Skip to content
2000
Volume 10, Issue 1
  • ISSN: 1567-2026
  • E-ISSN: 1875-5739

Abstract

More than 110 million individuals will suffer from cognitive loss worldwide by the year 2050 with a majority of individuals presenting with Alzheimer's disease (AD). Yet, successful treatments for etiologies that involve β.-amyloid (Aβ.) toxicity in AD remain elusive and await novel avenues for drug development. Here we show that Wnt1 inducible signaling pathway protein 1 (WISP1/CCN4) controls the post-translational phosphorylation of Akt1, p70S6K, and AMP activated protein kinase (AMPK) to the extent that tuberous sclerosis complex 2 (TSC2) (Ser1387) phosphorylation, a target of AMPK, is decreased and TSC2 (Thr1462) phosphorylation, a target of Akt1, is increased. The ability of WISP1 to limit TSC2 activity allows WISP1 to increase the activity of p70S6K, since gene silencing of TSC2 further enhances WISP1 phosphorylation of p70S6K. However, a minimal level of TSC2 activity is necessary to modulate WISP1 cytoprotection that may require modulation of mTOR activity, since gene knockdown of TSC2 impairs the ability of WISP1 to protect microglia against apoptotic membrane phosphatidylserine (PS) exposure, nuclear DNA degradation, mitochondrial membrane depolarization, and cytochrome c release during Aβ. exposure.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/156720213804806007
2013-02-01
2025-09-19
Loading full text...

Full text loading...

/content/journals/cnr/10.2174/156720213804806007
Loading

  • Article Type:
    Research Article
Keyword(s): Akt; Alzheimer's disease; Amyloid; CCN4; Microglia; mTOR; p70S6K; PI 3-K; TSC2; Tuberin; WISP1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test