Skip to content
2000
Volume 9, Issue 3
  • ISSN: 1567-2026
  • E-ISSN: 1875-5739

Abstract

Chronic cerebral hypoperfusion (CCH) has been gradually prevalent in the patients over middle age, especially the old over 60 years. It has been proved that CCH is highly related with cognitive impairment. CCH emerges not only in vascular dementia (VaD), but also in Alzheimer’s disease (AD), which regarded as a critical causative for cognitive impairment in these diseases. Nevertheless, the mechanisms underlying cognitive deficit remain elusive. Moreover, there are no dramatically effective preventions. In the present study, by employing a recognized CCH rat model, we found that CCH induced spatial learning/memory deficits with simultaneously increasing tau hyperphosphorylation at multiple Alzheimer-related phosphorylation sites with activation of glycogen synthase kinase-3β (GSK-3β), Cyclin-dependent kinase (Cdk5), Calcium/calmodulin-dependent protein kinase II (CaMKII), and protein kinase B (Akt), and inhibition of protein phosphatase (PP) 2A (PP-2A). Interestingly, enriched environment (EE) treatment, an effect environment stimuli filled with various novel objects, could prevent rats from the EE-induced memory deficits and alterations of tau hyperphosphorylation. Our data suggested that EE might be potentially used for attenuating the detrimental cognition induced by CCH through regulating tau hyperphosphorylation.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/156720212801618974
2012-08-01
2025-09-07
Loading full text...

Full text loading...

/content/journals/cnr/10.2174/156720212801618974
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test