Skip to content
2000
image of Integrating Synthesis, Pharmacological Activity, and Molecular Modeling to Explore 1,2,4-Triazine Fused Thiazolidin-4-one Derivatives as GABAA Receptor Modulators

Abstract

Introduction

Epilepsy is a common neurological disorder managed with anti-epileptic drugs (AEDs), which often cause side effects and limited efficacy. This study aims to evaluate a novel series of 1,2,4-triazine fused thiazolidin-4-one derivatives for their anticonvulsant and antioxidant potential as safer and more effective therapeutic options.

Methods

Twelve 1,2,4-triazine fused thiazolidin-4-one derivatives (HRSP1-HRSP12) were synthesized. Anticonvulsant activity was assessed using the maximal electroshock (MES) model, while antioxidant potential was evaluated through DPPH and FRAP assays. Cortical GABA and glutamate levels were quantified in mice. Safety was evaluated acute toxicity studies. studies included molecular docking, induced fit docking, MM-GBSA, and molecular dynamics simulations to assess GABA receptor interactions.

Results

HRSP8 showed the strongest anticonvulsant activity among the synthesized compounds, 
reducing hind limb tonic extension (HLTE) to 7.91 ± 0.25 s (30 mg/kg) and 6.89 ± 0.09 s (100 mg/kg), comparable to standard drugs (phenytoin and carbamazepine). It exhibited an ED of 27.49 mg/kg, TD >565 mg/kg, and a protective index >20.51. HRSP8 also increased cortical GABA and decreased glutamate levels. Antioxidant assays confirmed strong radical scavenging activity. Docking (-7.80 kcal/mol) and MM-GBSA (-82.42 kcal/mol) suggested high GABA receptor affinity, supported by stable molecular dynamics.

Discussion

HRSP8’s effects appear to involve GABA receptor modulation and neurochemical balance restoration, with additional antioxidant support. Its safety margin and stable receptor binding indicate therapeutic promise. These results align with existing GABAergic strategies in epilepsy. Further validation in chronic models and pharmacokinetic studies is needed.

Conclusion

HRSP8 demonstrated notable anticonvulsant and antioxidant activities, a wide safety margin, and strong affinity for the GABA receptor. These findings support its potential as a lead compound for further preclinical evaluation in epilepsy therapy.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273368721251029081903
2026-01-08
2026-02-03
Loading full text...

Full text loading...

References

  1. Devinsky O. Vezzani A. O’Brien T.J. Epilepsy. Nat. Rev. Dis. Primers 2018 4 1 18024 10.1038/nrdp.2018.24 29722352
    [Google Scholar]
  2. Sánchez J.D. Gómez-Carpintero J. González J.F. Menéndez J.C. Twenty-first century antiepileptic drugs. An overview of their targets and synthetic approaches. Eur. J. Med. Chem. 2024 272 116476 10.1016/j.ejmech.2024.116476 38759456
    [Google Scholar]
  3. McMoneagle E. Zhou J. Zhang S. Neuronal K +-Cl-cotransporter KCC2 as a promising drug target for epilepsy treatment. Acta Pharmacol. Sin. 2024 45 1 1 10.1038/s41401‑023‑01149‑9
    [Google Scholar]
  4. Ghit A. Assal D. Al-Shami A.S. Hussein D.E.E. GABAA receptors: structure, function, pharmacology, and related disorders. J. Genet. Eng. Biotechnol. 2021 19 1 123 10.1186/s43141‑021‑00224‑0 34417930
    [Google Scholar]
  5. Wang Y. Zhang Y. Li W. GABAA receptor π forms channels that stimulate ERK through a G-protein-dependent pathway. Mol. Cell 2025 85 1 166 176.e5 10.1016/j.molcel.2024.11.016 39642883
    [Google Scholar]
  6. Nawafleh S. Qaswal A.B. Suleiman A. GABA receptors can depolarize the neuronal membrane potential via quantum tunneling of chloride ions: A Quantum mathematical study. Cells 2022 11 7 1145 10.3390/cells11071145 35406709
    [Google Scholar]
  7. Sigel E. Ernst M. The Benzodiazepine Binding Sites of GABAA Receptors. Trends Pharmacol. Sci. 2018 39 7 659 671 10.1016/j.tips.2018.03.006 29716746
    [Google Scholar]
  8. Mallappa Chahar M. Recent advances in the synthesis of nitrogen-containing heterocyclic compounds via multicomponent reaction and their emerging biological applications: A review. J. Indian Chem. Soc. 2024 22 1 33
    [Google Scholar]
  9. Kabir E. Uzzaman M. A review on biological and medicinal impact of heterocyclic compounds. Results in Chemistry 2022 4 100606 10.1016/j.rechem.2022.100606
    [Google Scholar]
  10. Al-Adiwish W.M. Tahir M.I.M. Siti-Noor-Adnalizawati A. Hashim S.F. Ibrahim N. Yaacob W.A. Synthesis, antibacterial activity and cytotoxicity of new fused pyrazolo[1,5-a]pyrimidine and pyrazolo[5,1-c][1,2,4]triazine derivatives from new 5-aminopyrazoles. Eur. J. Med. Chem. 2013 64 464 476 10.1016/j.ejmech.2013.04.029 23669354
    [Google Scholar]
  11. El-Shehry M.F. El-Hag F.A.A. Ewies E.F. Synthesis and antimicrobial study of new fused thiazolo[3,2-b]triazine, Triazolo[4,3-b]triazine, and 1,2,4-triazinone derivatives. Russ. J. Org. Chem. 2020 56 1 129 136 10.1134/S1070428020010200
    [Google Scholar]
  12. Kumar H. Aggarwal N. Marwaha M.G. Thiazolidin-2,4-Dione Scaffold: An insight into recent advances as antimicrobial, antioxidant, and hypoglycemic agents. Molecules 2022 27 19 6763 10.3390/molecules27196763 36235304
    [Google Scholar]
  13. Singh H. Pathak D. Unveiling the anti-convulsant potential of novel series of 1,2,4-Triazine- 6H-Indolo[2,3-b]quinoline derivatives: In silico molecular docking, ADMET, DFT, and molecular dynamics exploration. Curr Comput Aided Drug Des 2024 20 6 822 10.2174/1573409920666230817144710
    [Google Scholar]
  14. Jha M. Alam O. Naim M.J. Recent advancement in the discovery and development of anti-epileptic biomolecules: An insight into structure activity relationship and Docking. Eur. J. Pharm. Sci. 2020 153 105494 10.1016/j.ejps.2020.105494 32730845
    [Google Scholar]
  15. De Oliveira M.C.V.A. Viana D.C.F. Silva A.A. Synthesis of novel thiazolidinic-phthalimide derivatives evaluated as new multi-target antiepileptic agents. Bioorg. Chem. 2021 ••• 105548 10.1016/j.bioorg.2021.105548 34959174
    [Google Scholar]
  16. Pal R. Jawaid Akhtar M. Raj K. Design, synthesis and evaluation of piperazine clubbed 1,2,4-triazine derivatives as potent anticonvulsant agents. J. Mol. Struct. 2022 1257 132587 10.1016/j.molstruc.2022.132587
    [Google Scholar]
  17. Hanafy N.S. Aziz N.A.A.M. El-Hddad S.S.A. Design, synthesis, and docking of novel thiazolidine‐2,4‐dione multitarget scaffold as new approach for cancer treatment. Arch. Pharm. (Weinheim) 2023 356 7 2300137 10.1002/ardp.202300137 37147779
    [Google Scholar]
  18. Moussaoui M Baammi S Soufi H QSAR, ADMET, molecular docking, and dynamics studies of 1,2,4-triazine-3(2H)-one derivatives as tubulin inhibitors for breast cancer therapy Sci Rep 2024 14 1 16418 10.1038/s41598‑024‑66877‑2
    [Google Scholar]
  19. Vasincu I.M. Apotrosoaei M. Constantin S. New ibuprofen derivatives with thiazolidine-4-one scaffold with improved pharmaco-toxicological profile. BMC Pharmacol. Toxicol. 2021 22 1 10 10.1186/s40360‑021‑00475‑0 33541432
    [Google Scholar]
  20. Ghanim A.M. Rezq S. Ibrahim T.S. Romero D.G. Kothayer H. Novel 1,2,4-triazine-quinoline hybrids: The privileged scaffolds as potent multi-target inhibitors of LPS-induced inflammatory response via dual COX-2 and 15-LOX inhibition. Eur. J. Med. Chem. 2021 219 113457 10.1016/j.ejmech.2021.113457 33892270
    [Google Scholar]
  21. Rozbicki P. Oğuz E. Wolińska E. Türkan F. Cetin A. Branowska D. Synthesis and examination of 1,2,4‐triazine‐sulfonamide hybrids as potential inhibitory drugs: Inhibition effects on AChE and GST enzymes in silico and in vitro conditions. Arch. Pharm. (Weinheim) 2024 357 9 2400182 10.1002/ardp.202400182 38771105
    [Google Scholar]
  22. Verma A.K. Majid A. Hossain M.S. Identification of 1, 2, 4-Triazine and its derivatives against lanosterol 14-demethylase (CYP51) property of Candida albicans: influence on the development of new antifungal therapeutic strategies. Front Med Technol 2022 4 845322 10.3389/fmedt.2022.845322 35419560
    [Google Scholar]
  23. Manaithiya A. Alam O. Sharma V. Javed Naim M. Mittal S. Khan I.A. GPR119 agonists: Novel therapeutic agents for type 2 diabetes mellitus. Bioorg. Chem. 2021 113 104998 10.1016/j.bioorg.2021.104998 34048996
    [Google Scholar]
  24. Pal R. Kumar B. Swamy P.M.G. Chawla P.A. Design, synthesis of 1,2,4-triazine derivatives as antidepressant and antioxidant agents: In vitro, in vivo and in silico studies. Bioorg. Chem. 2023 131 106284 10.1016/j.bioorg.2022.106284 36444791
    [Google Scholar]
  25. Kandile N.G. Mohamed M.I. Ismaeel H.M. Synthesis of new Schiff bases bearing 1,2,4-triazole, thiazolidine and chloroazetidine moieties and their pharmacological evaluation. J. Enzyme Inhib. Med. Chem. 2017 32 1 119 129 10.1080/14756366.2016.1238365 27766903
    [Google Scholar]
  26. Feng Y.Y. Dong C.E. Li R. Design, synthesis and biological evaluation of quinoline-1,2,4-triazine hybrids as antimalarial agents. J. Mol. Struct. 2023 1271 133982 10.1016/j.molstruc.2022.133982
    [Google Scholar]
  27. Mondal J Sivaramakrishna A. Functionalized Triazines and Tetrazines: Synthesis and applications Top Curr Chem 2022 380 34 10.1007/s41061‑022‑00385‑7
    [Google Scholar]
  28. Alhamzani A.G. Yousef T.A. Abou-Krisha M.M. Design, synthesis, molecular docking and pharmacological evaluation of novel triazine-based triazole derivatives as potential anticonvulsant agents. Bioorg. Med. Chem. Lett. 2022 77 129042 10.1016/j.bmcl.2022.129042 36332884
    [Google Scholar]
  29. Kumar R. Singh T. Singh H. Jain S. Roy R.K. Design, synthesis and anticonvulsant activity of some new 6,8-halo-substituted-2h-[1,2,4]triazino[5,6-b]indole-3(5h)-one/-thione and 6,8-halo-substituted 5-methyl-2h-[1,2,4]triazino[5,6-b]indol-3(5h)-one/-thione. EXCLI J. 2014 13 225 240 26417257
    [Google Scholar]
  30. Costa B. Vale N. Understanding Lamotrigine’s role in the CNS and possible future evolution. Int. J. Mol. Sci. 2023 24 7 6050 10.3390/ijms24076050 37047022
    [Google Scholar]
  31. Perucca E. Bialer M. White H.S. New GABA-targeting therapies for the treatment of seizures and epilepsy: I. Role of GABA as a modulator of seizure activity and recently approved medications acting on the GABA system. CNS Drugs 2023 37 9 755 779 10.1007/s40263‑023‑01027‑2 37603262
    [Google Scholar]
  32. Brigo F. Lattanzi S. Anticonvulsant agents: Benzodiazepines (Clobazam, Clonazepam, Diazepam, Lorazepam, Midazolam). NeuroPsychopharmacotherapy. Cham Springer 2021 1 8 10.1007/978‑3‑319‑56015‑1_440‑1
    [Google Scholar]
  33. Nicholson M.W. Sweeney A. Pekle E. Diazepam-induced loss of inhibitory synapses mediated by PLCδ/Ca2+/calcineurin signalling downstream of GABAA receptors. Mol. Psychiatry 2018 23 9 1851 1867 10.1038/s41380‑018‑0100‑y 29904150
    [Google Scholar]
  34. Olsen R.W. Wallner M. Rogawski M.A. GABAA Receptors, Seizures, and Epilepsy. Jasper’s Basic Mechanisms of the Epilepsies. Oxford University Press 2024 1025 1046
    [Google Scholar]
  35. Grunze A. Amann B.L. Grunze H. Efficacy of carbamazepine and its derivatives in the treatment of bipolar disorder. Medicina (Kaunas) 2021 57 5 433 10.3390/medicina57050433 33946323
    [Google Scholar]
  36. Aledo-Serrano A. Gil-Nagel A. Anticonvulsant agents: Carbamazepine, oxcarbazepine, and eslicarbazepine acetate. NeuroPsychopharmacotherapy. Springer 2020 1 8 10.1007/978‑3‑319‑56015‑1_294‑1
    [Google Scholar]
  37. Sills G.J. Rogawski M.A. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology 2020 168 107966 10.1016/j.neuropharm.2020.107966 32120063
    [Google Scholar]
  38. Chen T.S. Huang T.H. Lai M.C. Huang C.W. The role of glutamate receptors in epilepsy. Biomedicines 2023 11 3 783 10.3390/biomedicines11030783 36979762
    [Google Scholar]
  39. Irannejad H. Nadri H. Naderi N. Anticonvulsant activity of 1,2,4-triazine derivatives with pyridyl side chain: synthesis, biological, and computational study. Med. Chem. Res. 2015 24 6 2505 2513 10.1007/s00044‑014‑1315‑3
    [Google Scholar]
  40. Kumar R.R. Sahu B. Pathania S. Singh P.K. Akhtar M.J. Kumar B. Piperazine, a key substructure for antidepressants: Its role in developments and structure‐activity relationships. ChemMedChem 2021 16 12 1878 1901 10.1002/cmdc.202100045 33751807
    [Google Scholar]
  41. Fontanilla C.V. Gu H. Liu Q. Adipose-derived stem cell conditioned media extends survival time of a mouse model of amyotrophic lateral sclerosis. Sci. Rep. 2015 5 1 16953 10.1038/srep16953 26586020
    [Google Scholar]
  42. Ahuja P. Siddiqui N. Anticonvulsant evaluation of clubbed indole-1,2,4-triazine derivatives: A synthetic approach. Eur. J. Med. Chem. 2014 80 509 522 10.1016/j.ejmech.2014.04.043 24813879
    [Google Scholar]
  43. Deng X.Q. Song M.X. Wang S.B. Quan Z.S. Synthesis and evaluation of the anticonvulsant activity of 8-alkoxy-4,5-dihydrobenzo[ b][1,2,4]triazolo[4,3- d][1,4]thiazepine derivatives. J. Enzyme Inhib. Med. Chem. 2014 29 2 272 280 10.3109/14756366.2013.776555 23477412
    [Google Scholar]
  44. Anthwal T. Nain S. 1,3,4-Thiadiazole scaffold: As anti-epileptic agents. Front Chem. 2022 9 671212 10.3389/fchem.2021.671212 35127639
    [Google Scholar]
  45. Siddiqui N. Arshad M.F. Khan S.A. Ahsan W. Sulfonamide derivatives of thiazolidin-4-ones with anticonvulsant activity against two seizure models: synthesis and pharmacological evaluation. J. Enzyme Inhib. Med. Chem. 2010 25 4 485 491 10.3109/14756360903282833 20233086
    [Google Scholar]
  46. Patil R. Das S. Stanley A. Yadav L. Sudhakar A. Varma A.K. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PLoS One 2010 5 8 e12029 10.1371/journal.pone.0012029 20808434
    [Google Scholar]
  47. Siddiqui N. Pandeya S.N. Khan S.A. Synthesis and anticonvulsant activity of sulfonamide derivatives-hydrophobic domain. Bioorg. Med. Chem. Lett. 2007 17 1 255 259 10.1016/j.bmcl.2006.09.053 17046248
    [Google Scholar]
  48. Singh H. Manaithiya A. Pathak D. Shakeel F. Exploring GABAA receptor modulation through integrated synthesis, bioactivity, and computational approach of 1,2,4-triazine derivatives. J. Mol. Struct. 2025 1325 140924 10.1016/j.molstruc.2024.140924
    [Google Scholar]
  49. Socała K. Wlaź P. Acute seizure tests used in epilepsy research: Step-by-Step protocol of the maximal electroshock seizure (MES) Test, the maximal electroshock seizure Threshold (MEST) Test, and the Pentylenetetrazole (PTZ)-Induced Seizure test in rodents. Neuromethods 2021 167 79 102 10.1007/978‑1‑0716‑1254‑5_5
    [Google Scholar]
  50. White H.S. Johnson M. Wolf H.H. Kupferberg H.J. The early identification of anticonvulsant activity: Role of the maximal electroshock and subcutaneous pentylenetetrazol seizure models. Ital. J. Neurol. Sci. 1995 16 1-2 73 77 10.1007/BF02229077 7642355
    [Google Scholar]
  51. Abram M. Rapacz A. Latacz G. Asymmetric synthesis and in vivo/in vitro characterization of new hybrid anticonvulsants derived from (2,5-dioxopyrrolidin-1-yl)phenylacetamides. Bioorg. Chem. 2021 109 104751 10.1016/j.bioorg.2021.104751 33647745
    [Google Scholar]
  52. Munteanu I.G. Apetrei C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021 22 7 3380 10.3390/ijms22073380 33806141
    [Google Scholar]
  53. Shahidi F. Zhong Y. Measurement of antioxidant activity. J. Funct. Foods 2015 18 757 781 10.1016/j.jff.2015.01.047
    [Google Scholar]
  54. Benzie IFF Devaki M Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration Methods Enzymol 2017 299 15 27 10.1016/s0076‑6879(99)99005‑5
    [Google Scholar]
  55. Rogério da Silva Moraes E. Santos-Silva M. Grisólia A.A. High performance liquid chromatography-based method to analyze activity of GABA transporters in central nervous system. Neurochem. Int. 2022 158 105359 10.1016/j.neuint.2022.105359 35569701
    [Google Scholar]
  56. Al-Amin M.M. Chowdury M.I.A. Saifullah A.R.M. Levocarnitine improves AlCl3-induced spatial working memory impairment in Swiss albino Mice. Front. Neurosci. 2019 13 278 10.3389/fnins.2019.00278 30971884
    [Google Scholar]
  57. Mavrevski R Traykov M Approaches to modeling of biological experimental data with GraphPad Prism software. Wseas Trans System Cont 2018 30
    [Google Scholar]
  58. White N.M. Balasubramaniam T. Nayak R. Barnett A.G. PLoS One 2022 17 3 e0264360 10.1371/journal.pone.0264360 35263374
    [Google Scholar]
  59. Halgren T.A. Murphy R.B. Friesner R.A. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 2004 47 7 1750 1759 10.1021/jm030644s 15027866
    [Google Scholar]
  60. Kim J.J. Gharpure A. Teng J. Shared structural mechanisms of general anaesthetics and benzodiazepines. Nature 2020 585 7824 303 10.1038/s41586‑020‑2654‑5
    [Google Scholar]
  61. C S S DK Ragunathan V Tiwari P A S P BD Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. J. Biomol. Struct. Dyn. 2022 40 2 585 611 10.1080/07391102.2020.1815584 32897178
    [Google Scholar]
  62. Elekofehinti O.O. Iwaloye O. Josiah S.S. Lawal A.O. Akinjiyan M.O. Ariyo E.O. Molecular docking studies, molecular dynamics and ADME/tox reveal therapeutic potentials of STOCK1N-69160 against papain-like protease of SARS-CoV-2. Mol. Divers. 2021 25 3 1761 1773 10.1007/s11030‑020‑10151‑w 33201386
    [Google Scholar]
  63. Jia L. Gao H. Machine Learning for In Silico ADMET Prediction. Methods Mol. Biol. 2022 2390 447 460 10.1007/978‑1‑0716‑1787‑8_20 34731482
    [Google Scholar]
  64. Friesner R.A. Murphy R.B. Repasky M.P. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 2006 49 21 6177 6196 10.1021/jm051256o 17034125
    [Google Scholar]
  65. Sherman W. Beard H.S. Farid R. Use of an induced fit receptor structure in virtual screening. Chem. Biol. Drug Des. 2006 67 1 83 84 10.1111/j.1747‑0285.2005.00327.x 16492153
    [Google Scholar]
  66. Moitessier N. Therrien E. Hanessian S. A method for induced-fit docking, scoring, and ranking of flexible ligands. Application to peptidic and pseudopeptidic β-secretase (BACE 1) inhibitors. J. Med. Chem. 2006 49 20 5885 5894 10.1021/jm050138y 17004704
    [Google Scholar]
  67. Li J. Abel R. Zhu K. Cao Y. Zhao S. Friesner R.A. The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins 2011 79 10 2794 2812 10.1002/prot.23106 21905107
    [Google Scholar]
  68. Bowers K.J. Chow E. Xu H. Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC’06 Tampa, FL, USA 11-17 November 2006 43 43 10.1109/SC.2006.54
    [Google Scholar]
  69. Aziz M. Ejaz S.A. Rehman H.M. Identification of NEK7 inhibitors: Structure based virtual screening, molecular docking, density functional theory calculations and molecular dynamics simulations. J. Biomol. Struct. Dyn. 2023 41 14 6894 6908 10.1080/07391102.2022.2113563 35983608
    [Google Scholar]
  70. Salmaso V. Moro S. Moro S. Salmaso V. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An Overview. Front. Pharmacol. 2018 9 923 10.3389/fphar.2018.00923 30186166
    [Google Scholar]
  71. Hildebrand P.W. Rose A.S. Tiemann J.K.S. Bringing molecular dynamics simulation data into view. Trends Biochem. Sci. 2019 44 11 902 913 10.1016/j.tibs.2019.06.004 31301982
    [Google Scholar]
  72. Madhavi Sastry G. Adzhigirey M. Day T. Annabhimoju R. Sherman W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 2013 27 3 221 234 10.1007/s10822‑013‑9644‑8 23579614
    [Google Scholar]
  73. Park C. Robinson F. Kim D. Park C. Robinson F. Kim D. On the choice of different water model in molecular dynamics simulations of nanopore transport phenomena. Membranes 2022 12 11 1109 10.3390/membranes12111109 36363664
    [Google Scholar]
  74. Shivakumar D. Williams J. Wu Y. Damm W. Shelley J. Sherman W. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the opls force field. J. Chem. Theory Comput. 2010 6 5 1509 1519 10.1021/ct900587b 26615687
    [Google Scholar]
  75. Kato K. Nakayoshi T. Kurimoto E. Oda A. Molecular dynamics simulations for the protein–ligand complex structures obtained by computational docking studies using implicit or explicit solvents. Chem. Phys. Lett. 2021 781 139022 10.1016/j.cplett.2021.139022
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273368721251029081903
Loading
/content/journals/cnsnddt/10.2174/0118715273368721251029081903
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test