Skip to content
2000
Volume 24, Issue 5
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Introduction

Heme-oxidized iron regulatory protein 2 (IRP2) ubiquitin ligase-1 (HOIL-1) is believed to contribute to the ubiquitination of IRP2, which facilitates the transcription of transferrin receptor 1 (TfR1) while preventing the transcription of ferroportin-1 (FPN-1). Bioinformatics analysis predicts that nadolol (a β-blocker) interacts with the HOIL-1.

Methods

The present study is intended to explore whether nadolol suppresses ferroptosis in the brains of rats suffering from ischemic stroke targeting the HOIL-1/IRP2 pathway. A rat model of ischemic stroke was established by blocking the middle cerebral artery for 2 h plus 24 h reperfusion, and nadolol (2.5 or 5 mg/kg) was given at 1h after reperfusion. HT22 cells were subjected to 12 h of hypoxia, followed by 24 h of reoxygenation for simulating ischemic stroke, and nadolol (0.1 or 0.25 μM) was administered to the culture medium before reoxygenation.

Results

The stroke rats showed evident brain injury (increases in neurological deficit score and infarct volume) and ferroptosis, along with up-regulation of IRP2 and TfR1 while downregulation of HOIL-1 and FPN-1; these phenomena were reversed in the presence of nadolol. In the cultured HT22 cells, hypoxia/reoxygenation-induced LDH release, ferroptosis, and changes in the levels of relevant proteins (IRP2, TfR1, HOIL-1, and FPN-1) were also reversed by nadolol.

Conclusion

In terms of these findings, it is concluded that nadolol can protect the ischemic rats’ brains against ferroptosis by targeting the HOIL-1/IRP2 pathway, thereby preventing intracellular iron overload. Thus, nadolol may be a novel indication for treating patients with ischemic stroke.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273308006240822165146
2024-09-09
2025-04-25
Loading full text...

Full text loading...

References

  1. FengH. SchorppK. JinJ. Transferrin receptor is a specific ferroptosis marker.Cell Rep.2020301034113423.e710.1016/j.celrep.2020.02.049 32160546
    [Google Scholar]
  2. ZhangY.Y. YangX.Y. LiuH.Q. The weakened interaction between hectd4 and glun2b in ischemic stroke promotes calcium overload and brain injury through a mechanism involving the decrease of GluN2B and MALT1 ubiquitination.Mol. Neurobiol.20236031563157910.1007/s12035‑022‑03169‑8 36527595
    [Google Scholar]
  3. OuM. JiangY. JiY. Role and mechanism of ferroptosis in neurological diseases.Mol. Metab.20226110150210.1016/j.molmet.2022.101502 35447365
    [Google Scholar]
  4. JuJ. SongY. WangK. Mechanism of ferroptosis: A potential target for cardiovascular diseases treatment.Aging Dis.202112126127610.14336/AD.2020.0323 33532140
    [Google Scholar]
  5. TuoQ. LeiP. JackmanK.A. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke.Mol. Psychiatry201722111520153010.1038/mp.2017.171 28886009
    [Google Scholar]
  6. BaiT. LiM. LiuY. QiaoZ. WangZ. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell.Free Radic. Biol. Med.20201609210210.1016/j.freeradbiomed.2020.07.026 32768568
    [Google Scholar]
  7. CuiY. ZhangY. ZhaoX. ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation.Brain Behav. Immun.20219331232110.1016/j.bbi.2021.01.003 33444733
    [Google Scholar]
  8. TianJ. ZhangY.Y. PengY.W. Polymyxin B reduces brain injury in ischemic stroke rat through a mechanism involving targeting ESCRT-III machinery and RIPK1/RIPK3/MLKL pathway.J. Cardiovasc. Transl. Res.20221551129114210.1007/s12265‑022‑10224‑1 35239171
    [Google Scholar]
  9. YuX. WangS. WangX. LiY. DaiZ. Melatonin improves stroke by inhibiting autophagy-dependent ferroptosis mediated by NCOA4 binding to FTH1.Exp. Neurol.202437911486810.1016/j.expneurol.2024.114868 38901754
    [Google Scholar]
  10. HurdM.D. GoelI. SakaiY. TeramuraY. Current status of ischemic stroke treatment: From thrombolysis to potential regenerative medicine.Regen. Ther.20211840841710.1016/j.reth.2021.09.009 34722837
    [Google Scholar]
  11. GuoJ. TuoQ. LeiP. Iron, ferroptosis, and ischemic stroke.J. Neurochem.2023165448752010.1111/jnc.15807 36908209
    [Google Scholar]
  12. LiY. YuP. ChangS.Y. Hypobaric hypoxia regulates brain iron homeostasis in rats.J. Cell. Biochem.201711861596160510.1002/jcb.25822 27925282
    [Google Scholar]
  13. ZhangY.Y. LiX.S. RenK.D. PengJ. LuoX.J. Restoration of metal homeostasis: A potential strategy against neurodegenerative diseases.Ageing Res. Rev.20238710193110.1016/j.arr.2023.101931 37031723
    [Google Scholar]
  14. GuoH. ZhuL. TangP. Carthamin yellow improves cerebral ischemia reperfusion injury by attenuating inflammation and ferroptosis in rats.Int. J. Mol. Med.20214745210.3892/ijmm.2021.4885 33576458
    [Google Scholar]
  15. ZhaoY. XinZ. LiN. Nano-liposomes of lycopene reduces ischemic brain damage in rodents by regulating iron metabolism.Free Radic. Biol. Med.201812411110.1016/j.freeradbiomed.2018.05.082 29807160
    [Google Scholar]
  16. SangkhaeV. FisherA.L. WongS. Effects of maternal iron status on placental and fetal iron homeostasis.J. Clin. Invest.2019130262564010.1172/JCI127341 31661462
    [Google Scholar]
  17. Meyron-HoltzE.G. GhoshM.C. IwaiK. Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis.EMBO J.200423238639510.1038/sj.emboj.7600041 14726953
    [Google Scholar]
  18. IshikawaH. KatoM. HoriH. Involvement of heme regulatory motif in heme-mediated ubiquitination and degradation of IRP2.Mol. Cell200519217118110.1016/j.molcel.2005.05.027 16039587
    [Google Scholar]
  19. YamanakaK. IshikawaH. MegumiY. Identification of the ubiquitin-protein ligase that recognizes oxidized IRP2.Nat. Cell Biol.20035433634010.1038/ncb952 12629548
    [Google Scholar]
  20. ZhangY.Y. PengJ.J. ChenD. Telaprevir improves memory and cognition in mice suffering ischemic stroke via targeting MALT1-mediated calcium overload and necroptosis.ACS Chem. Neurosci.202314173113312410.1021/acschemneuro.3c00250 37559405
    [Google Scholar]
  21. RenK.D. LiuW.N. TianJ. Mitochondrial E3 ubiquitin ligase 1 promotes brain injury by disturbing mitochondrial dynamics in a rat model of ischemic stroke.Eur. J. Pharmacol.201986117261710.1016/j.ejphar.2019.172617 31430457
    [Google Scholar]
  22. LongaE.Z. WeinsteinP.R. CarlsonS. CumminsR. Reversible middle cerebral artery occlusion without craniectomy in rats.Stroke1989201849110.1161/01.STR.20.1.84 2643202
    [Google Scholar]
  23. BedersonJ.B. PittsL.H. GermanoS.M. NishimuraM.C. DavisR.L. BartkowskiH.M. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats.Stroke19861761304130810.1161/01.STR.17.6.1304 2433817
    [Google Scholar]
  24. NobleA.R. HoggK. SumanR. Phospholipase D2 in prostate cancer: protein expression changes with Gleason score.Br. J. Cancer2019121121016102610.1038/s41416‑019‑0610‑7 31673104
    [Google Scholar]
  25. YangX. ChengX. TangY. Bacterial endotoxin activates the coagulation cascade through gasdermin d-dependent phosphatidylserine exposure.Immunity2019516983996.e610.1016/j.immuni.2019.11.005 31836429
    [Google Scholar]
  26. TangL.J. ZhouY.J. XiongX.M. Ubiquitin-specific protease 7 promotes ferroptosis via activation of the p53/TfR1 pathway in the rat hearts after ischemia/reperfusion.Free Radic. Biol. Med.202116233935210.1016/j.freeradbiomed.2020.10.307 33157209
    [Google Scholar]
  27. WangX. ShenT. LianJ. Resveratrol reduces ROS-induced ferroptosis by activating SIRT3 and compensating the GSH/GPX4 pathway.Mol. Med.202329113710.1186/s10020‑023‑00730‑6 37858064
    [Google Scholar]
  28. PengZ.M. ZhangY.Y. WeiD. MALT1 promotes necroptosis in stroke rat brain via targeting the A20/RIPK3 pathway.Arch. Biochem. Biophys.202373510950210.1016/j.abb.2023.109502 36603698
    [Google Scholar]
  29. VashishtA.A. ZumbrennenK.B. HuangX. Control of iron homeostasis by an iron-regulated ubiquitin ligase.Science2009326595371872110.1126/science.1176333 19762596
    [Google Scholar]
  30. WalterK. What is acute ischemic stroke?JAMA2022327988510.1001/jama.2022.1420 35230392
    [Google Scholar]
  31. TuoQ. ZhangS. LeiP. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications.Med. Res. Rev.202242125930510.1002/med.21817 33957000
    [Google Scholar]
  32. QinC. YangS. ChuY.H. Signaling pathways involved in ischemic stroke: Molecular mechanisms and therapeutic interventions.Signal Transduct. Target. Ther.20227121510.1038/s41392‑022‑01064‑1 35794095
    [Google Scholar]
  33. Van SanE. DebruyneA.C. VeeckmansG. Ferroptosis contributes to multiple sclerosis and its pharmacological targeting suppresses experimental disease progression.Cell Death Differ.20233092092210310.1038/s41418‑023‑01195‑0 37542104
    [Google Scholar]
  34. LiF.J. LongH.Z. ZhouZ.W. LuoH.Y. XuS.G. GaoL.C. System Xc−/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy.Front. Pharmacol.20221391029210.3389/fphar.2022.910292 36105219
    [Google Scholar]
  35. KoppulaP. ZhuangL. GanB. Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy.Protein Cell202112859962010.1007/s13238‑020‑00789‑5 33000412
    [Google Scholar]
  36. JiangX. StockwellB.R. ConradM. Ferroptosis: mechanisms, biology and role in disease.Nat. Rev. Mol. Cell Biol.202122426628210.1038/s41580‑020‑00324‑8 33495651
    [Google Scholar]
  37. MillánM. DeGregorio-RocasolanoN. Pérez de la OssaN. Targeting pro-oxidant iron with deferoxamine as a treatment for ischemic stroke: Safety and optimal dose selection in a randomized clinical trial.Antioxidants2021108127010.3390/antiox10081270 34439518
    [Google Scholar]
  38. AndersonG.J. VulpeC.D. Mammalian iron transport.Cell. Mol. Life Sci.200966203241326110.1007/s00018‑009‑0051‑1 19484405
    [Google Scholar]
  39. CaiW. WangG. WuH. Identifying traumatic brain injury (TBI) by ATR-FTIR spectroscopy in a mouse model.Spectrochim. Acta A Mol. Biomol. Spectrosc.202227412109910.1016/j.saa.2022.121099 35257986
    [Google Scholar]
  40. ArosioP. EliaL. PoliM. Ferritin, cellular iron storage and regulation.IUBMB Life201769641442210.1002/iub.1621 28349628
    [Google Scholar]
  41. MonaiH. WangX. YahagiK. Adrenergic receptor antagonism induces neuroprotection and facilitates recovery from acute ischemic stroke.Proc. Natl. Acad. Sci. USA201911622110101101910.1073/pnas.1817347116 31097598
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273308006240822165146
Loading
/content/journals/cnsnddt/10.2174/0118715273308006240822165146
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): ferroptosis; HOIL-1; hypoxia/reoxygenation; IRP2; Ischemic stroke; Nadolol
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test