Skip to content
2000
image of The Role of Glial Cells in Autism Spectrum Disorder: Molecular Mechanisms and Therapeutic Approaches

Abstract

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by social communication deficits and repetitive behaviors. Emerging evidence highlights the significant role of glial cells, particularly astrocytes and microglia, in the pathophysiology of ASD. Glial cells are crucial for maintaining homeostasis, modulating synaptic function, and responding to neural injury. Dysregulation of glial cell functions, including altered cytokine production, impaired synaptic pruning, and disrupted neuroinflammatory responses, has been implicated in ASD. Molecular mechanisms underlying these disruptions involve aberrant signaling pathways, such as the mTOR pathway, and epigenetic modifications, leading to altered gene expression profiles in glial cells. Moreover, microglial activation and reactive astrocytosis contribute to an inflammatory environment that exacerbates neural circuit abnormalities. Understanding these molecular mechanisms opens avenues for therapeutic interventions. Current therapeutic approaches targeting glial cell dysfunction include anti-inflammatory agents, modulators of synaptic function, and cell-based therapies. Minocycline and ibudilast have shown potential for modulating microglial activity and reducing neuroinflammation. Additionally, advancements in gene editing and stem cell therapy hold promise for restoring normal glial function. This abstract underscores the importance of glial cells in ASD. It highlights the need for further research to elucidate the complex interactions between glial dysfunction and ASD pathogenesis, aiming to develop targeted therapies that can ameliorate the clinical manifestations of ASD.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273337007241115102118
2025-01-03
2025-09-17
Loading full text...

Full text loading...

References

  1. Beopoulos A. Géa M. Fasano A. Iris F. Autism spectrum disorders pathogenesis: Toward a comprehensive model based on neuroanatomic and neurodevelopment considerations. Front. Neurosci. 2022 16 988735 10.3389/fnins.2022.988735 36408388
    [Google Scholar]
  2. Elçi̇ M.E. Usta M.B. Karabeki̇roğlu K. Role of Glia Cells in Autism Spectrum Disorders. Psikiyatr. Guncel Yaklasimlar 2023 15 4 577 588 10.18863/pgy.1189139
    [Google Scholar]
  3. Erlangsen A. Stenager E. Conwell Y. Andersen P.K. Hawton K. Benros M.E. Nordentoft M. Stenager E. Association between neurological disorders and death by suicide in Denmark. JAMA 2020 323 5 444 454 10.1001/jama.2019.21834 32016308
    [Google Scholar]
  4. Uddin M.J. Russo D. Rahman M.M. Uddin S.B. Halim M.A. Zidorn C. Milella L. Anticholinesterase activity of eight medicinal plant species: in vitro and in silico studies in the search for therapeutic agents against Alzheimer’s disease. Evid. Based Complement. Alternat. Med. 2021 2021 1 1 14 10.1155/2021/9995614 34257698
    [Google Scholar]
  5. Hirota T. King B.H. Autism spectrum disorder. JAMA 2023 329 2 157 168 10.1001/jama.2022.23661 36625807
    [Google Scholar]
  6. Zeidán-Chuliá F. Salmina A.B. Malinovskaya N.A. Noda M. Verkhratsky A. Moreira J.C.F. The glial perspective of autism spectrum disorders. Neurosci. Biobehav. Rev. 2014 38 160 172 10.1016/j.neubiorev.2013.11.008 24300694
    [Google Scholar]
  7. Aishworiya R. Valica T. Hagerman R. Restrepo B. An update on psychopharmacological treatment of autism spectrum disorder. Neurotherapeutics 2022 19 1 248 262 10.1007/s13311‑022‑01183‑1 35029811
    [Google Scholar]
  8. LeClerc S. Easley D. Pharmacological therapies for autism spectrum disorder: a review. P&T 2015 40 6 389 397 26045648
    [Google Scholar]
  9. NICHD - Eunice Kennedy Shriver National Institute of Child Health and Human Development. Medication Treatment for Autism. 2021 Available from:https://www.nichd.nih.gov/health/topics/autism/conditioninfo/treatments/medication-treatment#(accessed on 23-10-2024)
  10. Be Aware of Potentially Dangerous Products and Therapies that Claim to Treat Autism. 2019 Available from:https://www.fda.gov/consumers/consumer-updates/be-aware-potentially-dangerous-products-and-therapies-claim-treat-autism?source=govdelivery&utm_medium=email&utm_source=govdelivery(accessed on 23-10-2024)
  11. Miranda-Negrón Y. García-Arrarás J.E. Radial glia and radial glia-like cells: Their role in neurogenesis and regeneration. Front. Neurosci. 2022 16 1006037 10.3389/fnins.2022.1006037 36466166
    [Google Scholar]
  12. Benger M. Kinali M. Mazarakis N.D. Autism spectrum disorder: prospects for treatment using gene therapy. Mol. Autism 2018 9 1 39 10.1186/s13229‑018‑0222‑8 29951185
    [Google Scholar]
  13. Yenkoyan K. Ounanian Z. Mirumyan M. Hayrapetyan L. Zakaryan N. Sahakyan R. Bjørklund G. Advances in the treatment of autism spectrum disorder: Current and promising strategies. Curr. Med. Chem. 2024 31 12 1485 1511 10.2174/0109298673252910230920151332 37888815
    [Google Scholar]
  14. McCracken J.T. Anagnostou E. Arango C. Dawson G. Farchione T. Mantua V. McPartland J. Murphy D. Pandina G. VanderWeele J. Drug development for Autism Spectrum Disorder (ASD): Progress, challenges, and future directions. Eur. Neuropsychopharmacol. 2021 48 3 31 10.1016/j.euroneuro.2021.05.010 34158222
    [Google Scholar]
  15. McCarty P. Frye R.E. Early Detection and Diagnosis of Autism Spectrum Disorder: Why Is It So Difficult? Semin. Pediatr. Neurol. 2020 35 100831 10.1016/j.spen.2020.100831 32892958
    [Google Scholar]
  16. Kim Y.S. Leventhal B.L. Koh Y.J. Fombonne E. Laska E. Lim E.C. Cheon K.A. Kim S.J. Kim Y.K. Lee H. Song D.H. Grinker R.R. Prevalence of autism spectrum disorders in a total population sample. Am. J. Psychiatry 2011 168 9 904 912 10.1176/appi.ajp.2011.10101532 21558103
    [Google Scholar]
  17. Kern J.K. Geier D.A. Sykes L.K. Geier M.R. Evidence of neurodegeneration in autism spectrum disorder. Transl. Neurodegener. 2013 2 1 17 10.1186/2047‑9158‑2‑17 23925007
    [Google Scholar]
  18. Reichow B. Barton E.E. Boyd B.A. Hume K. Early intensive behavioral intervention (EIBI) for young children with autism spectrum disorders (ASD). Coch. Database. Systematic Rev. 2012 10.1002/14651858.CD009260.pub3
    [Google Scholar]
  19. Deth R. Muratore C. Benzecry J. Power-Charnitsky V.A. Waly M. How environmental and genetic factors combine to cause autism: A redox/methylation hypothesis. Neurotoxicology 2008 29 1 190 201 10.1016/j.neuro.2007.09.010 18031821
    [Google Scholar]
  20. Qiu S. Qiu Y. Li Y. Cong X. Genetics of autism spectrum disorder: an umbrella review of systematic reviews and meta-analyses. Transl. Psychiatry 2022 12 1 249 10.1038/s41398‑022‑02009‑6 35705542
    [Google Scholar]
  21. Basilico B. Morandell J. Novarino G. Molecular mechanisms for targeted ASD treatments. Curr. Opin. Genet. Dev. 2020 65 126 137 10.1016/j.gde.2020.06.004 32659636
    [Google Scholar]
  22. Fernell E. Eriksson, Gillberg C. Early diagnosis of autism and impact on prognosis: a narrative review. Clin. Epidemiol. 2013 33 Feb ••• [Internet].
    [Google Scholar]
  23. Melamed I.R. Heffron M. Testori A. Lipe K. A pilot study of high‐dose intravenous immunoglobulin 5% for autism: Impact on autism spectrum and markers of neuroinflammation. Autism Res. 2018 11 3 421 433 10.1002/aur.1906 29427532
    [Google Scholar]
  24. Wu Y. Dissing-Olesen L. MacVicar B.A. Stevens B. Microglia: Dynamic Mediators of Synapse Development and Plasticity. Trends Immunol. 2015 36 10 605 613 10.1016/j.it.2015.08.008 26431938
    [Google Scholar]
  25. Chung W.S. Allen N.J. Eroglu C. Astrocytes Control Synapse Formation, Function, and Elimination. Cold Spring Harb. Perspect. Biol. 2015 7 9 a020370 10.1101/cshperspect.a020370 25663667
    [Google Scholar]
  26. Simons M. Nave K.A. Oligodendrocytes: Myelination and Axonal Support. Cold Spring Harb. Perspect. Biol. 2016 8 1 a020479 10.1101/cshperspect.a020479 26101081
    [Google Scholar]
  27. Falk S. Götz M. Glial control of neurogenesis. Curr. Opin. Neurobiol. 2017 47 188 195 10.1016/j.conb.2017.10.025 29145015
    [Google Scholar]
  28. Rahman M.M. Islam M.R. Yamin M. Islam M.M. Sarker M.T. Meem A.F.K. Akter A. Emran T.B. Cavalu S. Sharma R. Emerging Role of Neuron-Glia in Neurological Disorders: At a Glance. Oxid. Med. Cell. Longev. 2022 2022 1 27 10.1155/2022/3201644 36046684
    [Google Scholar]
  29. von Bartheld C.S. Bahney J. Herculano-Houzel S. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. J. Comp. Neurol. 2016 524 18 3865 3895 10.1002/cne.24040 27187682
    [Google Scholar]
  30. Hartline D.K. The evolutionary origins of glia. Glia 2011 59 9 1215 1236 10.1002/glia.21149 21584869
    [Google Scholar]
  31. Verkhratsky A. Nedergaard M. Physiology of Astroglia. Physiol. Rev. 2018 98 1 239 389 10.1152/physrev.00042.2016 29351512
    [Google Scholar]
  32. Verkhratsky A. Butt A. Li B. Illes P. Zorec R. Semyanov A. Tang Y. Sofroniew M.V. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct. Target. Ther. 2023 8 1 396 10.1038/s41392‑023‑01628‑9 37828019
    [Google Scholar]
  33. Sofroniew M.V. Vinters H.V. Astrocytes: biology and pathology. Acta Neuropathol. 2010 119 1 7 35 10.1007/s00401‑009‑0619‑8 20012068
    [Google Scholar]
  34. Chiareli R.A. Carvalho G.A. Marques B.L. Mota L.S. Oliveira-Lima O.C. Gomes R.M. Birbrair A. Gomez R.S. Simão F. Klempin F. Leist M. Pinto M.C.X. The Role of Astrocytes in the Neurorepair Process. Front. Cell Dev. Biol. 2021 9 665795 10.3389/fcell.2021.665795 34113618
    [Google Scholar]
  35. Pant P. Seth P. Basic Biology of Astrocytes. The Biology of Glial Cells: Recent Advances. Singapore Springer Singapore 2022 25 43 10.1007/978‑981‑16‑8313‑8_2
    [Google Scholar]
  36. Wang Q. Kong Y. Wu D.Y. Liu J.H. Jie W. You Q.L. Huang L. Hu J. Chu H.D. Gao F. Hu N.Y. Luo Z.C. Li X.W. Li S.J. Wu Z.F. Li Y.L. Yang J.M. Gao T.M. Impaired calcium signaling in astrocytes modulates autism spectrum disorder-like behaviors in mice. Nat. Commun. 2021 12 1 3321 10.1038/s41467‑021‑23843‑0 34059669
    [Google Scholar]
  37. Allen M. Huang B.S. Notaras M.J. Lodhi A. Barrio-Alonso E. Lituma P.J. Wolujewicz P. Witztum J. Longo F. Chen M. Greening D.W. Klann E. Ross M.E. Liston C. Colak D. Astrocytes derived from ASD individuals alter behavior and destabilize neuronal activity through aberrant Ca2+ signaling. Mol. Psychiatry 2022 27 5 2470 2484 10.1038/s41380‑022‑01486‑x 35365802
    [Google Scholar]
  38. Sarkar S. Bhui U. Kumar B. Ashique S. Kumar P. Sharma H. Correlation between Cognitive Impairment and Peripheral Biomarkers - Significance of Phosphorylated Tau and Amyloid-β in Alzheimer’s Disease : A New Insight. Curr. Psychiatry Res. Rev. 2024 2024 1 25 10.2174/0126660822329981241007105405
    [Google Scholar]
  39. Gzielo K. Nikiforuk A. Astroglia in Autism Spectrum Disorder. Int. J. Mol. Sci. 2021 22 21 11544 10.3390/ijms222111544 34768975
    [Google Scholar]
  40. Yang I. Han S.J. Kaur G. Crane C. Parsa A.T. The role of microglia in central nervous system immunity and glioma immunology. J. Clin. Neurosci. 2010 17 1 6 10 10.1016/j.jocn.2009.05.006 19926287
    [Google Scholar]
  41. Andoh M. Koyama R. Microglia regulate synaptic development and plasticity. Dev. Neurobiol. 2021 81 5 568 590 10.1002/dneu.22814 33583110
    [Google Scholar]
  42. Greenhalgh A.D. David S. Bennett F.C. Immune cell regulation of glia during CNS injury and disease. Nat. Rev. Neurosci. 2020 21 3 139 152 10.1038/s41583‑020‑0263‑9 32042145
    [Google Scholar]
  43. Liao X. Yang J. Wang H. Li Y. Microglia mediated neuroinflammation in autism spectrum disorder. J. Psychiatr. Res. 2020 130 167 176 10.1016/j.jpsychires.2020.07.013 32823050
    [Google Scholar]
  44. Morgan J.T. Chana G. Pardo C.A. Achim C. Semendeferi K. Buckwalter J. Courchesne E. Everall I.P. Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol. Psychiatry 2010 68 4 368 376 10.1016/j.biopsych.2010.05.024 20674603
    [Google Scholar]
  45. Hu C. Li H. Li J. Luo X. Hao Y. Microglia: Synaptic modulator in autism spectrum disorder. Front. Psychiatry 2022 13 958661 10.3389/fpsyt.2022.958661 36465285
    [Google Scholar]
  46. Tetreault N.A. Hakeem A.Y. Jiang S. Williams B.A. Allman E. Wold B.J. Allman J.M. Microglia in the cerebral cortex in autism. J. Autism Dev. Disord. 2012 42 12 2569 2584 10.1007/s10803‑012‑1513‑0 22466688
    [Google Scholar]
  47. Gamsiz E.D. Sciarra L.N. Maguire A.M. Pescosolido M.F. van Dyck L.I. Morrow E.M. Discovery of Rare Mutations in Autism: Elucidating Neurodevelopmental Mechanisms. Neurotherapeutics 2015 12 3 553 571 10.1007/s13311‑015‑0363‑9 26105128
    [Google Scholar]
  48. Lyu J.W. Yuan B. Cheng T.L. Qiu Z.L. Zhou W.H. Reciprocal regulation of autism-related genes MeCP2 and PTEN via microRNAs. Sci. Rep. 2016 6 1 20392 10.1038/srep20392 26843422
    [Google Scholar]
  49. Emery B. Regulation of oligodendrocyte differentiation and myelination. Science 2010 330 6005 779 782 10.1126/science.1190927
    [Google Scholar]
  50. Takanezawa Y. Tanabe S. Kato D. Ozeki R. Komoda M. Suzuki T. Baba H. Muramatsu R. Microglial ASD-related genes are involved in oligodendrocyte differentiation. Sci. Rep. 2021 11 1 17825 10.1038/s41598‑021‑97257‑9 34497307
    [Google Scholar]
  51. Shen H.Y. Huang N. Reemmer J. Xiao L. Adenosine Actions on Oligodendroglia and Myelination in Autism Spectrum Disorder. Front. Cell. Neurosci. 2018 12 482 10.3389/fncel.2018.00482 30581380
    [Google Scholar]
  52. Bosch-Queralt M. Fledrich R. Stassart R.M. Schwann cell functions in peripheral nerve development and repair. Neurobiol. Dis. 2023 176 105952 10.1016/j.nbd.2022.105952 36493976
    [Google Scholar]
  53. Balakrishnan A. Belfiore L. Chu T.H. Fleming T. Midha R. Biernaskie J. Schuurmans C. Insights Into the Role and Potential of Schwann Cells for Peripheral Nerve Repair From Studies of Development and Injury. Front. Mol. Neurosci. 2021 13 608442 10.3389/fnmol.2020.608442 33568974
    [Google Scholar]
  54. Fallon M. Tadi P. Histology, Schwann Cells StatPearls Treasure island Statpearl publishing 2024
    [Google Scholar]
  55. Toscano C.V.A. Barros L. Lima A.B. Nunes T. Carvalho H.M. Gaspar J.M. Neuroinflammation in autism spectrum disorders: Exercise as a “pharmacological” tool. Neurosci. Biobehav. Rev. 2021 129 63 74 10.1016/j.neubiorev.2021.07.023 34310976
    [Google Scholar]
  56. Molofsky A.V. Krenick R. Ullian E. Tsai H hsin, Deneen B, Richardson WD, et al. Astrocytes and disease: a neurodevelopmental perspective. Genes Dev Internet 2012
  57. Vakilzadeh G. Falcone C. Dufour B. Hong T. Noctor S.C. Martínez-Cerdeño V. Decreased number and increased activation state of astrocytes in gray and white matter of the prefrontal cortex in autism. Cereb. Cortex 2022 32 21 4902 4912 10.1093/cercor/bhab523 35212358
    [Google Scholar]
  58. Matta S.M. Hill-Yardin E.L. Crack P.J. The influence of neuroinflammation in Autism Spectrum Disorder. Brain Behav. Immun. 2019 79 75 90 10.1016/j.bbi.2019.04.037 31029798
    [Google Scholar]
  59. Voineagu I. Wang X. Johnston P. Lowe J.K. Tian Y. Horvath S. Mill J. Cantor R.M. Blencowe B.J. Geschwind D.H. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 2011 474 7351 380 384 10.1038/nature10110 21614001
    [Google Scholar]
  60. Hughes H.K. Ashwood P. Ashwood P. Innate immune dysfunction and neuroinflammation in autism spectrum disorder (ASD). Brain Behav. Immun. 2023 108 245 254 10.1016/j.bbi.2022.12.001 36494048
    [Google Scholar]
  61. Luo Y. Wang Z. The Impact of Microglia on Neurodevelopment and Brain Function in Autism. Biomedicines 2024 12 1 210 10.3390/biomedicines12010210 38255315
    [Google Scholar]
  62. Ashwood P. Wills S. Van de Water J. The immune response in autism: a new frontier for autism research. J. Leukoc. Biol. 2006 80 1 1 15 10.1189/jlb.1205707 16698940
    [Google Scholar]
  63. Boulanger L.M. Immune proteins in brain development and synaptic plasticity. Neuron 2009 64 1 93 109 10.1016/j.neuron.2009.09.001 19840552
    [Google Scholar]
  64. Colonna M. Butovsky O. Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annu. Rev. Immunol. 2017 35 1 441 468 10.1146/annurev‑immunol‑051116‑052358 28226226
    [Google Scholar]
  65. Woodburn S.C. Bollinger J.L. Wohleb E.S. The semantics of microglia activation: neuroinflammation, homeostasis, and stress. J. Neuroinflammation 2021 18 1 258 10.1186/s12974‑021‑02309‑6 34742308
    [Google Scholar]
  66. Franco R. Fernández-Suárez D. Alternatively activated microglia and macrophages in the central nervous system. Prog. Neurobiol. 2015 131 65 86 10.1016/j.pneurobio.2015.05.003 26067058
    [Google Scholar]
  67. Davoli-Ferreira M. Thomson C.A. McCoy K.D. Microbiota and Microglia Interactions in ASD. Front. Immunol. 2021 12 676255 10.3389/fimmu.2021.676255 34113350
    [Google Scholar]
  68. Stipursky J. Romão L. Tortelli V. Neto V.M. Gomes F.C.A. Neuron–glia signaling: Implications for astrocyte differentiation and synapse formation. Life Sci. 2011 89 15-16 524 531 10.1016/j.lfs.2011.04.005 21569780
    [Google Scholar]
  69. Vakilzadeh G. Martinez-Cerdeño V. Pathology and Astrocytes in Autism. Neuropsychiatr. Dis. Treat. 2023 19 841 850 10.2147/NDT.S390053 37077706
    [Google Scholar]
  70. Sobczyńska-Malefora A. Delvin E. McCaddon A. Ahmadi K.R. Harrington D.J. Vitamin B 12 status in health and disease: a critical review. Diagnosis of deficiency and insufficiency – clinical and laboratory pitfalls. Crit. Rev. Clin. Lab. Sci. 2021 58 6 399 429 10.1080/10408363.2021.1885339 33881359
    [Google Scholar]
  71. Bonsi P. De Jaco A. Fasano L. Gubellini P. Postsynaptic autism spectrum disorder genes and synaptic dysfunction. Neurobiol. Dis. 2022 162 105564 10.1016/j.nbd.2021.105564 34838666
    [Google Scholar]
  72. Canitano R. Palumbi R. Excitation/Inhibition Modulators in Autism Spectrum Disorder: Current Clinical Research. Front. Neurosci. 2021 15 753274 10.3389/fnins.2021.753274 34916897
    [Google Scholar]
  73. Zoghbi H.Y. Bear M.F. Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb. Perspect. Biol. 2012 4 3 a009886 a009886 10.1101/cshperspect.a009886 22258914
    [Google Scholar]
  74. Trobiani L. Meringolo M. Diamanti T. Bourne Y. Marchot P. Martella G. Dini L. Pisani A. De Jaco A. Bonsi P. The neuroligins and the synaptic pathway in Autism Spectrum Disorder. Neurosci. Biobehav. Rev. 2020 119 37 51 10.1016/j.neubiorev.2020.09.017 32991906
    [Google Scholar]
  75. Mazina V. Gerdts J. Trinh S. Ankenman K. Ward T. Dennis M.Y. Girirajan S. Eichler E.E. Bernier R. Epigenetics of autism-related impairment: copy number variation and maternal infection. J. Dev. Behav. Pediatr. 2015 36 2 61 67 10.1097/DBP.0000000000000126 25629966
    [Google Scholar]
  76. Travers B.G. Adluru N. Ennis C. Tromp D.P.M. Destiche D. Doran S. Bigler E.D. Lange N. Lainhart J.E. Alexander A.L. Diffusion tensor imaging in autism spectrum disorder: a review. Autism Res. 2012 5 5 289 313 10.1002/aur.1243 22786754
    [Google Scholar]
  77. Gorlova A. Svirin E. Pavlov D. Cespuglio R. Proshin A. Schroeter C.A. Lesch K.P. Strekalova T. Understanding the Role of Oxidative Stress, Neuroinflammation and Abnormal Myelination in Excessive Aggression Associated with Depression: Recent Input from Mechanistic Studies. Int. J. Mol. Sci. 2023 24 2 915 10.3390/ijms24020915 36674429
    [Google Scholar]
  78. Khanbabaei M. Hughes E. Ellegood J. Qiu L.R. Yip R. Dobry J. Murari K. Lerch J.P. Rho J.M. Cheng N. Precocious myelination in a mouse model of autism. Transl. Psychiatry 2019 9 1 251 10.1038/s41398‑019‑0590‑7 31591392
    [Google Scholar]
  79. Galvez-Contreras A.Y. Zarate-Lopez D. Torres-Chavez A.L. Gonzalez-Perez O. Role of Oligodendrocytes and Myelin in the Pathophysiology of Autism Spectrum Disorder. Brain Sci. 2020 10 12 951 10.3390/brainsci10120951 33302549
    [Google Scholar]
  80. Liao X. Liu Y. Fu X. Li Y. Postmortem Studies of Neuroinflammation in Autism Spectrum Disorder: a Systematic Review. Mol. Neurobiol. 2020 57 8 3424 3438 10.1007/s12035‑020‑01976‑5 32529489
    [Google Scholar]
  81. Ameis S.H. Fan J. Rockel C. Voineskos A.N. Lobaugh N.J. Soorya L. Impaired structural connectivity of socio-emotional circuits in autism spectrum disorders: a diffusion tensor imaging study. PLoS One. 2011 6 11 e28044 10.1371/journal.pone.0028044
    [Google Scholar]
  82. Rossignol D.A. Frye R.E. Evidence linking oxidative stress, mitochondrial dysfunction, and inflammation in the brain of individuals with autism. Front. Physiol. 2014 5 150 10.3389/fphys.2014.00150 24795645
    [Google Scholar]
  83. Jivaje K. Inamdar A. Gharge S. Kagwad P. Suryawanshi S.S. Bhandurge P. Palled M.S. Japti V. A Brief Review on Evaluation and Exploration of Antioxidant Activity of Mango Ginger. International Journal of Ayurvedic Medicine 2022 13 2 321 327 10.47552/ijam.v13i2.1946
    [Google Scholar]
  84. Chauhan A. Chauhan V. Oxidative stress in autism. Pathophysiology 2006 13 3 171 181 10.1016/j.pathophys.2006.05.007 16766163
    [Google Scholar]
  85. Curpan A.S. Luca A.C. Ciobica A. Potential novel therapies for neurodevelopmental diseases targeting oxidative stress. Oxid. Med. Cell Longev. 2021 2021 6640206 10.1155/2021/6640206
    [Google Scholar]
  86. Spoorthi Shetty S. Halagali P. Johnson A.P. Spandana K.M.A. Gangadharappa H.V. Oral insulin delivery: Barriers, strategies, and formulation approaches: A comprehensive review. Int. J. Biol. Macromol. 2023 242 Pt 3 125114 10.1016/j.ijbiomac.2023.125114 37263330
    [Google Scholar]
  87. Harry G.J. Microglia during development and aging. Pharmacol. Ther. 2013 139 3 313 326 10.1016/j.pharmthera.2013.04.013 23644076
    [Google Scholar]
  88. Smith S.E.P. Li J. Garbett K. Mirnics K. Patterson P.H. Maternal immune activation alters fetal brain development through interleukin-6. J. Neurosci. 2007 27 40 10695 10702 10.1523/JNEUROSCI.2178‑07.2007 17913903
    [Google Scholar]
  89. Paolicelli R.C. Bolasco G. Pagani F. Maggi L. Scianni M. Panzanelli P. Synaptic pruning by microglia is necessary for normal brain development. Science 2011 333 6048 1456 1458 10.1126/science.1202529
    [Google Scholar]
  90. Vargas D.L. Nascimbene C. Krishnan C. Zimmerman A.W. Pardo C.A. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. 2005 57 1 67 81 10.1002/ana.20315 15546155
    [Google Scholar]
  91. Fatemi S.H. Folsom T.D. Reutiman T.J. Lee S. Expression of astrocytic markers aquaporin 4 and connexin 43 is altered in brains of subjects with autism. Synapse 2008 62 7 501 507 10.1002/syn.20519 18435417
    [Google Scholar]
  92. Cai Z. Pang Y. Xiao F. Rhodes P.G. Chronic ischemia preferentially causes white matter injury in the neonatal rat brain. Brain Res. 2001 898 1 126 135 10.1016/S0006‑8993(01)02180‑1 11292456
    [Google Scholar]
  93. Rossignol D.A. Frye R.E. A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol. Psychiatry 2012 17 4 389 401 10.1038/mp.2011.165 22143005
    [Google Scholar]
  94. DeFilippis M. Wagner K.D. Treatment of Autism Spectrum Disorder in Children and Adolescents. Psychopharmacol. Bull. 2016 46 2 18 41 [Internet]. 27738378
    [Google Scholar]
  95. Jones J.D. Potential of Glial Cell Modulators in the Management of Substance Use Disorders. CNS Drugs 2020 34 7 697 722 10.1007/s40263‑020‑00721‑9 32246400
    [Google Scholar]
  96. Mallah K. Couch C. Borucki D.M. Toutonji A. Alshareef M. Tomlinson S. Anti-inflammatory and Neuroprotective Agents in Clinical Trials for CNS Disease and Injury: Where Do We Go From Here? Front. Immunol. 2020 11 2021 10.3389/fimmu.2020.02021 33013859
    [Google Scholar]
  97. Singh S. Khanna D. Kalra S. Minocycline and Doxycycline: More Than Antibiotics. Curr. Mol. Pharmacol. 2021 14 6 1046 1065 10.2174/1874467214666210210122628 33568043
    [Google Scholar]
  98. Mattei D. Ivanov A. Ferrai C. Jordan P. Guneykaya D. Buonfiglioli A. Schaafsma W. Przanowski P. Deuther-Conrad W. Brust P. Hesse S. Patt M. Sabri O. Ross T.L. Eggen B.J.L. Boddeke E.W.G.M. Kaminska B. Beule D. Pombo A. Kettenmann H. Wolf S.A. Maternal immune activation results in complex microglial transcriptome signature in the adult offspring that is reversed by minocycline treatment. Transl. Psychiatry 2017 7 5 e1120 e1120 10.1038/tp.2017.80 28485733
    [Google Scholar]
  99. Champigny C. Morin-Parent F. Bellehumeur-Lefebvre L. Çaku A. Lepage J.F. Corbin F. Combining Lovastatin and Minocycline for the Treatment of Fragile X Syndrome: Results From the LovaMiX Clinical Trial. Front. Psychiatry 2022 12 762967 10.3389/fpsyt.2021.762967 35058813
    [Google Scholar]
  100. Luo Y. Lv K. Du Z. Zhang D. Chen M. Luo J. Wang L. Liu T. Gong H. Fan X. Minocycline improves autism-related behaviors by modulating microglia polarization in a mouse model of autism. Int. Immunopharmacol. 2023 122 110594 10.1016/j.intimp.2023.110594 37441807
    [Google Scholar]
  101. Meyza K.Z. Blanchard D.C. The BTBR mouse model of idiopathic autism – Current view on mechanisms. Neurosci. Biobehav. Rev. 2017 76 Pt A 99 110 10.1016/j.neubiorev.2016.12.037 28167097
    [Google Scholar]
  102. Villa V. Thellung S. Bajetto A. Gatta E. Robello M. Novelli F. Tasso B. Tonelli M. Florio T. Novel celecoxib analogues inhibit glial production of prostaglandin E2, nitric oxide, and oxygen radicals reverting the neuroinflammatory responses induced by misfolded prion protein fragment 90-231 or lipopolysaccharide. Pharmacol. Res. 2016 113 Pt A 500 514 10.1016/j.phrs.2016.09.010 27667770
    [Google Scholar]
  103. Arteaga-Henríquez G. Gisbert L. Ramos-Quiroga J.A. Immunoregulatory and/or Anti-inflammatory Agents for the Management of Core and Associated Symptoms in Individuals with Autism Spectrum Disorder: A Narrative Review of Randomized, Placebo-Controlled Trials. CNS Drugs 2023 37 3 215 229 10.1007/s40263‑023‑00993‑x 36913130
    [Google Scholar]
  104. Xiong Y. Chen J. Li Y. Microglia and astrocytes underlie neuroinflammation and synaptic susceptibility in autism spectrum disorder. Front. Neurosci. 2023 17 1125428 10.3389/fnins.2023.1125428 37021129
    [Google Scholar]
  105. Szabó D. Tod P. Gölöncsér F. Román V. Lendvai B. Otrokocsi L. Sperlágh B. Maternal P2X7 receptor inhibition prevents autism-like phenotype in male mouse offspring through the NLRP3-IL-1β pathway. Brain Behav. Immun. 2022 101 318 332 10.1016/j.bbi.2022.01.015 35065198
    [Google Scholar]
  106. Bhattacharya A. Recent Advances in CNS P2X7 Physiology and Pharmacology: Focus on Neuropsychiatric Disorders. Front. Pharmacol. 2018 9 30 10.3389/fphar.2018.00030 29449810
    [Google Scholar]
  107. Babiec L. Wilkaniec A. Gawinek E. Hilgier W. Adamczyk A. Inhibition of purinergic P2 receptors prevents synaptic and behavioral alterations in a rodent model of autism spectrum disorders. Res. Autism Spectr. Disord. 2024 112 102353 [Internet]. 10.1016/j.rasd.2024.102353
    [Google Scholar]
  108. Hardan A.Y. Fung L.K. Libove R.A. Obukhanych T.V. Nair S. Herzenberg L.A. Frazier T.W. Tirouvanziam R. A randomized controlled pilot trial of oral N-acetylcysteine in children with autism. Biol. Psychiatry 2012 71 11 956 961 10.1016/j.biopsych.2012.01.014 22342106
    [Google Scholar]
  109. Lucchelli J.P. Bertschy G. Low-Dose Fluoxetine in Four Children with Autistic Spectrum Disorder Improves Self-Injurious Behavior, ADHD-Like Symptoms, and Irritability. Case Rep. Psychiatry 2018 2018 1 4 10.1155/2018/6278501 30002940
    [Google Scholar]
  110. Beamer E. Gölöncsér F. Horváth G. Bekő K. Otrokocsi L. Koványi B. Sperlágh B. Purinergic mechanisms in neuroinflammation: An update from molecules to behavior. Neuropharmacology 2016 104 94 104 10.1016/j.neuropharm.2015.09.019 26384652
    [Google Scholar]
  111. Martins N. Quispe C. Kırkın C. Şenol E. Zuluğ A. Özçelik B. Paving plant-food-derived bioactives as effective therapeutic agents in autism spectrum disorder. Oxid. Med. Cell Longev. 2021 1131280
    [Google Scholar]
  112. Tamouza R. Volt F. Richard J.R. Wu C.L. Bouassida J. Boukouaci W. Lansiaux P. Cappelli B. Scigliuolo G.M. Rafii H. Kenzey C. Mezouad E. Naamoune S. Chami L. Lejuste F. Farge D. Gluckman E. Possible Effect of the use of Mesenchymal Stromal Cells in the Treatment of Autism Spectrum Disorders: A Review. Front. Cell Dev. Biol. 2022 10 809686 10.3389/fcell.2022.809686 35865626
    [Google Scholar]
  113. Siniscalco D. Kannan S. Semprún-Hernández N. Eshraghi A.A. Brigida A.L. Antonucci N. Stem cell therapy in autism: recent insights. Stem Cells Cloning Adv. Appl. 2018 11 55 67 10.2147/SCCAA.S155410
    [Google Scholar]
  114. Qu J. Liu Z. Li L. Zou Z. He Z. Zhou L. Luo Y. Zhang M. Ye J. Efficacy and Safety of Stem Cell Therapy in Children With Autism Spectrum Disorders: A Systematic Review and Meta-Analysis. Front Pediatr. 2022 10 897398 10.3389/fped.2022.897398 35601435
    [Google Scholar]
  115. Carpenter K.L.H. Major S. Tallman C. Chen L.W. Franz L. Sun J. Kurtzberg J. Song A. Dawson G. White Matter Tract Changes Associated with Clinical Improvement in an Open-Label Trial Assessing Autologous Umbilical Cord Blood for Treatment of Young Children with Autism. Stem Cells Transl. Med. 2019 8 2 138 147 10.1002/sctm.18‑0251 30620122
    [Google Scholar]
  116. Borrell B. RNA therapy restores gene function in monkeys modeling Angelman syndrome. 2023 Available from: https://www.thetransmitter.org/spectrum/rna-therapy-restores-gene-function-in-monkeys-modeling-angelman-syndrome/(accessed on 23-10-2024) 10.53053/YEMC8489
  117. Wang N. Lv L. Huang X. Shi M. Dai Y. Wei Y. Xu B. Fu C. Huang H. Shi H. Liu Y. Hu X. Qin D. Gene editing in monogenic autism spectrum disorder: animal models and gene therapies. Front. Mol. Neurosci. 2022 15 1043018 10.3389/fnmol.2022.1043018 36590912
    [Google Scholar]
  118. Ghosh A. Nadella N. Nichols A.P. Chu X.P. Gene therapy as an emerging treatment for Scn2a mutation-induced autism spectrum disorders. Fundamental Res. 2023 10.1016/j.fmre.2023.02.004
    [Google Scholar]
  119. Weuring W. Geerligs J. Koeleman B.P.C. Gene Therapies for Monogenic Autism Spectrum Disorders. Genes (Basel) 2021 12 11 1667 10.3390/genes12111667 34828273
    [Google Scholar]
  120. Stirmlinger N. Delling J.P. Pfänder S. Boeckers T.M. Elevation of SHANK3 Levels by Antisense Oligonucleotides Directed Against the 3′-UTR of the Human SHANK3 mRNA. Nucleic Acid Ther. 2023 33 1 58 71 10.1089/nat.2022.0048 36355061
    [Google Scholar]
  121. Connery K. Tippett M. Delhey L.M. Rose S. Slattery J.C. Kahler S.G. Hahn J. Kruger U. Cunningham M.W. Shimasaki C. Frye R.E. Intravenous immunoglobulin for the treatment of autoimmune encephalopathy in children with autism. Transl. Psychiatry 2018 8 1 148 10.1038/s41398‑018‑0214‑7 30097568
    [Google Scholar]
  122. Agdere S.F. Topaloglu P. Erata M. Karacetin G. Yapici Z. Immunotherapy In Autism Spectrum Disorder; A Case Series. Eur. Psychiatry 2023 66 S1 S582 S582 [Internet]. 10.1192/j.eurpsy.2023.1217
    [Google Scholar]
  123. Liu X. Lin J. Zhang H. Khan N.U. Zhang J. Tang X. Cao X. Shen L. Oxidative Stress in Autism Spectrum Disorder—Current Progress of Mechanisms and Biomarkers. Front. Psychiatry 2022 13 813304 10.3389/fpsyt.2022.813304 35299821
    [Google Scholar]
  124. James A. Halagali P. Jafar M. Sanu J. Bharadwaj R.K. Shaju B. Basheer S. Arjun H.R. Somanna P. Formulation and Evaluation of Fumaria parviflora Loaded Oil in Water Emulsion-Based Cream. Int. J. Pharm. Investig. 2024 14 2 493 503 [Internet]. 10.5530/ijpi.14.2.59
    [Google Scholar]
  125. Ghanizadeh A. Moghimi-Sarani E. A randomized double blind placebo controlled clinical trial of N-Acetylcysteine added to risperidone for treating autistic disorders. BMC Psychiatry 2013 13 1 196 10.1186/1471‑244X‑13‑196 23886027
    [Google Scholar]
  126. Nikoo M. Radnia H. Farokhnia M. Mohammadi M.R. Akhondzadeh S. N-acetylcysteine as an adjunctive therapy to risperidone for treatment of irritability in autism: a randomized, double-blind, placebo-controlled clinical trial of efficacy and safety. Clin. Neuropharmacol. 2015 38 1 11 17 10.1097/WNF.0000000000000063 25580916
    [Google Scholar]
  127. Dean O. Giorlando F. Berk M. N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action. J. Psychiatry Neurosci. 2011 36 2 78 86 10.1503/jpn.100057 21118657
    [Google Scholar]
  128. Rose S. Melnyk S. Pavliv O. Bai S. Nick T.G. Frye R.E. James S.J. Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl. Psychiatry 2012 2 7 e134 e134 10.1038/tp.2012.61 22781167
    [Google Scholar]
  129. Berk M. Malhi G.S. Gray L.J. Dean O.M. The promise of N-acetylcysteine in neuropsychiatry. Trends Pharmacol. Sci. 2013 34 3 167 177 10.1016/j.tips.2013.01.001 23369637
    [Google Scholar]
  130. Meguid N.A. Dardir A.A. Abdel-Raouf E.R. Hashish A. Evaluation of oxidative stress in autism: defective antioxidant enzymes and increased lipid peroxidation. Biol. Trace Elem. Res. 2011 143 1 58 65 10.1007/s12011‑010‑8840‑9 20845086
    [Google Scholar]
  131. Alinaghi Langari A. Nezhadi A. Kameshki H. Jorjafki S.M. Mirhosseini Y. Khaksari M. Shamsi Meymandi M. Nozari M. The protective effect of prenatally administered vitamin E on behavioral alterations in an animal model of autism induced by valproic acid. Toxin Rev. 2021 40 4 676 680 [Internet]. 10.1080/15569543.2020.1747495
    [Google Scholar]
  132. Adams J.B. Audhya T. McDonough-Means S. Rubin R.A. Quig D. Geis E. Gehn E. Loresto M. Mitchell J. Atwood S. Barnhouse S. Lee W. Effect of a vitamin/mineral supplement on children and adults with autism. BMC Pediatr. 2011 11 1 111 10.1186/1471‑2431‑11‑111 22151477
    [Google Scholar]
  133. Mankad D. Dupuis A. Smile S. Roberts W. Brian J. Lui T. Genore L. Zaghloul D. Iaboni A. Marcon P.M.A. Anagnostou E. A randomized, placebo controlled trial of omega-3 fatty acids in the treatment of young children with autism. Mol. Autism 2015 6 1 18 10.1186/s13229‑015‑0010‑7 25798215
    [Google Scholar]
  134. Bent S. Hendren R.L. Zandi T. Law K. Choi J.E. Widjaja F. Kalb L. Nestle J. Law P. Internet-based, randomized, controlled trial of omega-3 fatty acids for hyperactivity in autism. J. Am. Acad. Child Adolesc. Psychiatry 2014 53 6 658 666 10.1016/j.jaac.2014.01.018 24839884
    [Google Scholar]
  135. Doaei S. Bourbour F. Teymoori Z. Jafari F. Kalantari N. Abbas Torki S. Ashoori N. Nemat Gorgani S. Gholamalizadeh M. The effect of omega-3 fatty acids supplementation on social and behavioral disorders of children with autism: a randomized clinical trial. Pediatr. Endocrinol. Diabetes Metab. 2021 27 1 12 18 10.5114/pedm.2020.101806 33599431
    [Google Scholar]
  136. Mazahery H. Conlon C.A. Beck K.L. Mugridge O. Kruger M.C. Stonehouse W. Camargo C.A. Jr Meyer B.J. Tsang B. von Hurst P.R. Inflammation (IL-1β) Modifies the Effect of Vitamin D and Omega-3 Long Chain Polyunsaturated Fatty Acids on Core Symptoms of Autism Spectrum Disorder—An Exploratory Pilot Study. Nutrients 2020 12 3 661 10.3390/nu12030661 32121236
    [Google Scholar]
  137. Hughes A.N. Glial Cells Promote Myelin Formation and Elimination. Front. Cell Dev. Biol. 2021 9 661486 10.3389/fcell.2021.661486 34046407
    [Google Scholar]
  138. Wright C. Shin J.H. Rajpurohit A. Deep-Soboslay A. Collado-Torres L. Brandon N.J. Hyde T.M. Kleinman J.E. Jaffe A.E. Cross A.J. Weinberger D.R. Altered expression of histamine signaling genes in autism spectrum disorder. Transl. Psychiatry 2017 7 5 e1126 e1126 10.1038/tp.2017.87 28485729
    [Google Scholar]
  139. Eissa N. Jayaprakash P. Stark H. Łażewska D. Kieć-Kononowicz K. Sadek B. Simultaneous Blockade of Histamine H3 Receptors and Inhibition of Acetylcholine Esterase Alleviate Autistic-Like Behaviors in BTBR T+ tf/J Mouse Model of Autism. Biomolecules 2020 10 9 1251 10.3390/biom10091251 32872194
    [Google Scholar]
  140. Du W. Deng Y. Jiang R. Tong L. Li R. Jiang X. Clemastine Enhances Myelination, Delays Axonal Loss and Promotes Functional Recovery in Spinal Cord Injury. Neurochem. Res. 2022 47 2 503 515 10.1007/s11064‑021‑03465‑0 34661796
    [Google Scholar]
  141. Green A.J. Gelfand J.M. Cree B.A. Bevan C. Boscardin W.J. Mei F. Inman J. Arnow S. Devereux M. Abounasr A. Nobuta H. Zhu A. Friessen M. Gerona R. von Büdingen H.C. Henry R.G. Hauser S.L. Chan J.R. Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial. Lancet 2017 390 10111 2481 2489 10.1016/S0140‑6736(17)32346‑2 29029896
    [Google Scholar]
  142. Estes A. Swain D.M. MacDuffie K.E. The effects of early autism intervention on parents and family adaptive functioning. 2019 10.21037/pm.2019.05.05
    [Google Scholar]
  143. Wood J.J. Drahota A. Sze K. Har K. Chiu A. Langer D.A. Cognitive behavioral therapy for anxiety in children with autism spectrum disorders: a randomized, controlled trial. J. Child Psychol. Psychiatry 2009 50 3 224 234 10.1111/j.1469‑7610.2008.01948.x 19309326
    [Google Scholar]
  144. Casenhiser D.M. Shanker S.G. Stieben J. Learning through interaction in children with autism: Preliminary data from asocial-communication-based intervention. Autism 2013 17 2 220 241 10.1177/1362361311422052 21949005
    [Google Scholar]
  145. Kokina A. Kern L. Social Story interventions for students with autism spectrum disorders: a meta-analysis. J. Autism Dev. Disord. 2010 40 7 812 826 10.1007/s10803‑009‑0931‑0 20054628
    [Google Scholar]
  146. Mesibov G.B. Shea V. Schopler E. Adams L. Merkler E. Burgess S. The Teacch Approach to Autism Spectrum Disorders. Internet Boston, MA Springer US 2004 10.1007/978‑0‑306‑48647‑0
    [Google Scholar]
  147. Owen R. Sikich L. Marcus R.N. Corey-Lisle P. Manos G. McQuade R.D. Carson W.H. Findling R.L. Aripiprazole in the treatment of irritability in children and adolescents with autistic disorder. Pediatrics 2009 124 6 1533 1540 10.1542/peds.2008‑3782 19948625
    [Google Scholar]
  148. Scahill L. Koenig K. Carroll D.H. Pachler M. Psychopharmacology. J. Child Adolesc. Psychiatr. Nurs. 2007 20 3 188 190 10.1111/j.1744‑6171.2007.00112.x 17688557
    [Google Scholar]
  149. Lovaas O.I. Behavioral treatment and normal educational and intellectual functioning in young autistic children. J. Consult. Clin. Psychol. 1987 55 1 3 9 10.1037/0022‑006X.55.1.3 3571656
    [Google Scholar]
  150. Bent S. Bertoglio K. Ashwood P. Bostrom A. Hendren R.L. A pilot randomized controlled trial of omega-3 fatty acids for autism spectrum disorder. J. Autism Dev. Disord. 2011 41 5 545 554 10.1007/s10803‑010‑1078‑8 20683766
    [Google Scholar]
  151. Mazahery H. Stonehouse W. Delshad M. Kruger M. Conlon C. Beck K. Von Hurst P. Relationship between Long Chain n-3 Polyunsaturated Fatty Acids and Autism Spectrum Disorder: Systematic Review and Meta-Analysis of Case-Control and Randomised Controlled Trials. Nutrients 2017 9 2 155 10.3390/nu9020155 28218722
    [Google Scholar]
  152. Shaaban S.Y. El Gendy Y.G. Mehanna N.S. El-Senousy W.M. El-Feki H.S.A. Saad K. El-Asheer O.M. The role of probiotics in children with autism spectrum disorder: A prospective, open-label study. Nutr. Neurosci. 2018 21 9 676 681 10.1080/1028415X.2017.1347746 28686541
    [Google Scholar]
  153. Sanctuary M.R. Kain J.N. Chen S.Y. Kalanetra K. Lemay D.G. Rose D.R. Pilot study of probiotic/colostrum supplementation on gut function in children with autism and gastrointestinal symptoms. PLoS One 2019 14 1 e0210064
    [Google Scholar]
  154. Wink L.K. Adams R. Wang Z. Klaunig J.E. Plawecki M.H. Posey D.J. McDougle C.J. Erickson C.A. A randomized placebo-controlled pilot study of N-acetylcysteine in youth with autism spectrum disorder. Mol. Autism 2016 7 1 26 10.1186/s13229‑016‑0088‑6 27103982
    [Google Scholar]
  155. James S.J. Melnyk S. Jernigan S. Cleves M.A. Halsted C.H. Wong D.H. Cutler P. Bock K. Boris M. Bradstreet J.J. Baker S.M. Gaylor D.W. Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 2006 141B 8 947 956 10.1002/ajmg.b.30366 16917939
    [Google Scholar]
  156. Bradstreet J.J. Sych N. Antonucci N. Klunnik M. Ivankova O. Matyashchuk I. Demchuk M. Siniscalco D. Efficacy of fetal stem cell transplantation in autism spectrum disorders: an open-labeled pilot study. Cell Transplant. 2014 23 1_suppl Suppl. 1 105 112 10.3727/096368914X684916 25302490
    [Google Scholar]
  157. Monteiro P. Feng G. SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat. Rev. Neurosci. 2017 18 3 147 157 10.1038/nrn.2016.183 28179641
    [Google Scholar]
  158. Oberman L. Transcranial magnetic stimulation provides means to assess cortical plasticity and excitability in humans with fragile x syndrome and autism spectrum disorder. Front Synaptic Neurosci. 2010 2 26 10.3389/fnsyn.2010.00026
    [Google Scholar]
  159. Guastella A.J. Einfeld S.L. Gray K.M. Rinehart N.J. Tonge B.J. Lambert T.J. Hickie I.B. Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biol. Psychiatry 2010 67 7 692 694 10.1016/j.biopsych.2009.09.020 19897177
    [Google Scholar]
  160. Yatawara C.J. Einfeld S.L. Hickie I.B. Davenport T.A. Guastella A.J. The effect of oxytocin nasal spray on social interaction deficits observed in young children with autism: a randomized clinical crossover trial. Mol. Psychiatry 2016 21 9 1225 1231 10.1038/mp.2015.162 26503762
    [Google Scholar]
  161. Dawson G. Rogers S. Munson J. Smith M. Winter J. Greenson J. Donaldson A. Varley J. Randomized, controlled trial of an intervention for toddlers with autism: the Early Start Denver Model. Pediatrics 2010 125 1 e17 e23 10.1542/peds.2009‑0958 19948568
    [Google Scholar]
  162. Genovese A. Butler M.G. Clinical Assessment, Genetics, and Treatment Approaches in Autism Spectrum Disorder (ASD). Int. J. Mol. Sci. 2020 21 13 4726 10.3390/ijms21134726 32630718
    [Google Scholar]
  163. Qin L. Wang H. Ning W. Cui M. Wang Q. New advances in the diagnosis and treatment of autism spectrum disorders. Eur. J. Med. Res. 2024 29 1 322 10.1186/s40001‑024‑01916‑2 38858682
    [Google Scholar]
  164. Davico C. Secci I. Vendrametto V. Vitiello B. Pharmacological treatments in autism spectrum disorder: a narrative review. J Psychopathol. 2023 29 1–2 38 52
    [Google Scholar]
  165. Hough D. Mao A.R. Aman M. Lozano R. Smith-Hicks C. Martinez-Cerdeno V. Derby M. Rome Z. Malan N. Findling R.L. Randomized clinical trial of low dose suramin intravenous infusions for treatment of autism spectrum disorder. Ann. Gen. Psychiatry 2023 22 1 45 10.1186/s12991‑023‑00477‑8 37932739
    [Google Scholar]
  166. Sharma H. Chandra P. Pathak R. Bhandari M. Arushi S.V. Advancements in the therapeutic approaches to treat neurological disorders. Cah Magellanes-NS. 2024 6 2 4328 4389
    [Google Scholar]
  167. Chandra P. Sharma H. Phosphodiesterase inhibitors for treatment of Alzheimer’s Disease. INDIAN DRUGS 2024 61 7 7 22 10.53879/id.61.07.14382
    [Google Scholar]
  168. Pathak R. Sharma S. Bhandari M. Nogai L. Mishra R. Saxena A. Reena Km S.H. Neuroinflammation at the crossroads of metabolic and neurodegenerative diseases: Causes, consequences and interventions. J. Exp. Zool. India 2024 21 2 2447 2461 10.59467/jez.2024.27.2.2447
    [Google Scholar]
  169. Sharma H. Pathak R. Biswas D. Unveiling the Therapeutic Potential of Modern Probiotics in Addressing Neurodegenerative Disorders: A Comprehensive Exploration, Review and Future Perspectives on Intervention Strategies. Current Psychiatry Research and Reviews 2024 20 10.2174/0126660822304321240520075036
    [Google Scholar]
  170. Chandra P. Ali Z. Fatima N. Sharma H. Sachan N. Sharma K.K. Verma A. Shankhpushpi (Convolvulus pluricaulis): Exploring its Cognitive Enhancing Mechanisms and Therapeutic Potential in Neurodegenerative Disorders. Curr. Bioact. Compd. 2024 20 [Internet]. 10.2174/0115734072292339240416095600
    [Google Scholar]
  171. Sharma H. Chandra P. Effects of natural remedies on memory loss and Alzheimer’s disease. Afr.J.Bio.Sc. 2024 6 7 187 211 10.33472/AFJBS.6.7.2024.187‑211
    [Google Scholar]
  172. Das S. Mukherjee T. Mohanty S. Nayak N. Mal P. Ashique S. Pal R. Mohanto S. Sharma H. Impact of NF-κB Signaling and Sirtuin-1 Protein for Targeted Inflammatory Intervention. Curr. Pharm. Biotechnol. 2024 25 10.2174/0113892010301469240409082212 38638042
    [Google Scholar]
  173. Sharma H. Kaushik M. Goswami P. Sreevani S. Chakraborty A. Ashique S. Pal R. Role of miRNAs in Brain Development. MicroRNA 2024 13 2 96 109 10.2174/0122115366287127240322054519 38571343
    [Google Scholar]
  174. Ashique S. Pal R. Sharma H. Mishra N. Garg A. Unraveling the Emerging Niche Role of Extracellular Vesicles (EVs) in Traumatic Brain Injury (TBI). CNS Neurol. Disord. Drug Targets 2024 23 11 1357 1370 10.2174/0118715273288155240201065041 38351688
    [Google Scholar]
  175. Sharma H. Chandra P. Verma A. Pandey S.N. Kumar P. Sigh A. Therapeutic approaches of nutraceuticals in the prevention of neurological disorders. Eur. Chem. Bull. 2023 12 5 1575 1596
    [Google Scholar]
  176. Sharma H. Chandra P. Challenges and Future Prospects: A Benefaction of Phytoconstituents on Molecular Targets Pertaining to Alzheimer’s Disease. Int. J. Pharm. Investig. 2023 14 1 117 126 10.5530/ijpi.14.1.15
    [Google Scholar]
  177. Sharma H. Rani T. Khan S. An Insight into Neuropathic Pain: A Systemic and up-to-Date Review. Int. J. Pharm. Sci. Res. 2023 14 2 607 621 10.13040/IJPSR.0975‑8232.14(2).607‑21
    [Google Scholar]
  178. Sharma H. Rachamalla H.K. Mishra N. Chandra P. Pathak R. Ashique S. Introduction to Exosome and Its Role in Brain Disorders BT - Exosomes Based Drug Delivery Strategies for Brain Disorders. Mishra N. Ashique S. Garg A. Chithravel V. Anand K. Singapore Springer Nature Singapore 2024 1 35 10.1007/978‑981‑99‑8373‑5_1
    [Google Scholar]
  179. Sharma H. Tyagi S.J. Chandra P. Verma A. Kumar P. Ashique S. Role of Exosomes in Parkinson’s and Alzheimer’s Diseases BT - Exosomes Based Drug Delivery Strategies for Brain Disorders. Mishra N. Ashique S. Garg A. Chithravel V. Anand K. Singapore Springer Nature Singapore 2024 147 182 10.1007/978‑981‑99‑8373‑5_6
    [Google Scholar]
  180. Kumar P. Sharma H. Singh A. Pandey S.N. Chandra P. Correlation Between Exosomes and Neuro-inflammation in Various Brain Disorders BT Exosomes Based Drug Delivery Strategies for Brain Disorders. Mishra N. Ashique S. Garg A. Chithravel V. Anand K. Singapore Springer Nature Singapore 2024 273 302 10.1007/978‑981‑99‑8373‑5_11
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273337007241115102118
Loading
/content/journals/cnsnddt/10.2174/0118715273337007241115102118
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: glial cells ; therapeutics ; neuroinflammation ; Autism ; biomarkers ; myelination
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test