Skip to content
2000
image of Identification of Known Flavonoids of Ficus carica L. as Aldose Reductase Inhibitors in Sciatic Nerve of Diabetic Neuropathy-induced Rats through Bioinformatics and Proteomics Analysis

Abstract

Introduction

The polyol pathway is responsible for the metabolism of almost one-third of the total glucose in people with chronic diabetes. Moreover, it causes complications in organs that rely on aldose reductase (AR) as an enzyme. The purpose of this research was to examine the and effects of a flavonoid-rich ethyl acetate fraction of a methanolic extract of Lam. leaves (FCEA) on the aldose reductase gene AKR1B1. The complicated relation of AR for target confirmation and analysis of the flavonoids of FCEA, quercetin, kaempferol, and chrysin was explored by building a flavonoid-protein complex network utilizing GeneCards®, String, and Cytoscape Networking.

Method

The examination of ADMET was carried out after docking on the active sites of AR. By the binding and scoring abilities, the analysis was carried out. The ADMET characteristics demonstrated that these flavonoids had excellent solubility, absorption, and oral bioavailability, and the results demonstrate that they have potential. An additional investigation was conducted on rats using a model induced by streptozotocin (STZ). Hence, upon induction, the rats' sciatic nerves were removed and prepared for an RT-PCR analysis of the AKR1B1 gene.

Result

Compared to the diabetic normal group and the metformin group, rats treated with FCEA had lower levels of messenger RNA and AKR1B1 gene expression.

Conclusion

This proves that FCEA has effectively blocked AR. It is highly likely to suggest FCEA as a potent aldose inhibitor, as it considerably reduces the mRNA level of AKR1B1 gene expression in the sciatic nerve of sick rats, according to a combined bioinformatics prediction and RT-PCR analysis.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273322121250124065659
2025-03-11
2025-09-13
Loading full text...

Full text loading...

References

  1. Niture N.T. Patil D.G. Somani R.S. Sahane R.S. Effect of rutin on early diabetic neuropathy in experimental animals. J Nat Prod Plant Resour 2014 4 4 1 9
    [Google Scholar]
  2. Qiu L. Lin J. Xu F. Gao Y. Zhang C. Liu Y. Luo Y. Yang J.Y. Inhibition of aldose reductase activates hepatic peroxisome proliferator-activated receptor-α and ameliorates hepatosteatosis in diabetic db/db mice. Exp. Diabetes Res. 2012 2012 1 8 10.1155/2012/789730 22110479
    [Google Scholar]
  3. Rabbani N. Thornalley P.J. Hexokinase-linked glycolytic overload and unscheduled glycolysis in hyperglycemia-induced pathogenesis of insulin resistance, beta-cell glucotoxicity, and diabetic vascular complications. Front. Endocrinol. 2024 14 1268308 10.3389/fendo.2023.1268308 38292764
    [Google Scholar]
  4. Sung J.K. Koh J.H. Lee M.Y. Kim B.H. Nam S.M. Kim J.H. Yoo J.H. Kim S.H. Hong S.W. Lee E.Y. Choi R. Chung C.H. Aldose reductase inhibitor ameliorates renal vascular endothelial growth factor expression in streptozotocin-induced diabetic rats. Yonsei Med. J. 2010 51 3 385 391 10.3349/ymj.2010.51.3.385 20376891
    [Google Scholar]
  5. Thomas P.K. Diabetic neuropathy: Mechanisms and future treatment options. J. Neurol. Neurosurg. Psychiatry 1999 67 3 277 279 10.1136/jnnp.67.3.277 10449543
    [Google Scholar]
  6. Yabe-Nishimura C. Aldose reductase in glucose toxicity: A potential target for the prevention of diabetic complications. Pharmacol. Rev. 1998 50 1 21 33 9549756
    [Google Scholar]
  7. Chauhan A. Chidrawar V.R. Maheswara U. Polyol Pathway: A review on a potential target for the prevention of diabetic complications. Int J Inv Pharm Sci 2014 2 2 696 711
    [Google Scholar]
  8. Zychowska M. Rojewska E. Przewlocka B. Mika J. Mechanisms and pharmacology of diabetic neuropathy – experimental and clinical studies. Pharmacol. Rep. 2013 65 6 1601 1610 10.1016/S1734‑1140(13)71521‑4 24553008
    [Google Scholar]
  9. Une H.D. Dureshahwar K. Mubashir M. Quantification of quercetin obtained from Allium cepa Lam. leaves and its effects on streptozotocin-induced diabetic neuropathy. Pharmacognosy Res. 2017 9 3 287 293 10.4103/pr.pr_147_16 28827972
    [Google Scholar]
  10. Nadig P. Revankar R. Dethe S. Narayanswamy S. Aliyar M. Effect of Tinospora cordifolia on experimental diabetic neuropathy. Indian J. Pharmacol. 2012 44 5 580 583 10.4103/0253‑7613.100380 23112417
    [Google Scholar]
  11. Leela V. Saraswathy A. Quantification of pharmacologolically active markers gallic acid, quercetin and lupeol from Acacia leucophloeawilld flowers by HPTLC method. Internat Res J Pharma 2013 4 2 146 150
    [Google Scholar]
  12. Gülçin İ. Huyut Z. Elmastaş M. Aboul-Enein H.Y. Radical scavenging and antioxidant activity of tannic acid. Arab. J. Chem. 2010 3 1 43 53 10.1016/j.arabjc.2009.12.008
    [Google Scholar]
  13. Sharma P. Sharma A.L. Kulshreshtha S. Mishra S.S. Pandey D.N. An experimental study of quercetin in lenticular opacities. Ind J Pharmac 1982 14 2 169 175
    [Google Scholar]
  14. Khan D. Mohammed M. Upaganlawar A. Sangshetti J.N. Upasani C.D. Une H.D. Quantitative Assessment of Tactile Allodynia and ProtectiveEffects of flavonoids of Ficus carica Lam. Leaves in DiabeticNeuropathy. Pharmacogn. Mag. 2019 15 62 S128 S134
    [Google Scholar]
  15. Di S. Han L. Wang Q. Liu X. Yang Y. Li F. Zhao L. Tong X. A Network Pharmacology Approach to Uncover the Mechanisms of Shen‐Qi‐Di‐Huang Decoction against Diabetic Nephropathy. Evid. Based Complement. Alternat. Med. 2018 2018 1 7043402 10.1155/2018/7043402 30519269
    [Google Scholar]
  16. Muhammad S. Fatima N. In silico analysis and molecular docking studies of potential angiotensin-converting enzyme inhibitor using quercetin glycosides. Pharmacogn. Mag. 2015 11 42 Suppl. 1 123 10.4103/0973‑1296.157712 26109757
    [Google Scholar]
  17. Liao J. Wang Q. Wu F. Huang Z. >In silico Methods for Identification of Potential Active Sites of Therapeutic Targets. Molecules 2022 27 20 7103 10.3390/molecules27207103 36296697
    [Google Scholar]
  18. Govindarasu M. Ganeshan S. Ansari M.A. Alomary M.N. AlYahya S. Alghamdi S. Almehmadi M. Rajakumar G. Thiruvengadam M. Vaiyapuri M. >In silico modeling and molecular docking insights of kaempferitrin for colon cancer-related molecular targets. J. Saudi Chem. Soc. 2021 25 9 101319 10.1016/j.jscs.2021.101319
    [Google Scholar]
  19. Nimbalkar U.D. Seijas J.A. Borkute R. Damale M.G. Sangshetti J.N. Sarkar D. Ultrasound Assisted Synthesis of 4-(Benzyloxy)-N-(3-chloro-2-(substitutedphenyl)-4-oxoazetidin-1-yl) Benzamide as Challenging Anti-Tubercular Scaffold. Mol 1945 2018 23 1 19
    [Google Scholar]
  20. Ahmad I. Kuznetsov A.E. Pirzada A.S. Alsharif K.F. Daglia M. Khan H. Computational pharmacology and computational chemistry of 4-hydroxyisoleucine: Physicochemical, pharmacokinetic, and DFT-based approaches. Front Chem. 2023 11 1145974 10.3389/fchem.2023.1145974 37123881
    [Google Scholar]
  21. Breljak D. Andreja A-R. Kapitanovi S. Tamara C. Jelka G. Comparison of Three RT-PCR Based Methods for Relative Quantification of mRNA. Food Technol. Biotechnol. 2005 43 4 379 388
    [Google Scholar]
  22. Kuang J. Yan X. Genders A.J. Granata C. Bishop D.J. An overview of technical considerations when using quantitative real-time PCR analysis of gene expression in human exercise research. PLoS One 2018 13 5 e0196438 10.1371/journal.pone.0196438 29746477
    [Google Scholar]
  23. Szklarczyk D. Gable A.L. Lyon D. Junge A. Wyder S. Huerta-Cepas J. Simonovic M. Doncheva N.T. Morris J.H. Bork P. Jensen L.J. Mering C. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 47 D1 D607 D613 10.1093/nar/gky1131 30476243
    [Google Scholar]
  24. Szklarczyk D. Kirsch R. Koutrouli M. Nastou K. Mehryary F. Hachilif R. Gable A.L. Fang T. Doncheva N.T. Pyysalo S. Bork P. Jensen L.J. von Mering C. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023 51 D1 D638 D646 10.1093/nar/gkac1000 36370105
    [Google Scholar]
  25. Fishilevich S. Zimmerman S. Kohn A. Iny Stein T. Olender T. Kolker E. Safran M. Lancet D. Genic insights from integrated human proteomics in GeneCards. Database (Oxford) 2016 2016 baw030 10.1093/database/baw030 27048349
    [Google Scholar]
  26. Zainal-Abidin R.A. Afiqah-Aleng N. Abdullah-Zawawi M.R. Harun S. Mohamed-Hussein Z.A. Protein–Protein Interaction (PPI) Network of Zebrafish Oestrogen Receptors: A Bioinformatics Workflow. Life (Basel) 2022 12 5 650 10.3390/life12050650 35629318
    [Google Scholar]
  27. Une H.D. Khan D. Mohammed M. Comparative HPTLC Analysis of Leaves of Allium cepa L., Ficus carica L. and Ziziphus mauritiana L. with Standard Quercetin. Int. J. Pharmacogn. Phytochem. Res. 2017 9 5 739 743
    [Google Scholar]
  28. Shaikh M.H. Subhedar D.D. Khedkar V.M. Jha P.C. Khan F.A.K. Sangshetti J.N. Shingate B.B. 1,2,3-Triazole tethered acetophenones: Synthesis, bioevaluation and molecular docking study. Chin. Chem. Lett. 2016 27 7 1058 1063 10.1016/j.cclet.2016.03.014
    [Google Scholar]
  29. Morris G.M. Huey R. Lindstrom W. Sanner M.F. Belew R.K. Goodsell D.S. Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  30. Sanner M.F. Python: a programming language for software integration and development. J. Mol. Graph. Model. 1999 17 1 57 61 10660911
    [Google Scholar]
  31. Agu P.C. Afiukwa C.A. Orji O.U. Ezeh E.M. Ofoke I.H. Ogbu C.O. Ugwuja E.I. Aja P.M. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci. Rep. 2023 13 1 13398 10.1038/s41598‑023‑40160‑2 37592012
    [Google Scholar]
  32. Venkatesan A. Rambabu M. Jayanthi S. Febin Prabhu Dass J. Pharmacophore feature prediction and molecular docking approach to identify novel anti‐HCV protease inhibitors. J. Cell. Biochem. 2018 119 1 960 966 10.1002/jcb.26262 28691304
    [Google Scholar]
  33. Lipinski C.A. Lombardo F. Dominy B.W. Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev. 2001 46 1-3 3 26 10.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  34. Srivastava V. Yadav A. Sarkar P. Molecular docking and ADMET study of bioactive compounds of Glycyrrhiza glabra against main protease of SARS-CoV2. Mater. Today Proc. 2022 49 2999 3007 10.1016/j.matpr.2020.10.055 33078096
    [Google Scholar]
  35. Zhao Y.H. Abraham M.H. Le J. Hersey A. Luscombe C.N. Beck G. Sherborne B. Cooper I. Rate-limited steps of human oral absorption and QSAR studies. Pharm. Res. 2002 19 10 1446 1457 10.1023/A:1020444330011 12425461
    [Google Scholar]
  36. Bas D.C. Rogers D.M. Jensen J.H. Very fast prediction and rationalization of p K a values for protein–ligand complexes. Proteins 2008 73 3 765 783 10.1002/prot.22102 18498103
    [Google Scholar]
  37. Kiran H.B. Aman B.U. Neuroprotective efects of Lagerstroemia speciosa L. extract (Banaba leaf extract) in streptozotocin induced painful diabetic neuropathy in laboratory rats. Pharmacol 2016 7 1 9 15
    [Google Scholar]
  38. Jordan C.L. Price R.H. Jr Handa R.J. Androgen receptor messenger RNA and protein in adult rat sciatic nerve: Implications for site of androgen action. J. Neurosci. Res. 2002 69 4 509 518 10.1002/jnr.10324 12210844
    [Google Scholar]
  39. Shi M. Zhang X. Zhang R. Zhang H. Zhu D. Han X. Glycyrrhizic acid promotes sciatic nerves recovery in type 1 diabetic rats and protects Schwann cells from high glucose-induced cytotoxicity. J. Biomed. Res. 2022 36 3 181 194 10.7555/JBR.36.20210198 35578754
    [Google Scholar]
  40. Liao Y. Wei J. Xu Y. Zhang Z. Cloning, expression and characterization of COI1 gene (AsCOI1) from Aquilaria sinensis (Lour.) Gilg. Acta Pharm. Sin. B 2015 5 5 473 481 10.1016/j.apsb.2015.05.009 26579478
    [Google Scholar]
  41. Wilcox M. Quick T.J. Phillips J.B. The Effects of Surgical Antiseptics and Time Delays on RNA Isolated From Human and Rodent Peripheral Nerves. Front. Cell. Neurosci. 2019 13 189 10.3389/fncel.2019.00189 31178696
    [Google Scholar]
  42. Comfort N. Gade M. Strait M. Merwin S.J. Antoniou D. Parodi C. Marcinczyk L. Jean-Francois L. Bloomquist T.R. Memou A. Rideout H.J. Corti S. Kariya S. Re D.B. Longitudinal transcriptomic analysis of mouse sciatic nerve reveals pathways associated with age‐related muscle pathology. J. Cachexia Sarcopenia Muscle 2023 14 3 1322 1336 10.1002/jcsm.13204 36905126
    [Google Scholar]
  43. Peterson S.M. Freeman J.L. RNA isolation from embryonic zebrafish and cDNA synthesis for gene expression analysis. J. Vis. Exp. 2009 30 30 1470 19684565
    [Google Scholar]
  44. Gubler U. Hoffman B.J. A simple and very efficient method for generating cDNA libraries. Gene 1983 25 2-3 263 269 10.1016/0378‑1119(83)90230‑5 6198242
    [Google Scholar]
  45. Artika I.M. Dewi Y.P. Nainggolan I.M. Siregar J.E. Antonjaya U. Real-Time Polymerase Chain Reaction: Current Techniques, Applications, and Role in COVID-19 Diagnosis. Genes (Basel) 2022 13 12 2387 10.3390/genes13122387 36553654
    [Google Scholar]
  46. Emery S.L. Erdman D.D. Bowen M.D. Newton B.R. Winchell J.M. Meyer R.F. Tong S. Cook B.T. Holloway B.P. McCaustland K.A. Rota P.A. Bankamp B. Lowe L.E. Ksiazek T.G. Bellini W.J. Anderson L.J. Real-time reverse transcription-polymerase chain reaction assay for SARS-associated coronavirus. Emerg. Infect. Dis. 2004 10 2 311 316 10.3201/eid1002.030759 15030703
    [Google Scholar]
  47. AL-Ishaq R.K. Abotaleb M. Kubatka P. Kajo K. Büsselberg D. Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. Biomolecules 2019 9 9 430 10.3390/biom9090430 31480505
    [Google Scholar]
  48. Testa R. Bonfigli A. Genovese S. De Nigris V. Ceriello A. The Possible Role of Flavonoids in the Prevention of Diabetic Complications. Nutrients 2016 8 5 310 10.3390/nu8050310 27213445
    [Google Scholar]
  49. Meng X.Y. Zhang H.X. Mezei M. Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des. 2011 7 2 146 157 10.2174/157340911795677602 21534921
    [Google Scholar]
  50. Wu X. Hasan M.A. Chen J.Y. Pathway and network analysis in proteomics. J. Theor. Biol. 2014 362 44 52 10.1016/j.jtbi.2014.05.031 24911777
    [Google Scholar]
  51. Singh M. Kapoor A. Bhatnagar A. Physiological and Pathological Roles of Aldose Reductase. Metabolites 2021 11 10 655 10.3390/metabo11100655 34677370
    [Google Scholar]
  52. Dănilă A.I. Ghenciu L.A. Stoicescu E.R. Bolintineanu S.L. Iacob R. Săndesc M.A. Faur A.C. Aldose Reductase as a Key Target in the Prevention and Treatment of Diabetic Retinopathy: A Comprehensive Review. Biomedicines 2024 12 4 747 10.3390/biomedicines12040747 38672103
    [Google Scholar]
  53. Ighodaro O.M. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed. Pharmacother. 2018 108 656 662 10.1016/j.biopha.2018.09.058 30245465
    [Google Scholar]
  54. Yan L. Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. Animal Model. Exp. Med. 2018 1 1 7 13 10.1002/ame2.12001 29863179
    [Google Scholar]
  55. Tang W.H. Martin K.A. Hwa J. Aldose reductase, oxidative stress, and diabetic mellitus. Front. Pharmacol. 2012 3 87 10.3389/fphar.2012.00087 22582044
    [Google Scholar]
  56. Imran A. Shehzad M.T. Shah S.J.A. al Adhami T. Laws M. Rahman K.M. Alharthy R.D. Khan I.A. Shafiq Z. Iqbal J. Development and exploration of novel substituted thiosemicarbazones as inhibitors of aldose reductase via in vitro analysis and computational study. Sci. Rep. 2022 12 1 5734 10.1038/s41598‑022‑09658‑z 35388067
    [Google Scholar]
  57. Khan D. Mohammed M. Upaganlawar A. Upasani C.D. Une H.D. Ameliorative Potential of Allium cepa Lam. Leaves on Diabetes Induced and Chronic Constriction Injury Induced Neuropathic Pain in Experimental Rats. Ind J Pharma Edu Res 2020 54 1 143 149 10.5530/ijper.54.1.17
    [Google Scholar]
  58. Srilatha K. Reddy K.P. Sciatic Nerve Structural and Functional Recovery with Extract of Phyllanthus amarus and Esculetin in STZ-Induced Hyperglycemic Rats. Ann. Neurosci. 2019 26 3-4 17 29 10.1177/0972753120911840 32843829
    [Google Scholar]
  59. Bruna J. Alberti P. Calls-Cobos A. Caillaud M. Damaj M.I. Navarro X. Methods for in vivo studies in rodents of chemotherapy induced peripheral neuropathy. Exp. Neurol. 2020 325 113154 10.1016/j.expneurol.2019.113154 31837318
    [Google Scholar]
  60. Jadhav V.B. Vaghela J.S. Sphaeranthus indicus Linn ameliorates streptozotocin-induced experimental diabetic neuropathy by targeting oxidative stress-mediated alterations. Future J. Pharm. Sci. 2022 8 1 55 10.1186/s43094‑022‑00444‑2
    [Google Scholar]
  61. Oates P.J. Polyol pathway and diabetic peripheral neuropathy. Int. Rev. Neurobiol. 2002 50 325 392 10.1016/S0074‑7742(02)50082‑9 12198816
    [Google Scholar]
  62. Roy A. Khan A. Ahmad I. Alghamdi S. Rajab B.S. Babalghith A.O. Alshahrani M.Y. Islam S. Islam M.R. Flavonoids a Bioactive Compound from Medicinal Plants and Its Therapeutic Applications. BioMed Res. Int. 2022 2022 1 9 10.1155/2022/5445291 35707379
    [Google Scholar]
  63. Singh S.P. Konwar B.K. Molecular docking studies of quercetin and its analogues against human inducible nitric oxide synthase. Springerplus 2012 1 1 69 10.1186/2193‑1801‑1‑69 23556141
    [Google Scholar]
  64. Lagorce D. Sperandio O. Galons H. Miteva M.A. Villoutreix B.O. FAF-Drugs2: Free ADME/tox filtering tool to assist drug discovery and chemical biology projects. BMC Bioinformatics 2008 9 1 396 10.1186/1471‑2105‑9‑396 18816385
    [Google Scholar]
  65. Lipinski C.A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today. Technol. 2004 1 4 337 341 10.1016/j.ddtec.2004.11.007 24981612
    [Google Scholar]
  66. Ertl P. Rohde B. Selzer P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 2000 43 20 3714 3717 10.1021/jm000942e 11020286
    [Google Scholar]
  67. Antonov J Goldstein DR Oberli A Baltzer A Pirotta M Fleischmann A Reliable gene expression measurements from degraded RNA by quantitative real-time PCR depend on short amplicons and a proper normalization. Lab Invest. 2005 85 8 1040 50 10.1038/labinvest.3700303
    [Google Scholar]
  68. Witzel I.I. Jelinek H.F. Khalaf K. Lee S. Khandoker A.H. Alsafar H. Identifying common genetic risk factors of diabetic neuropathies. Front. Endocrinol. 2015 6 88 10.3389/fendo.2015.00088 26074879
    [Google Scholar]
  69. Niimi N. Yako H. Takaku S. Chung S.K. Sango K. Aldose Reductase and the Polyol Pathway in Schwann Cells: Old and New Problems. Int. J. Mol. Sci. 2021 22 3 1031 10.3390/ijms22031031 33494154
    [Google Scholar]
  70. Edwards J.L. Vincent A.M. Cheng H.T. Feldman E.L. Diabetic neuropathy: Mechanisms to management. Pharmacol. Ther. 2008 120 1 1 34 10.1016/j.pharmthera.2008.05.005 18616962
    [Google Scholar]
  71. Thamotharampillai K. Chan A.K.F. Bennetts B. Craig M.E. Cusumano J. Silink M. Oates P.J. Donaghue K.C. Decline in neurophysiological function after 7 years in an adolescent diabetic cohort and the role of aldose reductase gene polymorphisms. Diabetes Care 2006 29 9 2053 2057 10.2337/dc06‑0678 16936152
    [Google Scholar]
  72. Mohammed E-S Manal H Abdelfattah N Ahmed E Is there a relationship between exacerbated diabetic peripheral neuropathy and metformin? Neuro 2018 90 15S 430
    [Google Scholar]
  73. Wile D.J. Toth C. Association of metformin, elevated homocysteine, and methylmalonic acid levels and clinically worsened diabetic peripheral neuropathy. Diabetes Care 2010 33 1 156 161 10.2337/dc09‑0606 19846797
    [Google Scholar]
  74. Calcutt N.A. Cooper M.E. Kern T.S. Schmidt A.M. Therapies for hyperglycaemia-induced diabetic complications: From animal models to clinical trials. Nat. Rev. Drug Discov. 2009 8 5 417 430 10.1038/nrd2476 19404313
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273322121250124065659
Loading
/content/journals/cnsnddt/10.2174/0118715273322121250124065659
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: diabetic neuropathy ; docking ; Aldose reductase ; RT-PCR ; complex network ; sciatic nerve
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test