Skip to content
2000
Volume 12, Issue 2
  • ISSN: 1567-2026
  • E-ISSN: 1875-5739

Abstract

Ischemic stroke swiftly induces a wide spectrum of pathophysiological sequelae, particularly in the aged brain. The translational failure of experimental therapies, might partially be related to monotherapeutic approaches, not address potential counter-mechanisms sufficiently or within the best time window. For example, therapeutic effects relying on stem/progenitor cell mobilization by granulocyte-colony stimulating factor (G-CSF), require approximately a week to become manifest, which is potentially beyond the optimal timing. Here, We tested the hypothesis that treating post-stroke aged rats with the combination of bone marrow-derived mononuclear cells (BM MNC) and G-CSF improves the long term (56 days) functional outcome by compensating the delay before G-CSF effects come to full effect. 1x106 syngeneic BM MNC per kg bodyweight (BW) with G-CSF (50µg/kg, given intraperitoneal by via the jugular vein to aged Sprague- Dawley rats, six hours post-stroke. This process was repeated daily, for a 28 day period. Infarct volume was measured by magnetic resonance imaging at 3 and 48 days post-stroke and additionally by immunohistochemistry at day 56. Functional recovery was tested during the entire post-stroke survival period. Daily G-CSF treatment led to a robust and consistent improvement of neurological function, but did not alter final infarct volumes. The combination of G-CSF and BM MNC, did not further improve post-stroke recovery. The lack of an additional benefit may be due to interaction between both approaches, and to a lesser extent, in the insensitivity of the aged brains’ regenerative mechanisms. Also considering recent findings on other tandem approaches involving G-CSF in animal models featuring relevant co-morbidities, we conclude that such combination therapies are not the optimal approach to treat the acutely injured aged brain.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/1567202612666150311112550
2015-05-01
2025-09-11
Loading full text...

Full text loading...

/content/journals/cnr/10.2174/1567202612666150311112550
Loading

  • Article Type:
    Research Article
Keyword(s): bone marrow; regenerative therapy; Stem cells; stroke; translational medicine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test