Skip to content
2000
Volume 24, Issue 2
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

The prevalence of neurodegenerative diseases has increased with longer life expectancies, necessitating the exploration of novel neuroprotective agents. Tangeretin, a polymethoxylated flavone derived from citrus fruits, has gathered attention for its potential therapeutic effects. This review highlights the neuroprotective properties of tangeretin its antioxidant and anti-inflammatory mechanisms. Tangeretin demonstrates efficacy in mitigating oxidative stress, neuroinflammation, and neuronal damage across various neurodegenerative conditions, including Alzheimer's disease, Parkinson's disease, cerebral ischemia, and epilepsy. It shows promise in ameliorating cognitive deficits and memory impairments associated with these diseases. Moreover, tangeretin modulates multiple signalling pathways and protects against neuronal apoptosis, underscoring its potential as a therapeutic agent.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273325789240904065214
2024-09-18
2025-09-08
Loading full text...

Full text loading...

References

  1. BraidyN. BehzadS. HabtemariamS. Neuroprotective effects of citrus fruit-derived flavonoids, nobiletin and tangeretin in Alzheimer’s and Parkinson’s disease.CNS Neurol. Disord. Drug Targets2017164387397 28474543
    [Google Scholar]
  2. AliF Rahul JyotiS Therapeutic potential of luteolin in transgenic Drosophila model of Alzheimer’s disease.Neurosci. Lett.2019692909910.1016/j.neulet.2018.10.053 30420334
    [Google Scholar]
  3. MohammadinejadR. AhmadiZ. TavakolS. AshrafizadehM. Berberine as a potential autophagy modulator.J. Cell. Physiol.20192349149141492610.1002/jcp.28325 30770555
    [Google Scholar]
  4. AhmadiZ. MohammadinejadR. AshrafizadehM. Drug delivery systems for resveratrol, a non-flavonoid polyphenol: Emerging evidence in last decades.J. Drug Deliv. Sci. Technol.20195159160410.1016/j.jddst.2019.03.017
    [Google Scholar]
  5. SobhaniB. RoomianiS. AhmadiZ. AshrafizadehM. Histopathological analysis of testis: Effects of astaxanthin treatment against nicotine toxicity.Iranian J Toxicol20191314144
    [Google Scholar]
  6. BegT. JyotiS. NazF. Protective effect of kaempferol on the transgenic Drosophila model of Alzheimer’s disease.CNS Neurol. Disord. Drug Targets201817642142910.2174/1871527317666180508123050 29745345
    [Google Scholar]
  7. PanM.H. LaiC.S. WuJ.C. HoC.T. Molecular mechanisms for chemoprevention of colorectal cancer by natural dietary compounds.Mol. Nutr. Food Res.2011551324510.1002/mnfr.201000412 21207511
    [Google Scholar]
  8. KimH.P. SonK.H. ChangH.W. KangS.S. Anti-inflammatory plant flavonoids and cellular action mechanisms.J. Pharmacol. Sci.200496322924510.1254/jphs.CRJ04003X 15539763
    [Google Scholar]
  9. VauzourD. VafeiadouK. Rodriguez-MateosA. RendeiroC. SpencerJ.P.E. The neuroprotective potential of flavonoids: a multiplicity of effects.Genes Nutr.200833-411512610.1007/s12263‑008‑0091‑4 18937002
    [Google Scholar]
  10. AshrafizadehM. AhmadiZ. MohammadinejadR. Ghasemipour AfsharE. Tangeretin: a mechanistic review of its pharmacological and therapeutic effects.J. Basic Clin. Physiol. Pharmacol.20203142019019110.1515/jbcpp‑2019‑0191 32329752
    [Google Scholar]
  11. SpencerJ.P.E. Rice-EvansC. WilliamsR.J. Modulation of pro-survival Akt/protein kinase B and ERK1/2 signaling cascades by quercetin and its in vivo metabolites underlie their action on neuronal viability.J. Biol. Chem.200327837347833479310.1074/jbc.M305063200 12826665
    [Google Scholar]
  12. FatimaA. SiddiqueY.H. Role of flavonoids in neurodegenerative disorders with special emphasis on tangeritin.CNS Neurol. Disord. Drug Targets201918858159710.2174/1871527318666190916141934 31526355
    [Google Scholar]
  13. SiddiqueY.H. AliF. Protective effect of nordihydroguaiaretic acid (NDGA) on the transgenic Drosophila model of Alzheimer’s disease.Chem. Biol. Interact.2017269596610.1016/j.cbi.2017.04.005 28392391
    [Google Scholar]
  14. HwangS.L. ShihP.H. YenG.C. Neuroprotective effects of citrus flavonoids.J. Agric. Food Chem.201260487788510.1021/jf204452y 22224368
    [Google Scholar]
  15. DatlaK.P. ChristidouM. WidmerW.W. RoopraiH.K. DexterD.T. Tissue distribution and neuroprotective effects of citrus flavonoid tangeretin in a rat model of Parkinson’s disease.Neuroreport200112173871387510.1097/00001756‑200112040‑00053 11726811
    [Google Scholar]
  16. MoratóL. BertiniE. VerrigniD. Mitochondrial dysfunction in central nervous system white matter disorders.Glia201462111878189410.1002/glia.22670 24865954
    [Google Scholar]
  17. UrrutiaP.J. MenaN.P. NúñezM.T. The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders.Front. Pharmacol.201453810.3389/fphar.2014.00038 24653700
    [Google Scholar]
  18. DaviesK.J.A. Degradation of oxidized proteins by the 20S proteasome.Biochimie2001833-430131010.1016/S0300‑9084(01)01250‑0 11295490
    [Google Scholar]
  19. BsibsiM. RavidR. GvericD. van NoortJ.M. Broad expression of toll-like receptors in the human central nervous system.J. Neuropathol. Exp. Neurol.200261111013102110.1093/jnen/61.11.1013 12430718
    [Google Scholar]
  20. van NoortJ.M. BsibsiM. Toll-like receptors in the CNS: implications for neurodegeneration and repair.Prog Brain Res200917513914810.1016/S0079‑6123(09)17509‑X 19660653
    [Google Scholar]
  21. AmorS. PuentesF. BakerD. Van Der ValkP. Inflammation in neurodegenerative diseases.Immunology2010129215416910.1111/j.1365‑2567.2009.03225.x 20561356
    [Google Scholar]
  22. ZippF. AktasO. The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases.Trends Neurosci.200629951852710.1016/j.tins.2006.07.006 16879881
    [Google Scholar]
  23. NogataY. SakamotoK. ShiratsuchiH. IshiiT. YanoM. OhtaH. Flavonoid composition of fruit tissues of citrus species.Biosci. Biotechnol. Biochem.200670117819210.1271/bbb.70.178 16428836
    [Google Scholar]
  24. LouS.N. HoC.T. Phenolic compounds and biological activities of small-size citrus: Kumquat and calamondin.Yao Wu Shi Pin Fen Xi2017251162175 28911534
    [Google Scholar]
  25. DrewnowskiA. Gomez-CarnerosC. Bitter taste, phytonutrients, and the consumer: a review.Am. J. Clin. Nutr.20007261424143510.1093/ajcn/72.6.1424 11101467
    [Google Scholar]
  26. NielsenS.E. BreinholtV. CornettC. DragstedL.O. Biotransformation of the citrus flavone tangeretin in rats. Identification of metabolites with intact flavane nucleus.Food Chem. Toxicol.200038973974610.1016/S0278‑6915(00)00072‑7 10930694
    [Google Scholar]
  27. Benavente-GarcíaO. CastilloJ. Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity.J. Agric. Food Chem.200856156185620510.1021/jf8006568 18593176
    [Google Scholar]
  28. FunaroA. WuX. SongM. Enhanced anti‐ inflammatory activities by the combination of Luteolin and Tangeretin.J. Food Sci.2016815H1320H132710.1111/1750‑3841.13300 27095513
    [Google Scholar]
  29. LeeY.Y. LeeE.J. ParkJ.S. JangS.E. KimD.H. KimH.S. Anti-inflammatory and antioxidant mechanism of tangeretin in activated microglia.J. Neuroimmune Pharmacol.201611229430510.1007/s11481‑016‑9657‑x 26899309
    [Google Scholar]
  30. WuJ.J. CuiY. YangY.S. Mild mitochondrial depolarization is involved in a neuroprotective mechanism of Citrus sunki peel extract.Phytother. Res.201327456457110.1002/ptr.4745 22678994
    [Google Scholar]
  31. HoS.C. KuoC.T. Hesperidin, nobiletin, and tangeretin are collectively responsible for the anti-neuroinflammatory capacity of tangerine peel (Citri reticulatae pericarpium).Food Chem. Toxicol.20147117618210.1016/j.fct.2014.06.014 24955543
    [Google Scholar]
  32. PeriyasamyK. BaskaranK. IlakkiaA. VanithaK. SelvarajS. SakthisekaranD. Antitumor efficacy of tangeretin by targeting the oxidative stress mediated on 7,12-dimethylbenz(a) anthracene-induced proliferative breast cancer in Sprague–Dawley rats.Cancer Chemother. Pharmacol.201575226327210.1007/s00280‑014‑2629‑z 25431347
    [Google Scholar]
  33. MaL.L. WangD. YuX.D. ZhouY.L. Tangeretin induces cell cycle arrest and apoptosis through upregulation of PTEN expression in glioma cells.Biomed. Pharmacother.20168149149610.1016/j.biopha.2016.04.006 27261630
    [Google Scholar]
  34. MatsuzakiK. OhizumiY. Beneficial effects of citrus-derived polymethoxylated flavones for central nervous system disorders.Nutrients202113114510.3390/nu13010145 33406641
    [Google Scholar]
  35. WangQ.A. WuZ. LiuL. ZouL.H. LuoM. Synthesis of citrus bioactive polymethoxyflavonoids and flavonoid glucosides.Youji Huaxue201030111682
    [Google Scholar]
  36. ChenH.F. ZhangW.G. YuanJ.B. LiY.G. YangS.L. YangW.L. Simultaneous quantification of polymethoxylated flavones and coumarins in Fructus aurantii and Fructus aurantii immaturus using HPLC–ESI-MS/MS.J. Pharm. Biomed. Anal.201259909510.1016/j.jpba.2011.10.013 22071443
    [Google Scholar]
  37. FengX. ZhangQ. CongP. ZhuZ. Simultaneous determination of flavonoids in different citrus fruit juices and beverages by high-performance liquid chromatography and analysis of their chromatographic profiles by chemometrics.Anal. Methods20124113748375310.1039/c2ay25562f
    [Google Scholar]
  38. WaniI KoppulaS BaldaA An update on the potential of tangeretin in the management of neuroinflammation-mediated neurodegenerative disorders.life (Basel)202414450410.3390/life14040504 38672774
    [Google Scholar]
  39. TingY. ChiouY.S. JiangY. PanM.H. LinZ. HuangQ. Safety evaluation of tangeretin and the effect of using emulsion-based delivery system: Oral acute and 28-day sub-acute toxicity study using mice.Food Res. Int.20157414015010.1016/j.foodres.2015.04.031 28411978
    [Google Scholar]
  40. VanhoeckeB.W. DelporteF. Van BraeckelE. A safety study of oral tangeretin and xanthohumol administration to laboratory mice.In Vivo2005191103107 15796161
    [Google Scholar]
  41. DelaneyB. PhillipsK. VasquezC. Genetic toxicity of a standardized mixture of citrus polymethoxylated flavones.Food Chem. Toxicol.200240561762410.1016/S0278‑6915(02)00007‑8 11955667
    [Google Scholar]
  42. KurowskaE.M. MantheyJ.A. Hypolipidemic effects and absorption of citrus polymethoxylated flavones in hamsters with diet-induced hypercholesterolemia.J. Agric. Food Chem.200452102879288610.1021/jf035354z 15137829
    [Google Scholar]
  43. LiS. PanM.H. LoC.Y. Chemistry and health effects of polymethoxyflavones and hydroxylated polymethoxyflavones.J. Funct. Foods20091121210.1016/j.jff.2008.09.003
    [Google Scholar]
  44. TingY. JiangY. LanY. Viscoelastic emulsion improved the bioaccessibility and oral bioavailability of crystalline compound: A mechanistic study using in vitro and in vivo models.Mol. Pharm.20151272229223610.1021/mp5007322 25984595
    [Google Scholar]
  45. HungW.L. ChangW.S. LuW.C. Pharmacokinetics, bioavailability, tissue distribution and excretion of tangeretin in rat.Yao Wu Shi Pin Fen Xi2018262849857 29567257
    [Google Scholar]
  46. ElhennawyM. LinH.S. Determination of tangeretin in rat plasma: assessment of its clearance and absolute oral bioavailability.Pharmaceutics2017101310.3390/pharmaceutics10010003 29286295
    [Google Scholar]
  47. NielsenS.E. BreinholtV. JustesenU. CornettC. DragstedL.O. In vitro biotransformation of flavonoids by rat liver microsomes.Xenobiotica199828438940110.1080/004982598239498 9604302
    [Google Scholar]
  48. LiuD. LiuY. QianX. Pharmacokinetic study on the effect of ligustrazine–tangeretin co‐administration on the pharmacokinetics of ligustrazine and its potential mechanism in rats.Pharmacol. Res. Perspect.2023112e0105810.1002/prp2.1058 36852752
    [Google Scholar]
  49. ShiZ.M. HanY.W. HanX.H. Upstream regulators and downstream effectors of NF-κB in Alzheimer’s disease.J. Neurol. Sci.201636612713410.1016/j.jns.2016.05.022 27288790
    [Google Scholar]
  50. YanY-Q. MaC-G. DingZ-B. SongL-J. WangQ. KumarG. Astrocytes: a double-edged sword in neurodegenerative diseases.Neural Regen. Res.20211691702171010.4103/1673‑5374.306064 33510058
    [Google Scholar]
  51. CianciulliA. PorroC. CalvelloR. TrottaT. LofrumentoD.D. PanaroM.A. Microglia mediated neuroinflammation: focus on PI3K modulation.Biomolecules202010113710.3390/biom10010137 31947676
    [Google Scholar]
  52. SedikA.A. ElgoharyR. Neuroprotective effect of tangeretin against chromium-induced acute brain injury in rats: targeting Nrf2 signaling pathway, inflammatory mediators, and apoptosis.Inflammopharmacology20233131465148010.1007/s10787‑023‑01167‑3 36884189
    [Google Scholar]
  53. WuC. ZhaoJ. ChenY. Tangeretin protects human brain microvascular endothelial cells against oxygen‐glucose deprivation‐induced injury.J. Cell. Biochem.201912044883489110.1002/jcb.27762 30260010
    [Google Scholar]
  54. ShuZ. YangB. ZhaoH. Tangeretin exerts anti-neuroinflammatory effects via NF-κB modulation in lipopolysaccharide-stimulated microglial cells.Int. Immunopharmacol.201419227528210.1016/j.intimp.2014.01.011 24462494
    [Google Scholar]
  55. LeeB. ShimI. LeeH. HahmD.H. The polymethoxylated flavone, Tangeretin improves cognitive memory in rats experiencing a single episode of prolonged post-traumatic stress.Anim. Cells Syst.2018221546210.1080/19768354.2018.1426627
    [Google Scholar]
  56. WuJ. ZhaoY.M. DengZ.K. Tangeretin ameliorates renal failure via regulating oxidative stress, NF-κB–TNF-α/iNOS signalling and improves memory and cognitive deficits in 5/6 nephrectomized rats.Inflammopharmacology201826111913210.1007/s10787‑017‑0394‑4 28871498
    [Google Scholar]
  57. WangJ.Q. ZhangR.B. HuJ.N. Tangeretin, An Active Flavonoid in Citrus Peel, Alleviates Cisplatin-Induced Cardiotoxicity via the Activation of AMPK and the Prevention on Mitochondrial Dysfunction.Res Sq202410.21203/rs.3.rs‑3868935/v1
    [Google Scholar]
  58. SuZ.Y. ChienJ.C. TungY.C. WuT.Y. LiaoJ.A. WeiG.J. Tangeretin and 4′-demethyltangeretin prevent damage to mouse hepatocytes from oxidative stress by activating the Nrf2-related antioxidant pathway via an epigenetic mechanism.Chem. Biol. Interact.202338211065010.1016/j.cbi.2023.110650 37517432
    [Google Scholar]
  59. KangS.S. LeeJ.Y. ChoiY.K. KimG.S. HanB.H. Neuroprotective effects of flavones on hydrogen peroxide-induced apoptosis in SH-SY5Y neuroblostoma cells.Bioorg. Med. Chem. Lett.20041492261226410.1016/j.bmcl.2004.02.003 15081021
    [Google Scholar]
  60. TaheriF. SepehriG. SheibaniV. SharififarF. Amelioration of prenatal lead-induced learning and memory impairments by methanolic extract of zataria multiflora in male rats.Basic Clin. Neurosci.201910217518410.32598/bcn.10.2.1104.1 31031904
    [Google Scholar]
  61. BalasubramaniS. RasuA. VenuvanalingamP. ZhouZ. Pharmacokinetics and molecular docking for identification of potential drug targets in tangeretin’s neuro-protection.Res Sq202210.21203/rs.3.rs‑1200769/v1
    [Google Scholar]
  62. Tahami MonfaredA.A. ByrnesM.J. WhiteL.A. ZhangQ. Alzheimer’s disease: epidemiology and clinical progression.Neurol. Ther.202211255356910.1007/s40120‑022‑00338‑8 35286590
    [Google Scholar]
  63. HaassC. SelkoeD.J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide.Nat. Rev. Mol. Cell Biol.20078210111210.1038/nrm2101 17245412
    [Google Scholar]
  64. MattsonM.P. Pathways towards and away from Alzheimer’s disease.Nature2004430700063163910.1038/nature02621 15295589
    [Google Scholar]
  65. HungW.L. ChiuT.H. WeiG.J. Neuroprotective effects of nobiletin and tangeretin against amyloid β1-42-induced toxicity in cultured primary rat neurons.Nutrire2023482565910.1186/s41110‑023‑00241‑8
    [Google Scholar]
  66. BaoJ. LiangZ. GongX. Tangeretin inhibits BACE1 activity and attenuates cognitive impairments in AD model mice.J. Agric. Food Chem.20227051536154610.1021/acs.jafc.1c07241 35084179
    [Google Scholar]
  67. de LauL.M.L. BretelerM.M.B. Epidemiology of Parkinson’s disease.Lancet Neurol.20065652553510.1016/S1474‑4422(06)70471‑9 16713924
    [Google Scholar]
  68. SrivastavaA.K. NehraA. SharmaP.S. The role of repetitive transcranial magnetic stimulation for enhancing the quality of life in Parkinson’s Disease: A systematic review.Ann. Indian Acad. Neurol.202023675575910.4103/aian.AIAN_70_20 33688123
    [Google Scholar]
  69. HoehnM.M. YahrM.D. Parkinsonism: onset, progression, and mortality. 1967.Neurology20015710Suppl. 3S11S26 11775596
    [Google Scholar]
  70. SiddiqueY.H. Role of luteolin in overcoming Parkinson’s disease.Biofactors202147219820610.1002/biof.1706 33443305
    [Google Scholar]
  71. SiddiqueY.H. NazF. JyotiS. Effect of curcumin on lifespan, activity pattern, oxidative stress, and apoptosis in the brains of transgenic Drosophila model of Parkinson’s disease.BioMed Res. Int.201420141610.1155/2014/606928 24860828
    [Google Scholar]
  72. PollanenM.S. DicksonD.W. BergeronC. Pathology and biology of the Lewy body.J. Neuropathol. Exp. Neurol.199352318319110.1097/00005072‑199305000‑00001 7684074
    [Google Scholar]
  73. SiddiqueY.H. NazF. JyotiS. Protective effect of Geraniol on the transgenic Drosophila model of Parkinson’s disease.Environ. Toxicol. Pharmacol.20164322523110.1016/j.etap.2016.03.018 27026137
    [Google Scholar]
  74. FatimaA. KhanamS. RahulR. Protective effect of tangeritin in transgenic Drosophila model of Parkinson’s disease.Front. Biosci. (Elite Ed.)2017914453 27814588
    [Google Scholar]
  75. FatimaA. Rahul, Siddique YH. Role of tangeritin against cognitive impairments in transgenic Drosophila model of Parkinson’s disease.Neurosci. Lett.201970511211710.1016/j.neulet.2019.04.047 31039425
    [Google Scholar]
  76. YangJ. WuX. YuH. TengL. Tangeretin inhibits neurodegeneration and attenuates inflammatory responses and behavioural deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease dementia in rats.Inflammopharmacology201725447148410.1007/s10787‑017‑0348‑x 28577132
    [Google Scholar]
  77. HashidaK. KitaoY. SudoH. ATF6alpha promotes astroglial activation and neuronal survival in a chronic mouse model of Parkinson’s disease.PLoS One2012710e4795010.1371/journal.pone.0047950 23112876
    [Google Scholar]
  78. RamakrishnaK. SrinivasanK. SharmaS.S. Chronic treatment of 4-phenylbutyric acid ameliorates cognitive impairment after focal cerebral ischemia/reperfusion injury in rats.Indian J. Physiol. Pharmacol.202164318819410.25259/IJPP_172_2020
    [Google Scholar]
  79. KhoshnamS.E. SarkakiA. RashnoM. FarboodY. Memory deficits and hippocampal inflammation in cerebral hypoperfusion and reperfusion in male rats: Neuroprotective role of vanillic acid.Life Sci.201821112613210.1016/j.lfs.2018.08.065 30195619
    [Google Scholar]
  80. KimS.Y. KimY.J. ChoS.Y. Efficacy of Artemisia annua Linné in improving cognitive impairment in a chronic cerebral hypoperfusion-induced vascular dementia animal model.Phytomedicine202311215468310.1016/j.phymed.2023.154683 36738479
    [Google Scholar]
  81. JordánJ. SeguraT. BreaD. GalindoM. CastilloJ. Inflammation as therapeutic objective in stroke.Curr. Pharm. Des.200814333549356410.2174/138161208786848766 19075732
    [Google Scholar]
  82. YangT. FengC. WangD. Neuroprotective and anti-inflammatory effect of tangeretin against cerebral ischemia-reperfusion injury in rats.Inflammation20204362332234310.1007/s10753‑020‑01303‑z 32734386
    [Google Scholar]
  83. AllaN PalatheeyaS ChallaSR KakarlaR Tangeretin confers neuroprotection, cognitive and memory enhancement in global cerebral ischemia in rats.3 Biotech20241419
    [Google Scholar]
  84. YouG. ZhengL. ZhangY. Tangeretin attenuates cerebral ischemia-reperfusion- induced neuronal pyroptosis by inhibiting aim2 inflammasome activation via regulating NRF2.Inflammation202447114515810.1007/s10753‑023‑01900‑8 37725272
    [Google Scholar]
  85. YangE.J. LimS.H. SongK.S. HanH.S. LeeJ. Identification of active compounds from Aurantii Immatri Pericarpium attenuating brain injury in a rat model of ischemia-reperfusion.Food Chem.2013138166367010.1016/j.foodchem.2012.09.137 23265538
    [Google Scholar]
  86. DevinskyO. LaiG. Spirituality and religion in epilepsy.Epilepsy Behav.200812463664310.1016/j.yebeh.2007.11.011 18171635
    [Google Scholar]
  87. BeghiE. The epidemiology of epilepsy.Neuroepidemiology202054218519110.1159/000503831 31852003
    [Google Scholar]
  88. GuoX. CaoY. HaoF. YanZ. WangM. LiuX. Tangeretin alters neuronal apoptosis and ameliorates the severity of seizures in experimental epilepsy-induced rats by modulating apoptotic protein expressions, regulating matrix metalloproteinases, and activating the PI3K/Akt cell survival pathway.Adv. Med. Sci.201762224625310.1016/j.advms.2016.11.011 28501723
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273325789240904065214
Loading
/content/journals/cnsnddt/10.2174/0118715273325789240904065214
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test