 31 15 1983 2002 10.2174/0109298673237968231106095141 38031775
    [Google Scholar]
  27. Molinaro A.M. Hervey-Jumper S. Morshed R.A. Association of maximal extent of resection of contrast-enhanced and non-contrast-enhanced tumor with survival within molecular subgroups of patients with newly diagnosed glioblastoma. JAMA Oncol. 2020 6 4 495 503 10.1001/jamaoncol.2019.6143 32027343
    [Google Scholar]
  28. Wong E.T. Swanson K.D. Dexamethasone - Friend or foe for patients with glioblastoma? JAMA Neurol. 2019 76 3 247 248 10.1001/jamaneurol.2018.4530 30667471
    [Google Scholar]
  29. Kurdi M. Fadul M.M. Addas B.M.J. Faizo E. Alkhayyat S. Bamaga A.K. The dynamic interplay between corticosteroid treatment and cytotoxic T-cells infiltration: Uncovering the role of SRC-1 gene dysregulation in the progression of WHO grade 4 astrocytoma. J. Neurooncol. 2020 163 693 705 10.1007/s11060‑023‑04385‑5 37402091
    [Google Scholar]
  30. Guo Y. Wu M. Chen H. Effective tumor vaccine generated by fusion of hepatoma cells with activated B cells. Science 1994 263 5146 518 520 10.1126/science.7507262 7507262
    [Google Scholar]
  31. Li D. Zhang J. Chi C. Xiao X. Wang J. Lang L. First-in-human study of PET and optical dual-modality image-guided surgery in glioblastoma using 68Ga-IRDye800CW-BBN. Theranostics 2023 13 4 945 955 10.7150/thno.25599 29721096
    [Google Scholar]
  32. Hautiere M. Vivier D. Dorval P. Preoperative PET imaging and fluorescence-guided surgery of human glioblastoma using dual-labeled antibody targeting ET A receptors in a preclinical mouse model: A theranostic approach. Theranostics 2024 14 16 6268 6280 10.7150/thno.98163 39431005
    [Google Scholar]
  33. Nobashi T.W. Mayer A.T. Xiao Z. Whole-body PET imaging of T-cell response to glioblastoma. Clin. Cancer Res. 2021 27 23 6445 6456 10.1158/1078‑0432.CCR‑21‑1412 34548318
    [Google Scholar]
  34. Barani I.J. Larson D.A. Radiation therapy of glioblastoma. Current understanding and treatment of gliomas. Switzerland Springer International Publishing 2015 10.1007/978‑3‑319‑12048‑5_4
    [Google Scholar]
  35. Hotchkiss K.M. Sampson J.H. Temozolomide treatment outcomes and immunotherapy efficacy in brain tumor. J. Neurooncol. 2021 151 1 55 62 10.1007/s11060‑020‑03598‑2 32813186
    [Google Scholar]
  36. Karachi A. Dastmalchi F. Mitchell D.A. Rahman M. Temozolomide for immunomodulation in the treatment of glioblastoma. Neuro-oncol. 2018 20 12 1566 1572 10.1093/neuonc/noy072 29733389
    [Google Scholar]
  37. Kim M.M. Umemura Y. Leung D. Bevacizumab and Glioblastoma. Cancer J. 2018 24 4 180 186 10.1097/PPO.0000000000000326 30119081
    [Google Scholar]
  38. McGranahan T. Therkelsen K.E. Ahmad S. Nagpal S. Current state of immunotherapy for treatment of glioblastoma. Curr. Treat. Options Oncol. 2019 20 3 24 29 10.1007/s11864‑019‑0619‑4 30790064
    [Google Scholar]
  39. Klapproth A.P. Shevtsov M. Stangl S. Li W.B. Multhoff G. A new pharmacokinetic model describing the biodistribution of intravenously and intratumorally administered superparamagnetic iron oxide nanoparticles in a GL261 xenograft glioblastoma model. Int. J. Nanomedicine 2020 15 6067 10.2147/IJN.S274126 32884262
    [Google Scholar]
  40. Trojan J. Johnson T. Rudin S. Ilan Ju, Tykocinski M, Ilan J. Treatmenand prevention of rat glioblastoma by immugenic C6 cells expressing antisense insulin-like growth factor I RNA. Science 1993 259 94 97 10.1126/science.8418502 8418502
    [Google Scholar]
  41. Townsend S.E. Allison J.P. Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science 1993 259 5093 368 370 10.1126/science.7678351 7678351
    [Google Scholar]
  42. Habib N.A. Cancer gene therapy - Post achievements and future challenges. New York Kluwer Academic/Plenum Publishers 2002 10.1007/b113267
    [Google Scholar]
  43. Dietrich P.Y. Dutoit V. Tran Thang N.N. Walker P.R. T-cell immunotherapy for malignant glioma: Toward a combined approach. Curr. Opin. Oncol. 2010 22 6 604 610 10.1097/CCO.0b013e32833dead8 20739889
    [Google Scholar]
  44. Sharpless N.E. Singer D.S. Progress and potential: The Cancer Moonshot. Cancer Cell 2021 39 7 889 894 10.1016/j.ccell.2021.04.015 33961782
    [Google Scholar]
  45. Preusser M. Lim M. Hafler D.A. Reardon D.A. Sampson J.H. Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat. Rev. Neurol. 2015 11 9 504 514 10.1038/nrneurol.2015.139 26260659
    [Google Scholar]
  46. Medikonda R Dunn G Rahman M Fecci P Lim M. A review of glioblastoma immunotherapy. J Neurooncol 2021 151 1 41 53 10.1007/s11060‑020‑03448‑1 32253714
    [Google Scholar]
  47. Wang J. Shen F. Yao Y. Wang L. Zhu Y. Hu J. Adoptive cell therapy: A novel and potential immunotherapy for glioblastoma. Front. Oncol. 2020 10 59 10.3389/fonc.2020.00059 32083009
    [Google Scholar]
  48. Choi B.D. Gerstner E.R. Frigault M.J. Intraventricular CARv3-TEAM-E T cells in recurrent glioblastoma. N. Engl. J. Med. 2024 390 14 1290 1298 10.1056/NEJMoa2314390 38477966
    [Google Scholar]
  49. Pan C. Zhai Y. Wang C. Poliovirus receptor–based chimeric antigen receptor T cells combined with NK-92 cells exert potent activity against glioblastoma. J. Natl. Cancer Inst. 2024 116 5 389 400 10.1093/jnci/djad226 37944044
    [Google Scholar]
  50. Gardam B. Gargett T. Brown M.P. Ebert L.M. Targeting the dendritic cell-T cell axis to develop effective immunotherapies for glioblastoma. Front. Immunol. 2023 14 1261257 10.3389/fimmu.2023.1261257 37928547
    [Google Scholar]
  51. Ellis R. Weiss A. Human vaccines & immunotherapeutics: News March 2023. Hum. Vaccin. Immunother. 2023 19 1 2200636 10.1080/21645515.2023.2200636 37071023
    [Google Scholar]
  52. Kaufman H.L. Kohlhapp F.J. Zloza A. Oncolytic viruses: A new class of immunotherapy drugs. Nat. Rev. Drug Discov. 2015 14 9 642 662 10.1038/nrd4663 26323545
    [Google Scholar]
  53. Koch M.S. Zdioruk M. Nowicki M.O. Perturbing DDR signaling enhances cytotoxic effects of local oncolytic virotherapy and modulates the immune environment in glioma. Mol. Ther. Oncolytics 2022 26 275 288 10.1016/j.omto.2022.07.009 36032633
    [Google Scholar]
  54. Lin H. Liu C. Hu A. Zhang D. Yang H. Mao Y. Understanding the immunosuppressive microenvironment of glioma: Mechanistic insights and clinical perspectives. J. Hematol. Oncol. 2024 17 1 31 10.1186/s13045‑024‑01544‑7 38720342
    [Google Scholar]
  55. Liu B. Zhou H. Tan L. Siu K.T.H. Guan X-Y. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct. Target. Ther. 2024 9 1 175 10.1038/s41392‑024‑01856‑7 39013849
    [Google Scholar]
  56. Hilligan K.L. Ronchese F. Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses. Cell. Mol. Immunol. 2020 17 6 587 599 10.1038/s41423‑020‑0465‑0 32433540
    [Google Scholar]
  57. Perez C.R. De Palma M. Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat. Commun. 2019 10 1 5408 10.1038/s41467‑019‑13368‑y 31776331
    [Google Scholar]
  58. Liu Y. Zhou F. Ali H. Lathia J.D. Chen P. Immunotherapy for glioblastoma: Current state, challenges, and future perspectives. Cell. Mol. Immunol. 2024 21 12 1354 1375 10.1038/s41423‑024‑01226‑x 39406966
    [Google Scholar]
  59. Yu J. Sun H. Cao W. Song Y. Jiang Z. Research progress on dendritic cell vaccines in cancer immunotherapy. Exp. Hematol. Oncol. 2022 11 1 3 10.1186/s40164‑022‑00257‑2 35074008
    [Google Scholar]
  60. Pasqualetti F. Zanotti S. Nonrandomised controlled trial in recurrent glioblastoma patients: The promise of autologous tumour lysate-loaded dendritic cell vaccination. Br. J. Cancer 2023 129 6 895 896 10.1038/s41416‑023‑02194‑1 36792723
    [Google Scholar]
  61. Mao L. Jin H. Wang M. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020 77 6 683 690 10.1001/jamaneurol.2020.1127 32275288
    [Google Scholar]
  62. Amruta N. Chastain W.H. Paz M. SARS-CoV-2 mediated neuroinflammation and the impact of COVID-19 in neurological disorders. Cytokine Growth Factor Rev. 2021 58 1 15 10.1016/j.cytogfr.2021.02.002 33674185
    [Google Scholar]
  63. Soriano J.B. Murthy S. Marshall J.C. Relan P. Diaz J.V. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 2022 22 4 e102 e107 10.1016/S1473‑3099(21)00703‑9 34951953
    [Google Scholar]
  64. Várnai C. Palles C. Arnold R. Mortality among adults with cancer undergoing chemotherapy or immunotherapy and infected zith COVID-19. JAMA Netw. Open 2022 5 2 220130 10.1001/jamanetworkopen.2022.0130 35188551
    [Google Scholar]
  65. Greene C. Connolly R. Brennan D. Blood–brain barrier disruption and sustained systemic inflammation in individuals with long COVID-associated cognitive impairment. Nat. Neurosci. 2024 27 3 421 432 10.1038/s41593‑024‑01576‑9 38388736
    [Google Scholar]
  66. Trojan J. Uriel J. Intracellular localization of alpha-fetoprotein and serum albumin in the central nervous system of the rat during fetal and postnatal development. C. R. Acad. Sci. Hebd. Seances Acad. Sci. D 1979 289 15 1157 1160 95002
    [Google Scholar]
  67. Dziadek M. Adamson E. Localization and synthesis of alphafoetoprotein in post-implantation mouse embryos. Development 1978 43 1 289 313 10.1242/dev.43.1.289 75937
    [Google Scholar]
  68. Trojan J. Uriel J. Deugnier M.A. Gaillard J. Immunocytochemical quantitative study of alpha-fetoprotein in normal and neoplastic neural development. Dev. Neurosci. 1983 6 4-5 251 259 10.1159/000112352 6083861
    [Google Scholar]
  69. Trojan J. Naval X. Johnson T. Expression of serum albumin and of alphafetoprotein in murine normal and neoplastic primitive embryonic structures. Mol. Reprod. Dev. 1995 42 4 369 378 10.1002/mrd.1080420402 8607965
    [Google Scholar]
  70. Hajeri-Germond M. Naval J. Trojan J. Uriel J. The uptake of alpha-foetoprotein by C-1300 mouse neuroblastoma cells. Br. J. Cancer 1985 51 6 791 797 10.1038/bjc.1985.123 2408647
    [Google Scholar]
  71. Zumkeller W. IGFs and IGF-binding proteins as diagnostic markers and biological modulators in brain tumors. Expert Rev. Mol. Diagn. 2002 2 5 473 477 10.1586/14737159.2.5.473 12271818
    [Google Scholar]
  72. Dubois L.G. Campanati L. Righy C. Gliomas and the vascular fragility of the blood brain barrier. Front. Cell. Neurosci. 2014 8 418 10.3389/fncel.2014.00418 25565956
    [Google Scholar]
  73. Zhang H. Zhou Y. Cui B. Liu Z. Shen H. Novel insights into astrocyte-mediated signaling of proliferation, invasion and tumor immune microenvironment in glioblastoma. Biomed. Pharmacother. 2020 126 110086 10.1016/j.biopha.2020.110086 32172060
    [Google Scholar]
  74. Trojan J. Pan Y.X. Wei M.X. Methodology for anti - Gene anti IGF-I therapy of malignant tumours. Chemother. Res. Pract. 2012 2012 1 12 10.1155/2012/721873 22400112
    [Google Scholar]
  75. Nadal R. Amin A. Geynisman D.M. Safety and clinical activity of vascular endothelial growth factor receptor (VEGFR)–tyrosine kinase inhibitors after programmed cell death 1 inhibitor treatment in patients with metastatic clear cell renal cell carcinoma. Ann. Oncol. 2016 27 7 1304 1311 10.1093/annonc/mdw160 27059553
    [Google Scholar]
  76. Gaudino S. Marziali G. Giordano C. Regorafenib in glioblastoma recurrence: How to deal with MR imaging treatments changes. Front Radiol 2022 1 790456 10.3389/fradi.2021.790456 37492166
    [Google Scholar]
  77. Pak V.N. The use of alpha-fetoprotein for the treatment of autoimmune diseases and cancer. Ther. Deliv. 2018 9 1 37 46 10.4155/tde‑2017‑0073 29216804
    [Google Scholar]
  78. Osher E. Macaulay V.M. Therapeutic targeting of the IGF axis. Cells 2019 8 8 895 10.3390/cells8080895 31416218
    [Google Scholar]
  79. Rubenstein J.L. Nicolas J.F. Jacob F. Nonsense RNA: A tool for specifically inhibiting the expression of a gene in vivo. C. R. Acad. Sci. III 1984 299 8 271 274 6210135
    [Google Scholar]
  80. Trojan J. Blossey B.K. Johnson T.R. Loss of tumorigenicity of rat glioblastoma directed by episome-based antisense cDNA transcription of insulin-like growth factor I. Proc. Natl. Acad. Sci. USA 1992 89 11 4874 4878 10.1073/pnas.89.11.4874 1594587
    [Google Scholar]
  81. Shevelev A. Burfeind P. Schulze E. Potential triple helix-mediated inhibition of IGF-I gene expression significantly reduces tumorigenicity of glioblastoma in an animal model. Cancer Gene Ther. 1997 4 2 105 112 9080119
    [Google Scholar]
  82. Irais C.M. María-de-la-Luz S.G. Dealmy D.G. Plant phenolics as pathogen-carrier immunogenicity modulator haptens. Curr. Pharm. Biotechnol. 2020 21 10 897 905 10.2174/1389201021666200121130313 31965941
    [Google Scholar]
  83. Wu H.L. Zhou H.J. Astragalus membranaceus promote expression of insulin-like growth factor 1 in rat model of olivo-cerebellar degeneration. Zhongguo Zhongyao Zazhi 2007 32 3 242 245 17432149
    [Google Scholar]
  84. Mariacute a CVM Catalina RM Julia VS Antimicrobial activity of five plants from Northern Mexico on medically important bacteria. Afr J Microbiol Res. 2013 7 43 5011 7 10.5897/AJMR12.1759
    [Google Scholar]
  85. Tsai T. Diggle P.K. Frye H.A. Jones C.S. Contrasting lengths of Pelargonium floral nectar tubes result from late differences in rate and duration of growth. Ann. Bot. 2018 121 3 549 560 10.1093/aob/mcx171 29293992
    [Google Scholar]
  86. Lee J.Y. 4-(Hydroxymethyl)catechol extracted from fungi in marine sponges attenuates rheumatoid arthritis by inhibiting PI3K/Akt/NF-κB signaling. Front. Pharmacol. 2018 9 726 10.3389/fphar.2018.00726 30079020
    [Google Scholar]
  87. Duval R. Bui L.C. Mathieu C. Benzoquinone, a leukemogenic metabolite of benzene, catalytically inhibits the protein tyrosine phosphatase PTPN2 and alters STAT1 signaling. J. Biol. Chem. 2019 294 33 12483 12494 10.1074/jbc.RA119.008666 31248982
    [Google Scholar]
  88. Suwanjang W. Khongniam B. Srisung S. Prachayasittikul S. Prachayasittikul V. Neuroprotective effect of Spilanthes acmella Murr. on pesticide-induced neuronal cells death. Asian Pac. J. Trop. Med. 2017 10 1 35 41 10.1016/j.apjtm.2016.11.012 28107862
    [Google Scholar]
  89. de Freitas-Blanco V. Monteiro K. de Oliveira P. Spilanthol, the principal alkylamide from Acmella oleracea, attenuates 5-fluorouracil-induced intestinal mucositis in mice. Planta Med. 2019 85 3 203 209 10.1055/a‑0715‑2002 30153691
    [Google Scholar]
  90. Rondanelli M. Fossari F. Vecchio V. Acmella oleracea for pain management. Fitoterapia 2020 140 104419 10.1016/j.fitote.2019.104419 31705952
    [Google Scholar]
  91. Jeiter J. Hilger H.H. Smets E.F. Weigend M. The relationship between nectaries and floral architecture: A case study in Geraniaceae and Hypseocharitaceae. Ann. Bot. 2017 120 5 791 803 10.1093/aob/mcx101 28961907
    [Google Scholar]
  92. Chahal D.S. Sivamani R.K. Rivkah Isseroff R. Dasu M.R. Plant-based modulation of Toll-like receptors: An emerging therapeutic model. Phytother. Res. 2013 27 10 1423 1438 10.1002/ptr.4886 23147906
    [Google Scholar]
  93. Pan W. Yu H. Huang S. Zhu P. Resveratrol protects against TNF-α-induced injury in human umbilical endothelial cells through promoting sirtuin-1-induced repression of NF-KB and p38 MAPK. PLoS One 2016 11 1 0147034 10.1371/journal.pone.0147034 26799794
    [Google Scholar]
  94. Reyna-Margarita H.R. Irais C.M. Mario-Alberto R.G. Agustina R.M. Luis-Benjamín S.G. David P.E. Plant phenolics and lectins as vaccine adjuvants. Curr. Pharm. Biotechnol. 2019 20 15 1236 1243 10.2174/1389201020666190716110705 31333121
    [Google Scholar]
  95. Adams R.P. Identification of essential oil components by gas chromatography/mass spectrometry. Carol Stream. Illinois, USA Allured Publishing Corporation 2007
    [Google Scholar]
  96. Trojan A. Kasprzak H. Gutierrez O. Penagos P. Briceno I. Siachoque H. Neoplastic brain, glioblastoma and immunotherapy. Brain and spinal tumors - primary and secondary. UK: InTechOpen. Morgan LR Sarica F.B. 2020 10.5772/intechopen.84726
    [Google Scholar]
  97. Schlingensiepen K. Schlingensiepen R. Steinbrecher A. Targeted tumor therapy with the TGF-β2 antisense compound AP 12009. Cytokine Growth Factor Rev. 2006 17 1-2 129 139 10.1016/j.cytogfr.2005.09.002 16377233
    [Google Scholar]
  98. Hau P. Jachimczak P. Schlaier J. Bogdahn U. TGF-β2 signaling] in high-grade gliomas. Curr. Pharm. Biotechnol. 2011 12 12 2150 2157 10.2174/138920111798808347 21619538
    [Google Scholar]
  99. Quintero G. Guzman A.M. Gomez D. Glioblastoma - Application of gene therapy during a quarter of a century: Anti -] Gene IGF-I strategy. Acta Scientific Cancer Biology 2019 4 1 38 45 10.31080/ASCB.2020.04
    [Google Scholar]
  100. Giamas G. Cancer Gene Therapy: Vision and strategy for the new decade. Cancer Gene Ther. 2020 27 3-4 115 10.1038/s41417‑020‑0169‑8 32066853
    [Google Scholar]
  101. Hosseindoost S. Dehpour A.R. Dehghan S. Fluoxetine enhances the antitumor effect of olfactory ensheathing cell‐thymidine kinase/ganciclovir gene therapy in human glioblastoma multiforme cells through upregulation of Connexin43 levels. Drug Dev. Res. 2023 84 8 1739 1750 10.1002/ddr.22119 37769152
    [Google Scholar]
  102. Tirgar F Azizi Z Hosseindoost S Hadjighassem M Preclinical gene therapy in glioblastoma multiforme: Using olfactory ensheathing cells containing a suicide gene. Life Sci 2022 311 Pt A 121132 10.1016/j.lfs.2022.121132 36309223
    [Google Scholar]
  103. Ram Kumar P.S. Rencilin C.F. Sundar K. Emerging nanomaterials for cancer immunotherapy. Explor Med 2021 2 3 208 231 10.37349/emed.2021.00043
    [Google Scholar]
  104. Salazar A. Pérez-de la Cruz V. Muñoz-Sandoval E. Potential use of nitrogen doped carbon nanotube sponges as payload carriers against malignant glioma. Nanomaterials 2021 11 5 1244 10.3390/nano11051244 34066818
    [Google Scholar]
  105. Liu Z. Ji X. He D. Zhang R. Liu Q. Xin T. Nanoscale drug delivery systems in glioblastoma. Nanoscale Res. Lett. 2022 17 1 27 10.1186/s11671‑022‑03668‑6 35171358
    [Google Scholar]
  106. Sadjadi S. Malmir M. Heravi M.M. Raja M. Magnetic hybrid of cyclodextrin nanosponge and polyhedral oligomeric silsesquioxane: Efficient catalytic support for immobilization of Pd nanoparticles. Int. J. Biol. Macromol. 2019 128 638 647 10.1016/j.ijbiomac.2019.01.181 30708003
    [Google Scholar]
  107. Zhou H. Qian W. Uckun F.M. IGF1 receptor targeted theranostic nanoparticles for targeted and image-guided therapy of pancreatic cancer. ACS Nano 2015 9 8 7976 7991 10.1021/acsnano.5b01288 26242412
    [Google Scholar]
  108. Trojan J. Quintero G. Pan Y.X. Duc H.T. Trojan A. Ly A. Criterions of anti - gene anti IGF-I tumor vaccines. Trojan J Cancer immunogene therapy Anti - gene anti IGF-I approach Case of glioblastoma. Saarbrucken Lambert Academic Publishers 2017 96 116
    [Google Scholar]
  109. Lihuang L. Qiuyan G. Yanxiu L. Targeted combination therapy for glioblastoma by co-delivery of doxorubicin, YAP-siRNA and gold nanorods. J. Mater. Sci. Technol. 2021 63 81 90 10.1016/j.jmst.2020.03.009
    [Google Scholar]
  110. Shams F. Golchin A. Azari A. Nanotechnology-based products for cancer immunotherapy. Mol. Biol. Rep. 2022 49 2 1389 1412 10.1007/s11033‑021‑06876‑y 34716502
    [Google Scholar]
  111. Zhu X. Li S. Nanomaterials in tumor immunotherapy: New strategies and challenges. Mol. Cancer 2023 22 1 94 10.1186/s12943‑023‑01797‑9 37312116
    [Google Scholar]
  112. Ashok H.A. Sagarkumar P. Nikita V. Vinod R. Dhiren P.S. Recent application of nanotechnology for cancer immunotherapy and its future prospects. Int J Immunol Immunother 2023 10 1 1 17 10.23937/2378‑3672/1410069
    [Google Scholar]
  113. Yadav D. Puranik N. Meshram A. Chavda V. Lee P.C.W. Jin J.O. How advanced are cancer immuno-nanotherapeutics? A comprehensive review of the literature. Int. J. Nanomedicine 2023 18 35 48 10.2147/IJN.S388349 36636642
    [Google Scholar]
  114. Habeeb M. Vengateswaran H.T. You H.W. Saddhono K. Aher K.B. Bhavar G.B. Nanomedicine facilitated cell signaling blockade: Difficulties and strategies to overcome glioblastoma. J. Mater. Chem. B Mater. Biol. Med. 2024 12 7 1677 1705 10.1039/D3TB02485G 38288615
    [Google Scholar]
  115. Gharatape A. Sadeghi-Abandansari H. Seifalian A. Faridi-Majidi R. Basiri M. Nanocarrier-based gene delivery for immune cell engineering. J. Mater. Chem. B Mater. Biol. Med. 2024 12 14 3356 3375 10.1039/D3TB02279J 38505950
    [Google Scholar]
  116. García-Domínguez D.J. López-Enríquez S. Alba G. Cancer nano-immunotherapy: The novel and promising weapon to fight cancer. Int. J. Mol. Sci. 2024 25 2 1195 10.3390/ijms25021195 38256268
    [Google Scholar]
  117. Giljohann D.A. Seferos D.S. Daniel W.L. Massich M.D. Patel P.C. Mirkin C.A. Gold nanoparticles for biology and medicine. Angew. Chem. Int. Ed. 2010 49 19 3280 3294 10.1002/anie.200904359 20401880
    [Google Scholar]
  118. Angelopoulou A. Nanostructured biomaterials in 3D tumor tissue engineering scaffolds: Regenerative medicine and immunotherapies. Int. J. Mol. Sci. 2024 25 10 5414 10.3390/ijms25105414 38791452
    [Google Scholar]
  119. Davis M.E. Chen Z. Shin D.M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov. 2008 7 9 771 782 10.1038/nrd2614 18758474
    [Google Scholar]
  120. Chaturvedi V.K. Singh A. Singh V.K. Singh M.P. Cancer nanotechnology: A new revolution for cancer diagnosis and therapy. Curr. Drug Metab. 2019 20 6 416 429 10.2174/1389200219666180918111528 30227814
    [Google Scholar]
  121. Conti B.J. Búfalo M.C. Golim M.A. Bankova V. Sforcin J.M. Cinnamic Acid is partially involved in propolis immunomodulatory action on human monocytes. Evid. Based Complement. Alternat. Med. 2013 2013 1 7 10.1155/2013/109864 23762102
    [Google Scholar]
  122. Zhu C. Trabado S. Fan Y. Characterization of effector components from the humoral and cellular immune response stimulated by melanoma cells exhibiting modified IGF-1 expression. Biomed. Pharmacother. 2015 70 53 57 10.1016/j.biopha.2015.01.002 25776479
    [Google Scholar]
  123. Li Y. Yao J. Han C. Quercetin, inflammation and immunity. Nutrients 2016 8 3 167 175 10.3390/nu8030167 26999194
    [Google Scholar]
  124. Iwai Y. Hamanishi J. Chamoto K. Honjo T. Cancer immunotherapies targeting the PD-1 signaling pathway. J. Biomed. Sci. 2017 24 1 26 10.1186/s12929‑017‑0329‑9 28376884
    [Google Scholar]
  125. Roselli E. Frieling J.S. Thorner K. Ramello M.C. Lynch C.C. Abate-Daga D. CAR-T engineering: Optimizing signal transduction and effector mechanisms. BioDrugs 2019 33 6 647 659 10.1007/s40259‑019‑00384‑z 31552606
    [Google Scholar]
  126. Andrews D.W. Resnicoff M. Flanders A.E. Results of a pilot study involving the use of an antisense oligodeoxynucleotide directed against the insulin-like growth factor type I receptor in malignant astrocytomas. J. Clin. Oncol. 2001 19 8 2189 2200 10.1200/JCO.2001.19.8.2189 11304771
    [Google Scholar]
  127. Brutkiewicz R.R. Cell signaling pathways that regulate antigen presentation. J. Immunol. 2016 197 8 2971 2979 10.4049/jimmunol.1600460 27824592
    [Google Scholar]
  128. Chen L. Yu J. Modulation of Toll-like receptor signaling in innate immunity by natural products. Int. Immunopharmacol. 2016 37 65 70 10.1016/j.intimp.2016.02.005 26899347
    [Google Scholar]
  129. Chen X. Li Y. Blankson S. B7-H3 augments inflammatory responses and exacerbates brain damage via amplifying NF-kappaB p65 and MAPK p38 activation during experimental Pneumococcal Meningitis. PLoS One 2017 12 1 0171146 10.1371/journal.pone.0171146 28141831
    [Google Scholar]
  130. Trojan J. Oncoproteins targeting: Antibodies, antisense, triple helix. Case of anti IGF-I cancer immunogene therapy. Sharad S, Kapur S, Eds. Antisense Therapies. UK: InTechOpen 2019
    [Google Scholar]
  131. Trejo-de la O A Hernández-Sancén P, Maldonado-Bernal C. Relevance of single-nucleotide polymorphisms in human TLR genes to infectious and inflammatory diseases and cancer. Genes Immun. 2014 15 4 199 209 10.1038/gene.2014.10 24622688
    [Google Scholar]
  132. a Mohammad Hosseini A. Majidi J. Baradaran B. Yousefi M. Toll-like receptors in the pathogenesis of autoimmune diseases. Adv. Pharm. Bull. 2015 5 1 605 614 10.15171/apb.2015.082 26793605
    [Google Scholar]
  133. b O’Shea J.J. Holland S.M. Staudt L.M. JAKs and STATs in immunity, immunodeficiency, and cancer. N. Engl. J. Med. 2013 368 2 161 170 10.1056/NEJMra1202117 23301733
    [Google Scholar]
  134. Heise R. Amann P.M. Ensslen S. Interferon alpha signalling and its relevance for the upregulatory effect of transporter proteins associated with antigen processing (TAP) in patients with malignant melanoma. PLoS One 2016 11 1 0146325 10.1371/journal.pone.0146325 26735690
    [Google Scholar]
  135. Zeng K.W. Wang X.M. Ko H. Kwon H.C. Cha J.W. Yang H.O. Hyperoside protects primary rat cortical neurons from neurotoxicity induced by amyloid β-protein via the PI3K/Akt/Bad/BclXL-regulated mitochondrial apoptotic pathway. Eur. J. Pharmacol. 2011 672 1-3 45 55 10.1016/j.ejphar.2011.09.177 21978835
    [Google Scholar]
  136. Fumarola C. Bonelli M.A. Petronini P.G. Alfieri R.R. Targeting PI3K/AKT/mTOR pathway in non small cell lung cancer. Biochem. Pharmacol. 2014 90 3 197 207 10.1016/j.bcp.2014.05.011 24863259
    [Google Scholar]
  137. Tao S.C. Yuan T. Rui B.Y. Zhu Z.Z. Guo S.C. Zhang C.Q. Exosomes derived from human platelet-rich plasma prevent apoptosis induced by glucocorticoid-associated endoplasmic reticulum stress in rat osteonecrosis of the femoral head via the Akt/Bad/Bcl-2 signal pathway. Theranostics 2017 7 3 733 750 10.7150/thno.17450 28255363
    [Google Scholar]
  138. Liu T.Y. Shi C.X. Gao R. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes. Clin. Sci. 2015 129 10 839 850 10.1042/CS20150009 26201094
    [Google Scholar]
  139. Prokhorova E.A. Kopeina G.S. Lavrik I.N. Zhivotovsky B. Apoptosis regulation by subcellular relocation of caspases. Sci. Rep. 2018 8 1 12199 10.1038/s41598‑018‑30652‑x 30111833
    [Google Scholar]
  140. Gao C. Yuan X. Jiang Z. Regulation of AKT phosphorylation by GSK3β and PTEN to control chemoresistance in breast cancer. Breast Cancer Res. Treat. 2019 176 2 291 301 10.1007/s10549‑019‑05239‑3 31006103
    [Google Scholar]
  141. Yan Y. Huang H. Interplay among PI3K/AKT, PTEN/FOXO and AR signaling in prostate cancer. Adv. Exp. Med. Biol. 2019 1210 319 331 10.1007/978‑3‑030‑32656‑2_14 31900915
    [Google Scholar]
  142. Ardourel M. Blin M. Moret J.L. A new putative target for antisense gene therapy of glioma: Glycogen synthase. Cancer Biol. Ther. 2007 6 5 719 723 10.4161/cbt.6.5.4232 17426442
    [Google Scholar]
  143. Siegel R.L. Miller K.D. Jemal A. Statistic of cancer. CA Cancer J. Clin. 2019 69 7 34 10.3322/caac.21551 30620402
    [Google Scholar]
  144. Motaghinejad M. Motevalian M. Fatima S. Beiranvand T. Mozaffari S. Topiramate via NMDA, AMPA/kainate, GABAA and Alpha2 receptors and by modulation of CREB/BDNF and Akt/GSK3 signaling pathway exerts neuroprotective effects against methylphenidate-induced neurotoxicity in rats. J. Neural Transm. (Vienna) 2017 124 11 1369 1387 10.1007/s00702‑017‑1771‑2 28795276
    [Google Scholar]
  145. Zhang Z. Zhang H. Chen S. Dihydromyricetin induces mitochondria-mediated apoptosis in HepG2 cells through down-regulation of the Akt/Bad pathway. Nutr. Res. 2017 38 27 33 10.1016/j.nutres.2017.01.003 28381351
    [Google Scholar]
  146. Fujiwara Y. Kuchiba A. Koyama T. Infection risk with PI3K-AKT-mTOR pathway inhibitors and immune checkpoint inhibitors in patients with advanced solid tumours in phase I clinical trials. ESMO Open 2020 5 2 000653 10.1136/esmoopen‑2019‑000653 32276948
    [Google Scholar]
  147. Hassan R. Mohi-ud-din R. Dar M.O. Bioactive heterocyclic compounds as potential therapeutics in the treatment of gliomas: A Review. Anticancer. Agents Med. Chem. 2022 22 3 551 565 10.2174/1871520621666210901112954 34488596
    [Google Scholar]
  148. Wani T.U. Mohi-Ud-Din R. Wani T.A. Mir R.H. Itoo A.M. Sheikh F.A. Green synthesis, spectroscopic characterization and biomedical applications of carbon nanotubes. Curr. Mol. Med. 2021 21 9 707 723 10.2174/1566524020666200915111618 32933459
    [Google Scholar]
  149. Mohi-ud-din R. Mir R.H. Sabreen S. Jan R. Pottoo F.H. Singh I.P. Recent insights into therapeutic potential of plant-derived flavonoids against cancer. Anticancer. Agents Med. Chem. 2022 22 20 3343 3369 10.2174/1871520622666220421094055 35593353
    [Google Scholar]
  150. Liu X. Overstimulation can create health problems due to increases in PI3K/Akt/GSK3 insensitivity and GSK3 activity. Springerplus 2014 3 1 356 10.1186/2193‑1801‑3‑356 25089247
    [Google Scholar]
  151. Chen C.F. Yang J.S. Chen W.K. Ursolic acid elicits intrinsic apoptotic machinery by downregulating the phosphorylation of AKT/BAD signaling in human cisplatin resistant oral cancer CAR cells. Oncol. Rep. 2018 40 3 1752 1760 10.3892/or.2018.6530 29956797
    [Google Scholar]
  152. Coutinho M.F. Matos L. Santos J.I. Alves S. RNA therapeutics: How far have we gone? Adv. Exp. Med. Biol. 2019 1157 133 177 10.1007/978‑3‑030‑19966‑1_7 31342441
    [Google Scholar]
  153. Zou Y. Sun X. Yang Q. Blood-brain barrier–penetrating single CRISPR-Cas9 nanocapsules for effective and safe glioblastoma gene therapy. Sci. Adv. 2022 8 16 eabm8011 10.1126/sciadv.abm8011 35442747
    [Google Scholar]
  154. Czarnywojtek A. Borowska M. Dyrka K. Glioblastoma multiforme: The latest diagnostics and treatment techniques. Pharmacology 2023 108 5 423 431 10.1159/000531319 37459849
    [Google Scholar]
  155. Trojan J. Johnson T.R. Rudin S.D. Gene therapy of murine teratocarcinoma: Separate functions for insulin-like growth factors I and II in immunogenicity and differentiation. Proc. Natl. Acad. Sci. USA 1994 91 13 6088 6092 10.1073/pnas.91.13.6088 8016120
    [Google Scholar]
  156. Pino A. Fumagalli G. Bifari F. Decimo I. New neurons in adult brain: Distribution, molecular mechanisms and therapies. Biochem. Pharmacol. 2017 141 4 22 10.1016/j.bcp.2017.07.003 28690140
    [Google Scholar]
  157. Bueno S.J. Trojan A. Santander R. Alvarez A. Guzman A. Rojas C. Brain stem cells and IGF-I: Implications in development, regeneration and cancer therapeutics. Integr. Mol. Med. 2018 5 1 1 7 10.15761/IMM.1000319
    [Google Scholar]
  158. Biserova K. Jakovlevs A. Uljanovs R. Strumfa I. Cancer stem cells: Significance in origin, pathogenesis and treatment of glioblastoma. Cells 2021 10 3 621 10.3390/cells10030621 33799798
    [Google Scholar]
  159. Turan O. Bielecki P. Perera V. Delivery of drugs into brain tumors using multicomponent silica nanoparticles. Nanoscale 2019 11 24 11910 11921 10.1039/C9NR02876E 31187845
    [Google Scholar]
  160. Säälik P. Lingasamy P. Toome K. Peptide-guided nanoparticles for glioblastoma targeting. J. Control. Release 2019 308 109 118 10.1016/j.jconrel.2019.06.018 31255690
    [Google Scholar]
  161. Kang S. Duan W. Zhang S. Chen D. Feng J. Qi N. Muscone/] RI7217 co-modified upward messenger DTX liposomes enhanced permeability of blood-brain barrier and targeting glioma. Theranostics 2020 10 10 4308 4322 10.7150/thno.41322 32292496
    [Google Scholar]
  162. Liaw K. Sharma R. Sharma A. Salazar S. Appiani La Rosa S. Kannan R.M. Systemic dendrimer delivery of triptolide to tumor-associated macrophages improves anti-tumor efficacy and reduces systemic toxicity in glioblastoma. J. Control. Release 2021 329 434 444 10.1016/j.jconrel.2020.12.003 33290796
    [Google Scholar]
  163. Zhu Y. Liang J. Gao C. Multifunctional ginsenoside Rg3-based liposomes for glioma targeting therapy. J. Control. Release 2021 330 641 657 10.1016/j.jconrel.2020.12.036 33359582
    [Google Scholar]
  164. Kim K.H. Migliozzi S. Koo H. Hong J-H. Park S.M. Kim S. Integrated proteogenomic characterization of glioblastoma evolution. Cancer Cell 2024 42 3 358 377.e8 10.1016/j.ccell.2023.12.015 38215747
    [Google Scholar]
  165. Bhagat A. Lyerly H.K. Morse M.A. Hartman Z.C. CEA vaccines. Hum. Vaccin. Immunother. 2023 19 3 2291857 10.1080/21645515.2023.2291857 38087989
    [Google Scholar]
  166. Strizova Z. Bartunkova J. Smrz D. The challenges of adoptive cell transfer in the treatment of human renal cell carcinoma. Cancer Immunol. Immunother. 2019 68 11 1831 1838 10.1007/s00262‑019‑02359‑z 31222485
    [Google Scholar]
  167. Biswas A. Salvucci M. Connor K. Comparative analysis of deeply phenotyped GBM cohorts of ‘short-term’ and ‘long-term’ survivors. J. Neurooncol. 2023 163 2 327 338 10.1007/s11060‑023‑04341‑3 37237151
    [Google Scholar]
  168. Bauchet L. Sanson M. Deciphering gliomagenesis from genome-wide association studies. Neuro-oncol. 2023 25 7 1366 1367 10.1093/neuonc/noad057 36915962
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273368842251113060453
Loading
/content/journals/cnsnddt/10.2174/0118715273368842251113060453
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test