Skip to content
2000
image of A Novel Polymorphic Form of Sodium Benzoate (Ω-NaBen): Improved Solubility, Stability, Central Nervous System Effects, and Antipsychotic Activities via D-Amino Acid Regulation

Abstract

Introduction

Sodium benzoate (NaBen), a D-amino acid oxidase inhibitor, has been demonstrated to possess antipsychotic and cognition-enhancing effects in animal models. However, the clinical findings in patients with schizophrenia and dementia are mixed and inconclusive. To further improve its therapeutic potential, a novel crystalline polymorph of NaBen (Ω-NaBen) was developed. This study evaluated the physicochemical properties and central nervous system (CNS) effects of Ω-NaBen.

Methods

The novel crystalline structure of Ω-NaBen was confirmed by thermogravimetric analysis, differential scanning calorimetry, and X-ray powder diffractometry. Water solubility test and stability test were performed to compare its physicochemical properties. The CNS exposure and D-amino acids levels in brain subregions of Ω-NaBen- and non-Ω-NaBen-treated male mice were determined with LC-MS/MS. Therapeutic effects of Ω-NaBen in the MK-801-induced mouse model were assessed by the open field test, novel object recognition test, and three-chamber social test.

Results

Our findings indicated that Ω-NaBen had a unique crystalline structure and showed better aqueous solubility and crystal stability, either with or without clozapine, compared with amorphous NaBen. Ω-NaBen also showed improved CNS exposure and induced higher levels of D-serine or/and D-alanine in the brain. In MK-801-treated mice, Ω-NaBen displayed enhanced effects in alleviating hyperactivity and stronger potency in relieving cognitive impairment. It also improved efficacy in relieving social deficit, a negative symptom model of schizophrenia.

Discussion

This study indicates that the crystalline structure critically influences the potency of bioactive compounds and may represent a rational strategy for optimizing pharmaceutical development.

Conclusion

Our study demonstrated Ω-NaBen’s promising potential as a novel CNS therapeutic due to its favorable physicochemical properties, CNS exposure, and neurochemical and behavioral effects.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273359634250626102333
2025-07-15
2025-09-29
Loading full text...

Full text loading...

References

  1. Hastrup L.H. Simonsen E. Ibsen R. Kjellberg J. Jennum P. Societal costs of schizophrenia in Denmark: A nationwide matched controlled study of patients and spouses before and after initial diagnosis. Schizophr. Bull. 2020 46 1 68 77 10.1093/schbul/sbz041 31188445
    [Google Scholar]
  2. Murphy T. Krasa H. Lavigne G. Societal costs of schizophrenia & related disorders. Alexandria, VA Schizophrenia & Psychosis Action Alliance 2021
    [Google Scholar]
  3. Huhn M. Nikolakopoulou A. Schneider-Thoma J. Comparative efficacy and tolerability of 32 oral antipsychotics for the acute treatment of adults with multi-episode schizophrenia: A systematic review and network meta-analysis. Focus Am. Psychiatr. Publ. 2020 18 4 443 455 10.1176/appi.focus.18306 33343258
    [Google Scholar]
  4. MacKenzie N.E. Kowalchuk C. Agarwal S.M. Antipsychotics, metabolic adverse effects, and cognitive function in schizophrenia. Front. Psychiatry 2018 9 622 10.3389/fpsyt.2018.00622 30568606
    [Google Scholar]
  5. Rajji T.K. Miranda D. Mulsant B.H. Cognition, function, and disability in patients with schizophrenia: A review of longitudinal studies. Can. J. Psychiatry 2014 59 1 13 17 10.1177/070674371405900104 24444319
    [Google Scholar]
  6. Goreishizadeh M. Mohagheghi A. Farhang S. Alizadeh L. Psychosocial disabilities in patients with schizophrenia. Iran. J. Public Health 2012 41 5 116 121 23113186
    [Google Scholar]
  7. Banerjee A. Larsen R.S. Philpot B.D. Paulsen O. Roles of presynaptic NMDA receptors in neurotransmission and plasticity. Trends Neurosci. 2016 39 1 26 39 10.1016/j.tins.2015.11.001 26726120
    [Google Scholar]
  8. Sanz-Clemente A. Nicoll R.A. Roche K.W. Diversity in NMDA receptor composition: Many regulators, many consequences. Neuroscientist 2013 19 1 62 75 10.1177/1073858411435129 22343826
    [Google Scholar]
  9. Nakazawa K. Sapkota K. The origin of NMDA receptor hypofunction in schizophrenia. Pharmacol. Ther. 2020 205 107426 10.1016/j.pharmthera.2019.107426 31629007
    [Google Scholar]
  10. Coyle J.T. Tsai G. Goff D. Converging evidence of NMDA receptor hypofunction in the pathophysiology of schizophrenia. Ann. N. Y. Acad. Sci. 2003 1003 1 318 327 10.1196/annals.1300.020 14684455
    [Google Scholar]
  11. Catts V.S. Lai Y.L. Weickert C.S. Weickert T.W. Catts S.V. A quantitative review of the postmortem evidence for decreased cortical N-methyl-d-aspartate receptor expression levels in schizophrenia: How can we link molecular abnormalities to mismatch negativity deficits? Biol. Psychol. 2016 116 57 67 10.1016/j.biopsycho.2015.10.013 26549579
    [Google Scholar]
  12. Beck K. Arumuham A. Veronese M. N-methyl-D-aspartate receptor availability in first-episode psychosis: A PET-MR brain imaging study. Transl. Psychiatry 2021 11 1 425 10.1038/s41398‑021‑01540‑2 34385418
    [Google Scholar]
  13. Javitt D.C. Zukin S.R. Recent advances in the phencyclidine model of schizophrenia. Am. J. Psychiatry 1991 148 10 1301 1308 10.1176/ajp.148.10.1301 1654746
    [Google Scholar]
  14. Krystal J.H. Karper L.P. Seibyl J.P. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry 1994 51 3 199 214 10.1001/archpsyc.1994.03950030035004 8122957
    [Google Scholar]
  15. Lane H.Y. Chang Y.C. Liu Y.C. Chiu C.C. Tsai G.E. Sarcosine or D-serine add-on treatment for acute exacerbation of schizophrenia: A randomized, double-blind, placebo-controlled study. Arch. Gen. Psychiatry 2005 62 11 1196 1204 10.1001/archpsyc.62.11.1196 16275807
    [Google Scholar]
  16. Lane H.Y. Lin C.H. Huang Y.J. Liao C.H. Chang Y.C. Tsai G.E. A randomized, double-blind, placebo-controlled comparison study of sarcosine (N-methylglycine) and d-serine add-on treatment for schizophrenia. Int. J. Neuropsychopharmacol. 2010 13 4 451 460 10.1017/S1461145709990939 19887019
    [Google Scholar]
  17. Goff D.C. Tsai G. Levitt J. A placebo-controlled trial of D-cycloserine added to conventional neuroleptics in patients with schizophrenia. Arch. Gen. Psychiatry 1999 56 1 21 27 10.1001/archpsyc.56.1.21 9892252
    [Google Scholar]
  18. Tsai G.E. Yang P. Chang Y.C. Chong M.Y. D-alanine added to antipsychotics for the treatment of schizophrenia. Biol. Psychiatry 2006 59 3 230 234 10.1016/j.biopsych.2005.06.032 16154544
    [Google Scholar]
  19. Tsai G. Yang P. Chung L.C. Lange N. Coyle J.T. D-serine added to antipsychotics for the treatment of schizophrenia. Biol. Psychiatry 1998 44 11 1081 1089 10.1016/S0006‑3223(98)00279‑0 9836012
    [Google Scholar]
  20. Kantrowitz J.T. Malhotra A.K. Cornblatt B. High dose D-serine in the treatment of schizophrenia. Schizophr. Res. 2010 121 1-3 125 130 10.1016/j.schres.2010.05.012 20541910
    [Google Scholar]
  21. Goff D.C. Herz L. Posever T. A six-month, placebo-controlled trial of d-cycloserine co-administered with conventional antipsychotics in schizophrenia patients. Psychopharmacology 2005 179 1 144 150 10.1007/s00213‑004‑2032‑2 15502972
    [Google Scholar]
  22. Berckel V.B. Evenblij C.N. Loon V.B.J. D-cycloserine increases positive symptoms in chronic schizophrenic patients when administered in addition to antipsychotics: A double-blind, parallel, placebo-controlled study. Neurop Pharmacol 1999 21 2 203 210 10.1016/S0893‑133X(99)00014‑7 10432468
    [Google Scholar]
  23. Amiaz R. Kent I. Rubinstein K. Sela B.A. Javitt D. Weiser M. Safety, tolerability and pharmacokinetics of open label sarcosine added on to anti-psychotic treatment in schizophrenia - preliminary study. Israel J Psych 2015 52 1 12 15 25841105
    [Google Scholar]
  24. Batshaw M.L. Hyman S.L. Coyle J.T. Effect of sodium benzoate and sodium phenylacetate on brain serotonin turnover in the ornithine transcarbamylase-deficient sparse-fur mouse. Pediatr. Res. 1988 23 4 368 374 10.1203/00006450‑198804000‑00006 3374991
    [Google Scholar]
  25. Liang C.W. Cheng H.Y. Tseng M.C.M. Effects of sodium benzoate on cognitive function in neuropsychiatric disorders: A systematic review and meta-analysis. Front. Psychiatry 2024 15 1370431 10.3389/fpsyt.2024.1370431 39315325
    [Google Scholar]
  26. Howley E. Bestwick M. Fradley R. Assessment of the target engagement and D-serine biomarker profiles of the D-amino acid oxidase inhibitors sodium benzoate and PGM030756. Neurochem. Res. 2017 42 11 3279 3288 10.1007/s11064‑017‑2367‑9 28780732
    [Google Scholar]
  27. Lin C.H. Chen P.K. Chang Y.C. Benzoate, a D-amino acid oxidase inhibitor, for the treatment of early-phase Alzheimer disease: A randomized, double-blind, placebo-controlled trial. Biol. Psychiatry 2014 75 9 678 685 10.1016/j.biopsych.2013.08.010 24074637
    [Google Scholar]
  28. Lai C.H. Lane H.Y. Tsai G.E. Clinical and cerebral volumetric effects of sodium benzoate, a D-amino acid oxidase inhibitor, in a drug-naïve patient with major depression. Biol. Psychiatry 2012 71 4 e9 e10 10.1016/j.biopsych.2011.10.034 22177737
    [Google Scholar]
  29. Lane H.Y. Lin C.H. Green M.F. Add-on treatment of benzoate for schizophrenia: A randomized, double-blind, placebo-controlled trial of D-amino acid oxidase inhibitor. JAMA Psychiatry 2013 70 12 1267 1275 10.1001/jamapsychiatry.2013.2159 24089054
    [Google Scholar]
  30. Lin C.H. Lin C.H. Chang Y.C. Sodium benzoate, a D-amino acid oxidase inhibitor, added to clozapine for the treatment of schizophrenia: A randomized, double-blind, placebo-controlled trial. Biol. Psychiatry 2018 84 6 422 432 10.1016/j.biopsych.2017.12.006 29397899
    [Google Scholar]
  31. Walczak-Nowicka Ł.J. Herbet M. Sodium benzoate—harmfulness and potential use in therapies for disorders related to the nervous system: A review. Nutrients 2022 14 7 1497 10.3390/nu14071497 35406109
    [Google Scholar]
  32. Mabunga D.F.N. Park D. Ryu O. Recapitulation of neuropsychiatric behavioral features in mice using acute low-dose MK-801 administration. Exp. Neurobiol. 2019 28 6 697 708 10.5607/en.2019.28.6.697 31902157
    [Google Scholar]
  33. Tsai G. Wang C.C. Hsieh T.L. Polymorphic forms of sodium benzoate and uses thereof. US Patent 20180111891A1 2018
    [Google Scholar]
  34. Nicoud L. Licordari F. Myerson A.S. Estimation of the solubility of metastable polymorphs: A critical review. Cryst. Growth Des. 2018 18 11 7228 7237 10.1021/acs.cgd.8b01200
    [Google Scholar]
  35. Savjani K.T. Gajjar A.K. Savjani J.K. Drug solubility: Importance and enhancement techniques. ISRN Pharm. 2012 2012 195727 10.5402/2012/195727
    [Google Scholar]
  36. Braga D. Casali L. Grepioni F. The relevance of crystal forms in the pharmaceutical field: Sword of damocles or innovation tools? Int. J. Mol. Sci. 2022 23 16 9013 10.3390/ijms23169013 36012275
    [Google Scholar]
  37. Strick C.A. Li C. Scott L. Modulation of NMDA receptor function by inhibition of d-amino acid oxidase in rodent brain. Neuropharmacology 2011 61 5-6 1001 1015 10.1016/j.neuropharm.2011.06.029 21763704
    [Google Scholar]
  38. Jagannath V. Marinova Z. Monoranu C.M. Walitza S. Grünblatt E. Expression of D-Amino Acid Oxidase (DAO/DAAO) and D-Amino Acid Oxidase Activator (DAOA/G72) during Development and Aging in the Human Post-mortem Brain. Front. Neuroanat. 2017 11 31 10.3389/fnana.2017.00031 28428746
    [Google Scholar]
  39. Lu L.P. Chang W.H. Mao Y.W. The development of a regulator of human serine racemase for n-methyl-d-aspartate function. Biomedicines 2024 12 4 853 10.3390/biomedicines12040853 38672207
    [Google Scholar]
  40. Scott J.G. Baker A. Lim C.C.W. Effect of sodium benzoate vs placebo among individuals with early psychosis: A randomized clinical trial. JAMA Netw. Open 2020 3 11 e2024335 10.1001/jamanetworkopen.2020.24335 33170261
    [Google Scholar]
  41. Miller C.K. Halbing A.A. Patisaul H.B. Meitzen J. Interactions of the estrous cycle, novelty, and light on female and male rat open field locomotor and anxiety-related behaviors. Physiol. Behav. 2021 228 113203 10.1016/j.physbeh.2020.113203 33045240
    [Google Scholar]
  42. Chari T. Griswold S. Andrews N.A. Fagiolini M. The stage of the estrus cycle is critical for interpretation of female mouse social interaction behavior. Front. Behav. Neurosci. 2020 14 113 10.3389/fnbeh.2020.00113 32714163
    [Google Scholar]
  43. Schwieler L. Linderholm K.R. Nilsson-Todd L.K. Erhardt S. Engberg G. Clozapine interacts with the glycine site of the NMDA receptor: Electrophysiological studies of dopamine neurons in the rat ventral tegmental area. Life Sci. 2008 83 5-6 170 175 10.1016/j.lfs.2008.05.014 18590745
    [Google Scholar]
  44. Zhao Y. Li Q. Niu J. Neutrophil membrane‐camouflaged polyprodrug nanomedicine for inflammation suppression in ischemic stroke therapy. Adv. Mater. 2024 36 21 2311803 10.1002/adma.202311803 38519052
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273359634250626102333
Loading
/content/journals/cnsnddt/10.2174/0118715273359634250626102333
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test