Skip to content
2000
Volume 24, Issue 5
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Neurodisease, caused by undesired substances, can lead to mental health conditions like depression, anxiety and neurocognitive problems like dementia. These substances can be referred to as contaminants that can cause damage, corruption, and infection or reduce brain functionality. Contaminants, whether conceptual or physical, have the ability to disrupt many processes. These observations motivate us to investigate contaminants and neurotoxicity collaboratively. This study investigates the link between pollutants and neuro-disease, examining transmission pathways and categorization. It also provides information on resources, causes, and challenges to minimize contamination risks. Contamination may cause various neuro-diseases, including Alzheimer's, Parkinson's, multi-system atrophy, Huntington's, autism spectrum disorder, psychiatric disorder, dementia, meningitis, encephalitis, schizophrenia, anxiety, and depression. The negative effects depend on the nature and extent of exposure. A comprehensive literature search was conducted using databases such as PubMed and Scopus, focusing on studies published till 2024. Studies were selected based on their examination of the relationship between environmental contaminants and brain health, emphasizing transmission pathways and the resulting neurological outcomes. Findings indicate that contaminants can penetrate the blood-brain barrier (BBB) nasal, gut, and auditory routes, triggering harmful neurophysiological processes. This review highlights the urgent need for increased global awareness, policy interventions, and preventive measures to mitigate the long-term impacts of environmental contaminants on brain health, particularly in emerging nations.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273338071241213101016
2025-01-13
2025-09-01
Loading full text...

Full text loading...

References

  1. World Health OrganizationBrain Health.Available from: https://www.who.int/health-topics/brain-health#tab=tab_1
    [Google Scholar]
  2. Neurological, psychiatric, and developmental disorders: Meeting the challenge in the developing world.The Magnitude of the Problem 2001. Information about Mental Illness and the Brain.Available from: https://www.ncbi.nlm.nih.gov/books/NBK20369/
  3. Biological Sciences Curriculum StudyNIH Curriculum Supplement Series. Information about Mental Illness and the Brain2007
    [Google Scholar]
  4. OwolabiM.O. LeonardiM. BassettiC. Global synergistic actions to improve brain health for human development.Nat. Rev. Neurol.202319637138310.1038/s41582‑023‑00808‑z 37208496
    [Google Scholar]
  5. FeiginV.L. VosT. NicholsE. The global burden of neurological disorders: Translating evidence into policy.Lancet Neurol.202019325526510.1016/S1474‑4422(19)30411‑9 31813850
    [Google Scholar]
  6. OlusanyaB.O. DavisA.C. WertliebD. Developmental disabilities among children younger than 5 years in 195 countries and territories, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016.Lancet Glob. Health2018610e1100e112110.1016/S2214‑109X(18)30309‑7 30172774
    [Google Scholar]
  7. RichardF.J. SouthernI. GigauriM. BelliniG. RojasO. RundeA. Warning on nine pollutants and their effects on avian communities.Glob. Ecol. Conserv.202132e0189810.1016/j.gecco.2021.e01898
    [Google Scholar]
  8. NabiM. TabassumN. Role of Environmental Toxicants on Neurodegenerative Disorders.Frontiers in Toxicology2022483757910.3389/ftox.2022.837579 35647576
    [Google Scholar]
  9. ArmasF.V. D’AngiulliA. Neuroinflammation and Neurodegeneration of the Central Nervous System from Air Pollutants: A Scoping Review.Toxics2022101166610.3390/toxics10110666 36355957
    [Google Scholar]
  10. KilianJ. KitazawaM. The emerging risk of exposure to air pollution on cognitive decline and Alzheimer’s disease – Evidence from epidemiological and animal studies.Biomed. J.201841314116210.1016/j.bj.2018.06.001 30080655
    [Google Scholar]
  11. YegambaramM. ManivannanB. BeachT. HaldenR. Role of environmental contaminants in the etiology of Alzheimer’s disease: A review.Curr. Alzheimer Res.201512211614610.2174/1567205012666150204121719 25654508
    [Google Scholar]
  12. PiccaA. CalvaniR. Coelho-JuniorH.J. LandiF. BernabeiR. MarzettiE. Mitochondrial Dysfunction, Oxidative Stress, and Neuroinflammation: Intertwined Roads to Neurodegeneration.Antioxidants20209864710.3390/antiox9080647 32707949
    [Google Scholar]
  13. ObradorE. SalvadorR. López-BlanchR. Jihad-JebbarA. VallésS.L. EstrelaJ.M. Oxidative Stress, Neuroinflammation and Mitochondria in the Pathophysiology of Amyotrophic Lateral Sclerosis.Antioxidants20209990110.3390/antiox9090901 32971909
    [Google Scholar]
  14. CannonJ.R. GreenamyreJ.T. The role of environmental exposures in neurodegeneration and neurodegenerative diseases.Toxicol. Sci.2011124222525010.1093/toxsci/kfr239 21914720
    [Google Scholar]
  15. BlockM.L. Calderón-GarcidueñasL. Air pollution: Mechanisms of neuroinflammation and CNS disease.Trends Neurosci.200932950651610.1016/j.tins.2009.05.009 19716187
    [Google Scholar]
  16. FuC. KuangD. ZhangH. RenJ. ChenJ. Different components of air pollutants and neurological disorders.Front. Public Health20221095992110.3389/fpubh.2022.959921 36518583
    [Google Scholar]
  17. GuoS. HuangJ. JiangH. Restless Legs Syndrome: From Pathophysiology to Clinical Diagnosis and Management.Front. Aging Neurosci.2017917110.3389/fnagi.2017.00171 28626420
    [Google Scholar]
  18. HaidarZ. FatemaK. ShoilyS.S. SajibA.A. Disease-associated metabolic pathways affected by heavy metals and metalloid.Toxicol. Rep.20231055457010.1016/j.toxrep.2023.04.010 37396849
    [Google Scholar]
  19. PyathaS. KimH. LeeD. KimK. Association between heavy metal exposure and parkinson’s disease: A review of the mechanisms related to oxidative stress.Antioxidants20221112246710.3390/antiox11122467 36552676
    [Google Scholar]
  20. SandersT. LiuY. BuchnerV. TchounwouP.B. Neurotoxic effects and biomarkers of lead exposure: A review.Rev. Environ. Health2009241154510.1515/REVEH.2009.24.1.15 19476290
    [Google Scholar]
  21. ReubenA. SchaeferJ.D. MoffittT.E. Association of childhood lead exposure with adult personality traits and lifelong mental health.JAMA Psychiatry201976441842510.1001/jamapsychiatry.2018.4192 30673063
    [Google Scholar]
  22. CostaL.G. ChangY.C. ColeT.B. Developmental neurotoxicity of traffic-related air pollution: Focus on autism.Curr. Environ. Health Rep.20174215616510.1007/s40572‑017‑0135‑2 28417440
    [Google Scholar]
  23. VolkH.E. LurmannF. PenfoldB. Hertz-PicciottoI. McConnellR. Traffic-related air pollution, particulate matter, and autism.JAMA Psychiatry2013701717710.1001/jamapsychiatry.2013.266 23404082
    [Google Scholar]
  24. RudolphK.E. ShevA. PaksarianD. Environmental noise and sleep and mental health outcomes in a nationally representative sample of urban US adolescents.Environ. Epidemiol.201934e05610.1097/EE9.0000000000000056 31538137
    [Google Scholar]
  25. HahadO. ProchaskaJ.H. DaiberA. MünzelT. Environmental Noise-Induced Effects on Stress Hormones, Oxidative Stress, and Vascular Dysfunction: Key Factors in the Relationship between Cerebrocardiovascular and Psychological Disorders.Oxid. Med. Cell. Longev.2019201911310.1155/2019/4623109 31814877
    [Google Scholar]
  26. KarskaJ. KowalskiS. GładkaA. Artificial light and neurodegeneration: Does light pollution impact the development of Alzheimer’s disease?Geroscience2023461879710.1007/s11357‑023‑00932‑0 37733222
    [Google Scholar]
  27. VoigtR.M. OuyangB. KeshavarzianA. Outdoor nighttime light exposure (light pollution) is associated with alzheimer’s disease.medRxiv20242024.02.14.24302831
    [Google Scholar]
  28. AcostaR. WarringtonS.J. Radiation syndrome.StatPearls.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  29. ShaoL. LuoY. ZhouD. Hematopoietic stem cell injury induced by ionizing radiation.Antioxid. Redox Signal.20142091447146210.1089/ars.2013.5635 24124731
    [Google Scholar]
  30. Le GovicY. DemeyB. CassereauJ. BahnY.S. PaponN. Pathogens infecting the central nervous system.PLoS Pathog.2022182e101023410.1371/journal.ppat.1010234 35202445
    [Google Scholar]
  31. DandoS.J. Mackay-SimA. NortonR. Pathogens penetrating the central nervous system: Infection pathways and the cellular and molecular mechanisms of invasion.Clin. Microbiol. Rev.201427469172610.1128/CMR.00118‑13 25278572
    [Google Scholar]
  32. DotiwalaA.K. McCauslandC. SamraN.S. Anatomy, head and neck: Blood brain barrier.StatPearls.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  33. DanemanR. PratA. The blood-brain barrier.Cold Spring Harb. Perspect. Biol.201571a02041210.1101/cshperspect.a020412 25561720
    [Google Scholar]
  34. Rodríguez-GómezJ.A. KavanaghE. Engskog-VlachosP. Microglia: Agents of the CNS pro-inflammatory response.Cells202097171710.3390/cells9071717 32709045
    [Google Scholar]
  35. PatharapankalE.J. AjiboyeA.L. MatternC. TrivediV. Nose-to-brain (N2B) delivery: An alternative route for the delivery of biologics in the management and treatment of central nervous system disorders.Pharmaceutics20231616610.3390/pharmaceutics16010066 38258077
    [Google Scholar]
  36. ChenY. YangW. ChenF. CuiL. COVID-19 and cognitive impairment: neuroinvasive and blood-brain barrier dysfunction.J. Neuroinflammation202219122210.1186/s12974‑022‑02579‑8 36071466
    [Google Scholar]
  37. ThangaleelaS. SivamaruthiB.S. KesikaP. BharathiM. ChaiyasutC. Nasal Microbiota, Olfactory Health, Neurological Disorders and Aging-A Review.Microorganisms2022107140510.3390/microorganisms10071405 35889124
    [Google Scholar]
  38. ReyNL WessonDW BrundinP The olfactory bulb as the entry site for prion-like propagation in neurodegenerative diseases.Neurobiol Dis2018109Pt B2264810.1016/j.nbd.2016.12.013 28011307
    [Google Scholar]
  39. LoganovskyK.N. MarazzitiD. FedirkoP.A. Radiation-Induced Cerebro-Ophthalmic Effects in Humans.Life20201044110.3390/life10040041 32316206
    [Google Scholar]
  40. ChenY. XuJ. ChenY. Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders.Nutrients2021136209910.3390/nu13062099 34205336
    [Google Scholar]
  41. GallandL. The gut microbiome and the brain.J. Med. Food201417121261127210.1089/jmf.2014.7000 25402818
    [Google Scholar]
  42. SinghS. SharmaP. PalN. Impact of environmental pollutants on gut microbiome and mental health via the gut–brain axis.Microorganisms2022107145710.3390/microorganisms10071457 35889175
    [Google Scholar]
  43. RioP. GasbarriniA. GambassiG. CianciR. Pollutants, microbiota and immune system: frenemies within the gut.Front. Public Health202412128518610.3389/fpubh.2024.1285186 38799688
    [Google Scholar]
  44. WoodbyB. SchiavoneM.L. PambianchiE. Particulate Matter Decreases Intestinal Barrier-Associated Proteins Levels in 3D Human Intestinal Model.Int. J. Environ. Res. Public Health2020179323410.3390/ijerph17093234 32384765
    [Google Scholar]
  45. Di TommasoN. GasbarriniA. PonzianiF.R. Intestinal Barrier in Human Health and Disease.Int. J. Environ. Res. Public Health202118231283610.3390/ijerph182312836 34886561
    [Google Scholar]
  46. KhanM. QuadriS. KazmiA. A comprehensive review of skull base osteomyelitis: Diagnostic and therapeutic challenges among various presentations.Asian J. Neurosurg.201813495997010.4103/ajns.AJNS_90_17 30459850
    [Google Scholar]
  47. GetanehA. AyalewG. BeleteD. JemalM. BisetS. Bacterial Etiologies of Ear Infection and Their Antimicrobial Susceptibility Pattern at the University of Gondar Comprehensive Specialized Hospital, Gondar, Northwest Ethiopia: A Six-Year Retrospective Study.Infect. Drug Resist.2021144313432210.2147/IDR.S332348 34707376
    [Google Scholar]
  48. KwakM.K. ChungJ.H. LeeS.H. ParkC.W. A case of otogenic brain abscess causing loss of consciousness.Korean J. Audiol.2014182767910.7874/kja.2014.18.2.76 25279229
    [Google Scholar]
  49. SunnychanS. DeshmukhP. GaurkarS.S. PanickerA. VijayappanA. Otogenic Brain Abscess: Judicious Management in a Case of Chronic Suppurative Otitis Media.Cureus20221410e3043010.7759/cureus.30430 36407212
    [Google Scholar]
  50. DuarteM.J. KozinE.D. BarshakM.B. Otogenic brain abscesses: A systematic review.Laryngoscope Investig. Otolaryngol.20183319820810.1002/lio2.150 30062135
    [Google Scholar]
  51. AhmadR.U. AshrafM.F. QureshiM.A. ShehryarM. TareenH.K. AshrafM.A. Chronic Suppurative Otitis Media leading to cerebellar brain abscess, still a problem in 21st century: A case report.Ann. Med. Surg. (Lond.)20228010425610.1016/j.amsu.2022.104256 36045785
    [Google Scholar]
  52. JamalA. AlsabeaA. TarakmehM. Effect of Ear Infections on Hearing Ability: A Narrative Review on the Complications of Otitis Media.Cureus2022147e2740010.7759/cureus.27400 36046317
    [Google Scholar]
  53. CarpenterK.L.H. BaranekG.T. CopelandW.E. Sensory over-responsivity: An early risk factor for anxiety and behavioral challenges in young children.J. Abnorm. Child Psychol.20194761075108810.1007/s10802‑018‑0502‑y 30569253
    [Google Scholar]
  54. JamesK.A. StrominJ.I. SteenkampN. CombrinckM.I. Understanding the relationships between physiological and psychosocial stress, cortisol and cognition.Front. Endocrinol.202314108595010.3389/fendo.2023.1085950 36950689
    [Google Scholar]
  55. Action levels for lead in food intended for babies and young children: Draft guidance for industry.2023Available from: https://www.fda.gov/media/164684/download#:~:text=10%20ppb%20for%20fruits%2C%20vegetables,ppb%20for%20dry%20infant%20cereals
  56. FDA announces action levels for lead in categories of processed baby foods.2023Available from: https://www.fda.gov/news-events/press-announcements/fda-announces-action-levels-lead-categoriesprocessed-baby-foods
  57. Copper fact sheet for consumers.2022Available from: https://ods.od.nih.gov/factsheets/Copper-Consumer/
  58. Manganese fact sheet for health professionals.2021Available from: https://ods.od.nih.gov/factsheets/Manganese-HealthProfessional/
  59. Secondary drinking water standards: Guidance for nuisance chemicals.2024Available from: https://www.epa.gov/sdwa/secondary-drinking-water-standards-guidance-nuisance-chemicals
  60. India adopts stringent norms for maximum pesticide residues limit in food items: Government.2024Available from: https://www.thehindu.com/news/national/india-adopts-stringent-norms-for-maximum-pesticide-residues-limit-in-food-items-government/article68142118.ece
  61. BrownT.P. RumsbyP.C. CapletonA.C. RushtonL. LevyL.S. Pesticides and Parkinson’s disease--is there a link?Environ. Health Perspect.2006114215616410.1289/ehp.8095 16451848
    [Google Scholar]
  62. Understanding noise exposure limits: Occupational vs. General environmental noise.2016Available from: https://blogs.cdc.gov/niosh-science-blog/2016/02/08/noise/
  63. ChepesiukR. Decibel hell: The effects of living in a noisy world.Environ. Health Perspect.20051131A34A4110.1289/ehp.113‑a34 15631958
    [Google Scholar]
  64. McAlexanderT.P. GershonR.R.M. NeitzelR.L. Street-level noise in an urban setting: Assessment and contribution to personal exposure.Environ. Health20151411810.1186/s12940‑015‑0006‑y 25888945
    [Google Scholar]
  65. AkramS. ChowdhuryY.S. Radiation exposure of medical Imaging.StatPearls.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  66. BaudinC. VacquierB. ThinG. Occupational exposure to ionizing radiation in medical staff: Trends during the 2009-2019 period in a multicentric study.Eur. Radiol.20233385675568410.1007/s00330‑023‑09541‑z 36930262
    [Google Scholar]
  67. PizzinoG. IrreraN. CucinottaM. Oxidative stress: Harms and benefits for human health.Oxid. Med. Cell. Longev.201720171841676310.1155/2017/8416763 28819546
    [Google Scholar]
  68. PhaniendraA. JestadiD.B. PeriyasamyL. Free radicals: Properties, sources, targets, and their implication in various diseases.Indian J. Clin. Biochem.2015301112610.1007/s12291‑014‑0446‑0 25646037
    [Google Scholar]
  69. Aranda-RiveraA.K. Cruz-GregorioA. Arancibia-HernándezY.L. Hernández-CruzE.Y. Pedraza-ChaverriJ. RONS and oxidative stress: An overview of basic concepts.Oxygen20222443747810.3390/oxygen2040030
    [Google Scholar]
  70. Sierra-VargasM.P. Montero-VargasJ.M. Debray-GarcíaY. Vizuet-de-RuedaJ.C. Loaeza-RománA. TeránL.M. Oxidative stress and air pollution: Its impact on chronic respiratory diseases.Int. J. Mol. Sci.202324185310.3390/ijms24010853 36614301
    [Google Scholar]
  71. LodoviciM. BigagliE. Oxidative stress and air pollution exposure.J. Toxicol.201120111910.1155/2011/487074 21860622
    [Google Scholar]
  72. JamesA.A. OShaughnessy KL. Environmental chemical exposures and mental health outcomes in children: A narrative review of recent literature.Frontiers in Toxicology20235129011910.3389/ftox.2023.1290119 38098750
    [Google Scholar]
  73. Di PietroG. ForcucciF. ChiarelliF. Endocrine disruptor chemicals and children’s health.Int. J. Mol. Sci.2023243267110.3390/ijms24032671 36768991
    [Google Scholar]
  74. ChenP. MiahM.R. AschnerM. Metals and neurodegeneration.F1000 Res.201610.12688/f1000research.7431.1
    [Google Scholar]
  75. JaishankarM. TsetenT. AnbalaganN. MathewB.B. BeeregowdaK.N. Toxicity, mechanism and health effects of some heavy metals.Interdiscip. Toxicol.201472607210.2478/intox‑2014‑0009 26109881
    [Google Scholar]
  76. NemsadzeK. SanikidzeT. RatianiL. GabuniaL. SharashenidzeT. Mechanisms of lead-induced poisoning.Georgian Med. News2009172-1739296 19644200
    [Google Scholar]
  77. Ramírez OrtegaD. González EsquivelD.F. Blanco AyalaT. Cognitive Impairment Induced by Lead Exposure during Lifespan: Mechanisms of Lead Neurotoxicity.Toxics2021922310.3390/toxics9020023 33525464
    [Google Scholar]
  78. LanphearB.P. HornungR. KhouryJ. Low-level environmental lead exposure and children’s intellectual function: An international pooled analysis.Environ. Health Perspect.2005113789489910.1289/ehp.7688 16002379
    [Google Scholar]
  79. NjatiS.Y. MagutaM.M. Lead-based paints and children’s PVC toys are potential sources of domestic lead poisoning – A review.Environ. Pollut.20192491091110510.1016/j.envpol.2019.03.062 31146315
    [Google Scholar]
  80. WilsonJ. DixonS.L. WisinskiC. Pathways and sources of lead exposure: Michigan children’s lead determination (the MI CHILD study).Environ. Res.2022215Pt 211420410.1016/j.envres.2022.114204 36075478
    [Google Scholar]
  81. KrachlerM. RossipalE. Micetic-TurkD. Trace element transfer from the mother to the newborn — Investigations on triplets of colostrum, maternal and umbilical cord sera.Eur. J. Clin. Nutr.199953648649410.1038/sj.ejcn.1600781 10403586
    [Google Scholar]
  82. AmorósR. MurciaM. GonzálezL. Maternal copper status and neuropsychological development in infants and preschool children.Int. J. Hyg. Environ. Health2019222350351210.1016/j.ijheh.2019.01.007 30713056
    [Google Scholar]
  83. Al osman M, Yang F, Massey IY. Exposure routes and health effects of heavy metals on children.Biometals201932456357310.1007/s10534‑019‑00193‑5 30941546
    [Google Scholar]
  84. Diamanti-KandarakisE. BourguignonJ.P. GiudiceL.C. Endocrine-disrupting chemicals: An Endocrine Society scientific statement.Endocr. Rev.200930429334210.1210/er.2009‑0002 19502515
    [Google Scholar]
  85. ShoaffJ.R. CalafatA.M. SchantzS.L. KorrickS.A. Endocrine disrupting chemical exposure and maladaptive behavior during adolescence.Environ. Res.201917223124110.1016/j.envres.2018.12.053 30818232
    [Google Scholar]
  86. HuangH.B. KuoP.H. SuP.H. SunC.W. ChenW.J. WangS.L. Prenatal and childhood exposure to phthalate diesters and neurobehavioral development in a 15-year follow-up birth cohort study.Environ. Res.201917256957710.1016/j.envres.2019.02.029 30875510
    [Google Scholar]
  87. HuangH.B. ChenH.Y. SuP.H. Fetal and Childhood Exposure to Phthalate Diesters and Cognitive Function in Children Up to 12 Years of Age: Taiwanese Maternal and Infant Cohort Study.PLoS One2015106e013191010.1371/journal.pone.0131910 26121592
    [Google Scholar]
  88. CostaL. GiordanoG. Developmental neurotoxicity of polybrominated diphenyl ether (PBDE) flame retardants.Neurotoxicology20072861047106710.1016/j.neuro.2007.08.007 17904639
    [Google Scholar]
  89. VuongA.M. YoltonK. DietrichK.N. BraunJ.M. LanphearB.P. ChenA. Exposure to polybrominated diphenyl ethers (PBDEs) and child behavior: Current findings and future directions.Horm. Behav.20181019410410.1016/j.yhbeh.2017.11.008 29137973
    [Google Scholar]
  90. Ben-JonathanN. SteinmetzR. Xenoestrogens: The emerging story of bisphenol a.Trends Endocrinol. Metab.19989312412810.1016/S1043‑2760(98)00029‑0 18406253
    [Google Scholar]
  91. GlügeJ. ScheringerM. CousinsI.T. An overview of the uses of per- and polyfluoroalkyl substances (PFAS).Environ. Sci. Process. Impacts202022122345237310.1039/D0EM00291G 33125022
    [Google Scholar]
  92. RobertsJ.R. KarrC.J. PaulsonJ.A. Pesticide exposure in children.Pediatrics20121306e1765e178810.1542/peds.2012‑2758 23184105
    [Google Scholar]
  93. FenskeR.A. LuC. SimcoxN.J. Strategies for assessing children’s organophosphorus pesticide exposures in agricultural communities.J. Expo. Sci. Environ. Epidemiol.200010S666267110.1038/sj.jea.7500116 11138658
    [Google Scholar]
  94. RokoffL.B. ShoaffJ.R. CoullB.A. EnlowM.B. BellingerD.C. KorrickS.A. Prenatal exposure to a mixture of organochlorines and metals and internalizing symptoms in childhood and adolescence.Environ. Res.202220811270110.1016/j.envres.2022.112701 35016863
    [Google Scholar]
  95. NasutiC. GabbianelliR. FalcioniM.L. Di StefanoA. SozioP. CantalamessaF. Dopaminergic system modulation, behavioral changes, and oxidative stress after neonatal administration of pyrethroids.Toxicology2007229319420510.1016/j.tox.2006.10.015 17140720
    [Google Scholar]
  96. RichardsonJ.R. FitsanakisV. WesterinkR.H.S. KanthasamyA.G. Neurotoxicity of pesticides.Acta Neuropathol.2019138334336210.1007/s00401‑019‑02033‑9 31197504
    [Google Scholar]
  97. Occupational hazards in health sector: Exposure to hazardous chemicals.Available from: https://www.who.int/tools/occupational-hazards-in-health-sector/exposure-to-hazardouschemicals
  98. How measuring different types of air pollutants creates a more holistic picture of air pollution.Available from: https://www.clarity.io/blog/how-measuring-different-types-of-air-pollutants-creates-a-more-holistic-picture-of-air-pollution
  99. YouR. HoY.S. ChangR.C.C. The pathogenic effects of particulate matter on neurodegeneration: A review.J. Biomed. Sci.20222911510.1186/s12929‑022‑00799‑x 35189880
    [Google Scholar]
  100. Poor air quality found to affect mental health in many ways.Available from: https://www.ox.ac.uk/news/2023-07-06-poor-air-quality-found-affect-mental-health-many-ways
  101. AlhussainiA.R. AljabriM.R. Al-HarbiZ.T. Abdulrahman AlmohammadiG. Al-HarbiT.M. BashirS. Air pollution and its adverse effects on the central nervous system.Cureus2023155e3892710.7759/cureus.38927 37313075
    [Google Scholar]
  102. Air quality, cognition, and mental health: How air pollution impacts the brain.Available from: https://www.clarity.io/blog/air-quality-cognition-and-mental-health-how-air-pollution-impacts-the-brain#:~:text=Air%20pollution%20has%20been%20linked,significant%20short%2Dterm%20cognitive%20declines
  103. World Health OrganizationAmbient (outdoor) air pollution.Available from: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
  104. MisraP. PaunikarV.M. Healthy Drinking Water as a Necessity in Developing Countries Like India: A Narrative review.Cureus20231510e4724710.7759/cureus.47247 38022361
    [Google Scholar]
  105. BondyS. CampbellA. Water Quality and Brain Function.Int. J. Environ. Res. Public Health2017151210.3390/ijerph15010002 29267198
    [Google Scholar]
  106. EdwardsM. Our sampling of 252 homes demonstrates a high lead in water risk: Flint should be failing to meet the EPAse.2015Available from: http://flintwaterstudy.org/2015/09/our-samplingof-252-homes-demonstrates-a-high-lead-in-water-risk-flint-shouldbe-failing-to-meet-the-epa-lead-and-copper-rule
    [Google Scholar]
  107. FinkelsteinY. MarkowitzM.E. RosenJ.F. Low-level lead-induced neurotoxicity in children: An update on central nervous system effects.Brain Res. Brain Res. Rev.199827216817610.1016/S0165‑0173(98)00011‑3 9622620
    [Google Scholar]
  108. CampbellA. BecariaA. LahiriD.K. SharmanK. BondyS.C. Chronic exposure to aluminum in drinking water increases inflammatory parameters selectively in the brain.J. Neurosci. Res.200475456557210.1002/jnr.10877 14743440
    [Google Scholar]
  109. BecariaA. LahiriD.K. BondyS.C. Aluminum and copper in drinking water enhance inflammatory or oxidative events specifically in the brain.J. Neuroimmunol.20061761-2162310.1016/j.jneuroim.2006.03.025 16697052
    [Google Scholar]
  110. PerlD.P. BrodyA.R. Alzheimer’s disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons.Science1980208444129729910.1126/science.7367858 7367858
    [Google Scholar]
  111. XuN. MajidiV. MarkesberyW.R. EhmannW.D. Brain aluminum in Alzheimer’s disease using an improved GFAAS method.Neurotoxicology1992134735743 1302300
    [Google Scholar]
  112. MirzaA. KingA. TroakesC. ExleyC. Aluminium in brain tissue in familial Alzheimer’s disease.J. Trace Elem. Med. Biol.201740303610.1016/j.jtemb.2016.12.001 28159219
    [Google Scholar]
  113. The chemistry of disinfectants in water: Reactions and products.In: Drinking Water and Health. Washington (DC).National Academies Press (US)1980
    [Google Scholar]
  114. 15th report on carcinogens.In: Haloacetic Acids Found as Water Disinfection Byproducts.Research Triangle Park, NCNational Toxicology Program2021
    [Google Scholar]
  115. KimH. LeeS.G. RhieJ. Dermal and neural toxicity caused by acrylamide exposure in two Korean grouting workers: A case report.Ann. Occup. Environ. Med.20172915010.1186/s40557‑017‑0207‑7 29043089
    [Google Scholar]
  116. ZhangX. XuQ. ManS. Tissue concentrations, bioaccumulation, and biomagnification of synthetic musks in freshwater fish from Taihu Lake, China.Environ. Sci. Pollut. Res. Int.201320131132210.1007/s11356‑012‑1095‑6 22855355
    [Google Scholar]
  117. Drinking-waterAvailable from: https://www.who.int/news-room/fact-sheets/detail/drinking-water
  118. Food safetyAvailable from: https://www.who.int/news-room/fact-sheets/detail/food-safety
  119. BoltonD.J. RobertsonL.J. Mental health disorders associated with foodborne pathogens.J. Food Prot.201679112005201710.4315/0362‑028X.JFP‑15‑587 28221900
    [Google Scholar]
  120. LawJ.W.F. Ab MutalibN.S. ChanK.G. LeeL.H. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations.Front. Microbiol.2015577010.3389/fmicb.2014.00770 25628612
    [Google Scholar]
  121. KabirazM.P. MajumdarP.R. MahmudM.M.C. BhowmikS. AliA. Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review.Heliyon202394e1548210.1016/j.heliyon.2023.e15482 37151686
    [Google Scholar]
  122. PriyankaB. PatilR. DwarakanathS. A review on detection methods used for foodborne pathogens.Indian J. Med. Res.2016144332733810.4103/0971‑5916.198677 28139531
    [Google Scholar]
  123. ChoiJ.R. YongK.W. ChoiJ.Y. CowieA.C. Emerging Point-of-care Technologies for Food Safety Analysis.Sensors201919481710.3390/s19040817 30781554
    [Google Scholar]
  124. LehmannJ. BossioD.A. Kögel-KnabnerI. RilligM.C. The concept and future prospects of soil health.Nat. Rev. Earth Environ.202011054455310.1038/s43017‑020‑0080‑8 33015639
    [Google Scholar]
  125. SteffanJ.J. BrevikE.C. BurgessL.C. CerdàA. The effect of soil on human health: An overview.Eur. J. Soil Sci.201869115917110.1111/ejss.12451 29430209
    [Google Scholar]
  126. ShettySS DD SH Environmental pollutants and their effects on human health.Heliyon202399e1949610.1016/j.heliyon.2023.e19496 37662771
    [Google Scholar]
  127. Soil contamination2024Available from: https://en.wikipedia.org/w/index.php?title=Soil_contamination&oldid=1243902535
  128. PriyaA.K. MuruganandamM. AliS.S. KornarosM. Clean-up of heavy metals from contaminated soil by phytoremediation: Asoach.Toxics202311542210.3390/toxics11050422 37235237
    [Google Scholar]
  129. MrozikA. Piotrowska-SegetZ. Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds.Microbiol. Res.2010165536337510.1016/j.micres.2009.08.001 19735995
    [Google Scholar]
  130. SarP. KunduS. GhoshA. SahaB. Natural surfactant mediated bioremediation approaches for contaminated soil.RSC Advances20231344305863060510.1039/D3RA05062A 37859781
    [Google Scholar]
  131. How does noise pollution affect mental health?Available from: https://www.indianahospital.in/how-does-noise-pollution-affect-mental-health/
  132. NoiseAvailable from: https://www.who.int/europe/news-room/fact-sheets/item/noise
  133. MucciN. TraversiniV. LoriniC. Urban Noise and Psychological Distress: A Systematic Review.Int. J. Environ. Res. Public Health20201718662110.3390/ijerph17186621 32932901
    [Google Scholar]
  134. MaJ. LiC. KwanM.P. ChaiY. A Multilevel Analysis of Perceived Noise Pollution, Geographic Contexts and Mental Health in Beijing.Int. J. Environ. Res. Public Health2018157147910.3390/ijerph15071479 30011780
    [Google Scholar]
  135. HalperinD. Environmental noise and sleep disturbances: A threat to health?Sleep Sci.20147420921210.1016/j.slsci.2014.11.003 26483931
    [Google Scholar]
  136. Noise pollution: More attention is needed.Lancet Reg. Health Eur.20232410057710.1016/j.lanepe.2022.100577
    [Google Scholar]
  137. TikkaC. VerbeekJ.H. KatemanE. MorataT.C. DreschlerW.A. FerriteS. Interventions to prevent occupational noise-induced hearing loss.Cochrane Libr.201720191CD00639610.1002/14651858.CD006396.pub4 28685503
    [Google Scholar]
  138. Hierarchy of noise risk control: The definitive guide.Available from: https://www.hseblog.com/hierarchy-noise-risk-control/
  139. CavallariJ.M. GarzaJ.L. DiFrancescoJ. DuganA.G. WalkerE.D. Development and application of a noise‐hazard scheme for road maintainers.Am. J. Ind. Med.202063542943410.1002/ajim.23091 31953973
    [Google Scholar]
  140. BeachE.F. CowanR. MulderJ. O’BrienI. Applying the hierarchy of hazard control to regulation of sound levels in entertainment venues.Ann. Work Expo. Health202064434234910.1093/annweh/wxaa018 32215547
    [Google Scholar]
  141. Azrin Mohd SaidM. WellunZ. Kamaliana KhamisN. Effects of noise hazards towards physiology especially heart rate performance among worker in manufacturing industry and their prevention strategies: A systematic review.Iran. J. Public Health20225181706171710.18502/ijph.v51i8.10251 36249108
    [Google Scholar]
  142. MadahanaM.C. NyandoroO.T. MoroeN.F. Engineering noise control for mines: Lessons from the world.S. Afr. J. Commun. Disord.2020672e1e510.4102/sajcd.v67i2.684 32242445
    [Google Scholar]
  143. NarangP.P. Noise control strategies for occupational safety and better working environments.Int. J. Occup. Saf. Ergon.19951431132910.1080/10803548.1995.11076329 10602570
    [Google Scholar]
  144. SalehS. WoskieS. BelloA. The use of noise dampening mats to reduce heavy-equipment noise exposures in construction.Saf. Health Work20178222623010.1016/j.shaw.2016.09.006 28593081
    [Google Scholar]
  145. ChepesiukR. Missing the dark: Health effects of light pollution.Environ. Health Perspect.20091171A20A2710.1289/ehp.117‑a20 19165374
    [Google Scholar]
  146. ShechterA QuispeKA Mizhquiri BarbechoJS SlaterC FalzonL Interventions to reduce short-wavelength ("blue") light exposureat night and their effects on sleep: A systematic review and metaanalysis.Sleep Adv202011zpaa00210.1093/sleepadvances/zpaa002
    [Google Scholar]
  147. BrownT.M. BrainardG.C. CajochenC. Recommendations for daytime, evening, and nighttime indoor light exposure to best support physiology, sleep, and wakefulness in healthy adults.PLoS Biol.2022203e300157110.1371/journal.pbio.3001571 35298459
    [Google Scholar]
  148. PhamH.T. ChuangH.L. KuoC.P. YehT.P. LiaoW.C. Electronic Device Use before Bedtime and Sleep Quality among University Students.Health care202199109110.3390/healthcare9091091 34574865
    [Google Scholar]
  149. MarkwaldR.R. IftikharI. YoungstedtS.D. Behavioral strategies, including exercise, for addressing insomnia.ACSM’s Health Fit. J.2018222232910.1249/FIT.0000000000000375 31467475
    [Google Scholar]
  150. Wikipedia contributorsRadioactive contamination. Wikipedia, The Free Encyclopedia.2024Available from: https://en.wikipedia.org/w/index.php?title=Radioactive_contamination&oldid=1234817005
  151. Drinking Water and HealthRadioactivity In Drinking Water.1977Washington (DC).: National Academies Press (US)
    [Google Scholar]
  152. FreyE.C. HummJ.L. LjungbergM. Accuracy and precision of radioactivity quantification in nuclear medicine images.Semin. Nucl. Med.201242320821810.1053/j.semnuclmed.2011.11.003 22475429
    [Google Scholar]
  153. Evaluation of Guidelines for Exposures to Technologically Enhanced Naturally Occurring Radioactive MaterialsWashington (DC).National Academies Press (US)1999
    [Google Scholar]
  154. PrăvălieR. Nuclear weapons tests and environmental consequences: A global perspective.Ambio201443672974410.1007/s13280‑014‑0491‑1 24563393
    [Google Scholar]
  155. HoshiM. The overview of neutron-induced 56Mn radioactive microparticle effects in experimental animals and related studies.J. Radiat. Res.202263Suppl. 1i1i710.1093/jrr/rrac020 35968985
    [Google Scholar]
  156. ShanG. HuangW. GeeS.J. BuchholzB.A. VogelJ.S. HammockB.D. Isotope-labeled immunoassays without radiation waste.Proc. Natl. Acad. Sci. USA20009762445244910.1073/pnas.040575997 10706612
    [Google Scholar]
  157. XoubiN. Assessment of environmental radioactive surface contamination from a hypothetical nuclear research reactor accident.Heliyon202069e0496810.1016/j.heliyon.2020.e04968 32995636
    [Google Scholar]
  158. Ionizing RadiationPart 1: X- and Gamma (γ)-Radiation, and Neutrons.Lyon, FRInternational Agency for Research on Cancer2000
    [Google Scholar]
  159. ReiszJ.A. BansalN. QianJ. ZhaoW. FurduiC.M. Effects of ionizing radiation on biological molecules--mechanisms of damage and emerging methods of detection.Antioxid. Redox Signal.201421226029210.1089/ars.2013.5489 24382094
    [Google Scholar]
  160. BaskarR. LeeK.A. YeoR. YeohK.W. Cancer and radiation therapy: Current advances and future directions.Int. J. Med. Sci.20129319319910.7150/ijms.3635 22408567
    [Google Scholar]
  161. JaffrayD.A. GospodarowiczM.K. Radiation therapy for cancer. Cancer: Disease Control Priorities.3rd edWashington, DC: The International Bank for Reconstruction and Development / The World Bank2015310.1596/978‑1‑4648‑0349‑9_ch14
    [Google Scholar]
  162. MajeedH. GuptaV. Adverse effects of radiation therapy.StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  163. BrookI. Late side effects of radiation treatment for head and neck cancer.Radiat. Oncol. J.2020382849210.3857/roj.2020.00213 33012151
    [Google Scholar]
  164. LeeY.W. ChoH.J. LeeW.H. SonntagW.E. Whole brain radiation-induced cognitive impairment: Pathophysiological mechanisms and therapeutic targets.Biomol. Ther.201220435737010.4062/biomolther.2012.20.4.357 24009822
    [Google Scholar]
  165. BarisanoG. BergamaschiS. AcharyaJ. Complications of Radiotherapy and Radiosurgery in the Brain and Spine.Neurographics20188316718710.3174/ng.1700066 35388375
    [Google Scholar]
  166. SinghV.K. SeedT.M. Pharmacological management of ionizing radiation injuries: Current and prospective agents and targeted organ systems.Expert Opin. Pharmacother.202021331733710.1080/14656566.2019.1702968 31928256
    [Google Scholar]
  167. KumarV. GoelR. ChawlaR. SilambarasanM. SharmaR. Chemical, biological, radiological, and nuclear decontamination: Recent trends and future perspective.J. Pharm. Bioallied Sci.20102322023810.4103/0975‑7406.68505 21829318
    [Google Scholar]
  168. MaH. ShenM. TongY. WangX. Radioactive wastewater treatment technologies: A review.Molecules2023284193510.3390/molecules28041935 36838922
    [Google Scholar]
  169. LochardJ. BogdevitchI. GallegoE. ICRP publication 111 - Application of the commission’s recommendations to the protection of people living in long-term contaminated areas after a nuclear accident or a radiation emergency.Ann. ICRP200939314, 7-6210.1016/j.icrp.2009.09.008 20472181
    [Google Scholar]
  170. ChenL. DengH. CuiH. Inflammatory responses and inflammation-associated diseases in organs.Oncotarget2018967204721810.18632/oncotarget.23208 29467962
    [Google Scholar]
  171. SunY. KoyamaY. ShimadaS. Inflammation From Peripheral Organs to the Brain: How Does Systemic Inflammation Cause Neuroinflammation?Front. Aging Neurosci.20221490345510.3389/fnagi.2022.903455 35783147
    [Google Scholar]
  172. QinJ. MaZ. ChenX. ShuS. Microglia activation in central nervous system disorders: A review of recent mechanistic investigations and development efforts.Front. Neurol.202314110341610.3389/fneur.2023.1103416 36959826
    [Google Scholar]
  173. SinghA. KukretiR. SasoL. KukretiS. Oxidative stress: A key modulator in neurodegenerative diseases.Molecules2019248158310.3390/molecules24081583 31013638
    [Google Scholar]
  174. Sienes BailoP. Llorente MartínE. CalmarzaP. The role of oxidative stress in neurodegenerative diseases and potential antioxidant therapies.Adv Lab Med20223434235010.1515/almed‑2022‑0111 37363428
    [Google Scholar]
  175. GuoC. SunL. ChenX. ZhangD. Oxidative stress, mitochondrial damage and neurodegenerative diseases.Neural Regen. Res.20138212003201410.3969/j.issn.1673‑5374.2013.21.009 25206509
    [Google Scholar]
  176. KowalczykP. SulejczakD. KleczkowskaP. Mitochondrial Oxidative Stress—A Causative Factor and Therapeutic Target in Many Diseases.Int. J. Mol. Sci.202122241338410.3390/ijms222413384 34948180
    [Google Scholar]
  177. BumburidiY. UtepbergenovaG. YerezhepovB. Etiology of acute meningitis and encephalitis from hospital-based surveillance in South Kazakhstan oblast, February 2017-January 2018.PLoS One2021165e025149410.1371/journal.pone.0251494 33989305
    [Google Scholar]
  178. HersiK. GonzalezF.J. KondamudiN.P. Meningitis.StatPearls.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  179. BlockN. NauclerP. WagnerP. MorfeldtE. Henriques-NormarkB. Bacterial meningitis: Aetiology, risk factors, disease trends and severe sequelae during 50 years in Sweden.J. Intern. Med.2022292235036410.1111/joim.13488 35340067
    [Google Scholar]
  180. KohilA. JemmiehS. SmattiM.K. YassineH.M. Viral meningitis: An overview.Arch. Virol.2021166233534510.1007/s00705‑020‑04891‑1 33392820
    [Google Scholar]
  181. CantuR.M. DasJ.M. Viral meningitis.StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  182. LoganS.A.E. MacMahonE. Viral meningitis.BMJ20083367634364010.1136/bmj.39409.673657.AE 18174598
    [Google Scholar]
  183. Gavito-HigueraJ. MullinsC.B. Ramos-DuranL. Olivas ChaconC.I. HakimN. PalaciosE. Fungal infections of the central nervous system: A pictorial review.J. Clin. Imaging Sci.201662410.4103/2156‑7514.184244 27403402
    [Google Scholar]
  184. TreselerC.B. SugarA.M. Fungal meningitis.Infect. Dis. Clin. North Am.19904478980810.1016/S0891‑5520(20)30377‑9 2277199
    [Google Scholar]
  185. TsaiH.C. ChenY.S. YenC.M. Human parasitic meningitis caused by Angiostrongylus cantonensis infection in Taiwan.Hawaii J. Med. Public Health2013726Suppl. 22627 23901378
    [Google Scholar]
  186. SaidS. KangM. Viral encephalitis.StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  187. YangD. LiX.J. TuD.Z. LiX.L. WeiB. Advances in viral encephalitis: Viral transmission, host immunity, and experimental animal models.Zool. Res.202344352554210.24272/j.issn.2095‑8137.2023.025 37073800
    [Google Scholar]
  188. BohmwaldK. AndradeC.A. GálvezN.M.S. MoraV.P. MuñozJ.T. KalergisA.M. The causes and long-term consequences of viral encephalitis.Front. Cell. Neurosci.20211575587510.3389/fncel.2021.755875 34916908
    [Google Scholar]
  189. Clean Air Act Amendments: U.SEnvironmental Protection Agency (EPA), Summary of the Clean Air Act.Available from: EPA.gov
  190. Air Quality StandardsAvailable from: EC.europa.eu
  191. China National Air Pollution Control Action Plan: Ministry of Environmental Protection, “National Air Pollution Control Plan.Available from: China.gov
  192. Lead and Copper Rule Revision: U.S. Environmental Protection Agency (EPA), Lead and Copper Rule Revisions.Available from: EPA.gov
  193. New drinking water directive.Available from: EC.europa.eu
  194. Regulation REACH. Understanding REACH.Available from: ECHA.europa.eu
  195. Regulation REACH. Toxic Substances Control Act: U.S. Environmental Protection Agency (EPA), TSCA Reform Legislation.Available from: EPA.gov
  196. Pesticide Management Bill 2023Available from: Agriculture.gov.in
  197. Environmental noise directive.2023Available from: EEA.europa.eu
  198. Closer to Zero: Reducing Toxic Elements in Food.Available from: FDA.gov
  199. GrandjeanP. LandriganP.J. Developmental neurotoxicity of industrial chemicals.Lancet200636895532167217810.1016/S0140‑6736(06)69665‑7 17174709
    [Google Scholar]
  200. BellingerD.C. Very low lead exposures and children’s neurodevelopment.Curr. Opin. Pediatr.200820217217710.1097/MOP.0b013e3282f4f97b 18332714
    [Google Scholar]
  201. HeusinkveldH.J. WahleT. CampbellA. Neurodegenerative and neurological disorders by small inhaled particles.Neurotoxicology2016569410610.1016/j.neuro.2016.07.007 27448464
    [Google Scholar]
  202. Prüss-UstünA. WolfJ. CorvalánC. BosR. NeiraM. Preventing disease through healthy environments: A global assessment of the burden of disease from environmental risks.World Health Organization2016
    [Google Scholar]
  203. LandriganP.J. FullerR. Environmental pollution: An enormous and invisible burden on health systems in low- and mddle-income countries.World Med. Health Policy201571510.1515/wmhps‑2015‑0037
    [Google Scholar]
  204. Childhood lead poisoningWorld Health Organization2010
    [Google Scholar]
  205. Air pollution and child health: Prescribing clean airWorld Health Organization2018
    [Google Scholar]
  206. GuxensM. SunyerJ. A review of epidemiological studies on neuropsychological effects of air pollution.Swiss Med. Wkly.2012143102w1332210.57187/smw.2012.13322 22252905
    [Google Scholar]
  207. ZhangH. CuiY. DongR. Vitamin D is associated with blood lead exposure through bone turnover in type 2 diabetes patients.Endocr. Connect.202110437838610.1530/EC‑21‑0006 33666568
    [Google Scholar]
  208. NeedlemanH. Lead poisoning.Annu. Rev. Med.200455120922210.1146/annurev.med.55.091902.103653 14746518
    [Google Scholar]
  209. GrandjeanP. LandriganP.J. Neurobehavioural effects of developmental toxicity.Lancet Neurol.201413333033810.1016/S1474‑4422(13)70278‑3 24556010
    [Google Scholar]
  210. GoreA.C. KrishnanK. ReillyM.P. Endocrine-disrupting chemicals: Effects on neuroendocrine systems and the neurobiology of social behavior.Horm. Behav.201911172210.1016/j.yhbeh.2018.11.006 30476496
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273338071241213101016
Loading
/content/journals/cnsnddt/10.2174/0118715273338071241213101016
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test