Skip to content
2000
Volume 1, Issue 4
  • ISSN: 1567-2026
  • E-ISSN: 1875-5739

Abstract

The idea that memory is manifested at the cellular level by enhancement of synaptic connections between simultaneously activated neurons has been suggested half a century ago by Hebb, and is widely accepted since. Much effort is done to describe such enhancement and reveal the underlying mechanisms. Learning-induced synaptic modifications were studied in the last decade with in-vitro brain slices preparations. Several forms of long-term enhancement of synaptic connections between layer II pyramidal neurons in the piriform cortex accompany olfactory learning. Such modifications were described also in other brain areas, following other training paradigms. Post-synaptic enhancement of synaptic transmission is indicated by reduced rise time of (post synaptic potentials) PSPs and formation of new synaptic connections is indicated by increased spine density along dendrites of these neurons. Enhanced synaptic release is indicated by reduced paired-pulse facilitation. In slices from trained rats predisposition for long-term potentiation is decreased and predisposition for long-term depression is increased. These modifications are attributed to olfactory-discrimination rule learning, rather than to memories for specific odors, and may be subsequent to intrinsic modifications in pyramidal neurons that create favorable conditions for activity-dependent synaptic enhancement.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/1567202043362090
2004-10-01
2025-09-19
Loading full text...

Full text loading...

/content/journals/cnr/10.2174/1567202043362090
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test