Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1567-2026
  • E-ISSN: 1875-5739
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026423887250627095817
2025-07-02
2025-09-10
Loading full text...

Full text loading...

/deliver/fulltext/cnr/22/1/CNR-22-1-01.html?itemId=/content/journals/cnr/10.2174/0115672026423887250627095817&mimeType=html&fmt=ahah

References

  1. SuL.D. WangN. HanJ. ShenY. Group 1 metabotropic glutamate receptors in neurological and psychiatric diseases: Mechanisms and prospective.Neuroscientist202228545346810.1177/10738584211021018 34088252
    [Google Scholar]
  2. ChenF. KeQ. WeiW. CuiL. WangY. Apolipoprotein E and viral infection: Risks and mechanisms.Mol. Ther. Nucleic Acids20233352954210.1016/j.omtn.2023.07.031 37588688
    [Google Scholar]
  3. SantomauroD.F. Mantilla HerreraA.M. ShadidJ. ZhengP. AshbaughC. PigottD.M. AbbafatiC. AdolphC. AmlagJ.O. AravkinA.Y. Bang-JensenB.L. BertolacciG.J. BloomS.S. CastellanoR. CastroE. ChakrabartiS. ChattopadhyayJ. CogenR.M. CollinsJ.K. DaiX. DangelW.J. DapperC. DeenA. EricksonM. EwaldS.B. FlaxmanA.D. FrostadJ.J. FullmanN. GilesJ.R. GirefA.Z. GuoG. HeJ. HelakM. HullandE.N. IdrisovB. LindstromA. LinebargerE. LotufoP.A. LozanoR. MagistroB. MaltaD.C. MånssonJ.C. MarinhoF. MokdadA.H. MonastaL. NaikP. NomuraS. O’HalloranJ.K. OstroffS.M. PasovicM. PenberthyL. ReinerR.C. ReinkeG. RibeiroA.L.P. SholokhovA. SorensenR.J.D. VaravikovaE. VoA.T. WalcottR. WatsonS. WiysongeC.S. ZiglerB. HayS.I. VosT. MurrayC.J.L. WhitefordH.A. FerrariA.J. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic.Lancet2021398103121700171210.1016/S0140‑6736(21)02143‑7 34634250
    [Google Scholar]
  4. FedeliU. Barbiellini AmideiC. AvossaF. SchievanoE. KingwellE. Association of multiple‐sclerosis‐related mortality with COVID‐19 and other common infections: A multiple causes of death analysis.Eur. J. Neurol.20233092870287310.1111/ene.15912 37306563
    [Google Scholar]
  5. MaieseK. Cognitive impairment in multiple sclerosis.Bioengineering202310787110.3390/bioengineering10070871 37508898
    [Google Scholar]
  6. Araujo-FilhoI. Menseses RêgoA.C. Post-acute covid-19 syndrome and stroke.J. Surg. Clin. Res.2024151445810.20398/jscr.v15i1.35636
    [Google Scholar]
  7. MorinC.M. CarrierJ. BastienC. GodboutR. CanadianS. CircadianN. Sleep and circadian rhythm in response to the COVID-19 pandemic.Can. J. Public Health2020111565465710.17269/s41997‑020‑00382‑7 32700231
    [Google Scholar]
  8. MaieseK. The mechanistic target of rapamycin (mTOR): Novel considerations as an antiviral treatment.Curr. Neurovasc. Res.202017333233710.2174/18755739MTA2sMTExy 32334502
    [Google Scholar]
  9. TangJ. LuL. YuanJ. FengL. Exercise-induced activation of SIRT1/BDNF/mTORC1 signaling pathway: A novel mechanism to reduce neuroinflammation and improve post-stroke depression.Actas Esp. Psiquiatr.202553236637810.62641/aep.v53i2.1838 40071363
    [Google Scholar]
  10. TarantiniL. MöllerC. SchiestlV. SordonS. Noll-HussongM. WittemannM. MenzieN. RiemenschneiderM. Objectifying persistent subjective cognitive impairment following COVID-19 infection: Cross-sectional data from an outpatient memory-clinic in Germany.Eur. Arch. Psychiatry Clin. Neurosci.202510.1007/s00406‑025‑01978‑1
    [Google Scholar]
  11. AlonsoJ. LiuZ. Evans-LackoS. SadikovaE. SampsonN. ChatterjiS. AbdulmalikJ. Aguilar-GaxiolaS. Al-HamzawiA. AndradeL.H. BruffaertsR. CardosoG. CiaA. FlorescuS. de GirolamoG. GurejeO. HaroJ.M. HeY. de JongeP. KaramE.G. KawakamiN. Kovess-MasfetyV. LeeS. LevinsonD. Medina-MoraM.E. Navarro-MateuF. PennellB.E. PiazzaM. Posada-VillaJ. ten HaveM. ZarkovZ. KesslerR.C. ThornicroftG. Treatment gap for anxiety disorders is global: Results of the world mental health surveys in 21 countries.Depress. Anxiety201835319520810.1002/da.22711 29356216
    [Google Scholar]
  12. BlundellJ. KouserM. PowellC.M. Systemic inhibition of mammalian target of rapamycin inhibits fear memory reconsolidation.Neurobiol. Learn. Mem.2008901283510.1016/j.nlm.2007.12.004 18316213
    [Google Scholar]
  13. BouayedJ. RammalH. SoulimaniR. Oxidative stress and anxiety: Relationship and cellular pathways.Oxid. Med. Cell. Longev.200922636710.4161/oxim.2.2.7944 20357926
    [Google Scholar]
  14. MaieseK. High anxiety: Recognizing stress as the stressor.Oxid. Med. Cell. Longev.200922616210.4161/oxim.2.2.8842 20357925
    [Google Scholar]
  15. RoweM.K. WiestC. ChuangD.M. GSK-3 is a viable potential target for therapeutic intervention in bipolar disorder.Neurosci. Biobehav. Rev.200731692093110.1016/j.neubiorev.2007.03.002 17499358
    [Google Scholar]
  16. AksuI. AtesM. BaykaraB. KirayM. SismanA.R. BuyukE. BaykaraB. CetinkayaC. GumusH. UysalN. Anxiety correlates to decreased blood and prefrontal cortex IGF-1 levels in streptozotocin induced diabetes.Neurosci. Lett.2012531217618110.1016/j.neulet.2012.10.045 23123774
    [Google Scholar]
  17. LiX. LinX. ZhangZ. ZhuangZ. LiY. LuoY. PanY. LuoQ. ChenX. Neurotoxicity and aggressive behavior induced by anesthetic etomidate exposure in zebrafish: Insights from multi-omics and machine learning.Aquat. Toxicol.202528210732110.1016/j.aquatox.2025.107321 40068374
    [Google Scholar]
  18. Puigoriol-IllamolaD. Griñán-FerréC. VasilopoulouF. LeivaR. VázquezS. PallàsM. 11β-HSD1 inhibition by RL-118 promotes autophagy and correlates with reduced oxidative stress and inflammation, enhancing cognitive performance in SAMP8 mouse model.Mol. Neurobiol.201855128904891510.1007/s12035‑018‑1026‑8 29611102
    [Google Scholar]
  19. BahorikA. BobrowK. HoangT. YaffeK. Increased risk of dementia in older female US veterans with alcohol use disorder.Addiction202111682049205510.1111/add.15416 33449402
    [Google Scholar]
  20. BarnettJ.A. BandyM.L. GibsonD.L. Is the use of glyphosate in modern agriculture resulting in increased neuropsychiatric conditions through modulation of the gut-brain-microbiome axis?Front. Nutr.2022982738410.3389/fnut.2022.827384 35356729
    [Google Scholar]
  21. GaoK. ChenC. KeX. FanQ. WangH. LiY. ChenS. Improvements of age-related cognitive decline in mice by Lactobacillus helveticus WHH1889, a novel strain with psychobiotic properties.Nutrients20231517385210.3390/nu15173852 37686884
    [Google Scholar]
  22. LiY. DuanR. GongZ. JingL. ZhangT. ZhangY. JiaY. Neurofilament light chain is a promising biomarker in alcohol dependence.Front. Psychiatry20211275496910.3389/fpsyt.2021.754969 34867542
    [Google Scholar]
  23. AmanollahiM. JameieM. HeidariA. RezaeiN. The dialogue between neuroinflammation and adult neurogenesis: Mechanisms involved and alterations in neurological diseases.Mol. Neurobiol.202360292395910.1007/s12035‑022‑03102‑z 36383328
    [Google Scholar]
  24. ÇalışkanH. ÖnalD. NalçacıE. Darbepoetin alpha has an anxiolytic and anti-neuroinflammatory effect in male rats.BMC Immunol.20242517510.1186/s12865‑024‑00665‑5 39523336
    [Google Scholar]
  25. ChenQ.Y. ZhangY. MaY. ZhuoM. Inhibition of cortical synaptic transmission, behavioral nociceptive, and anxiodepressive-like responses by arecoline in adult mice.Mol. Brain20241713910.1186/s13041‑024‑01106‑5 38886822
    [Google Scholar]
  26. MehraS. AhsanA.U. SharmaM. BudhwarM. ChopraM. Gestational fisetin exerts neuroprotection by regulating mitochondria-directed canonical Wnt signaling, BBB integrity, and apoptosis in prenatal VPA-induced rodent model of autism.Mol. Neurobiol.20246174001402010.1007/s12035‑023‑03826‑6 38048031
    [Google Scholar]
  27. NagataW. KoizumiA. NakagawaK. TakahashiS. GotohM. SatohY. IshizukaT. Treatment with lysophosphatidic acid prevents microglial activation and depression-like behaviours in a murine model of neuropsychiatric systemic lupus erythematosus.Clin. Exp. Immunol.20232122819210.1093/cei/uxad010 36718978
    [Google Scholar]
  28. TangB. ZengW. SongL.L. WangH.M. QuL.Q. LoH.H. YuL. WuA.G. WongV.K.W. LawB.Y.K. Extracellular vesicle delivery of neferine for the attenuation of neurodegenerative disease proteins and motor deficit in an Alzheimer’s disease mouse model.Pharmaceuticals20221518310.3390/ph15010083 35056140
    [Google Scholar]
  29. CrossnohereN.L. CampoamorN.B. NegashR. WoodM. StudtsJ.L. ElsaidM.I. DonneyongM. PaskettE.D. JonasD.E. StoverD.G. DoubeniC.A. BridgesJ.F.P. Public perspectives on multi-cancer early detection: A qualitative study.Cancer Contr.2024311073274824129160910.1177/10732748241291609 39397323
    [Google Scholar]
  30. PengX. FanR. XieL. ShiX. DongK. ZhangS. TaoJ. XuW. MaD. ChenJ. YangY. A growing link between circadian rhythms, type 2 diabetes mellitus and Alzheimer’s disease.Int. J. Mol. Sci.202223150410.3390/ijms23010504 35008933
    [Google Scholar]
  31. PoddarN.K. KhanA. FatimaF. SaxenaA. GhaleyG. KhanS. Association of mTOR pathway and conformational alterations in C-reactive protein in neurodegenerative diseases and infections.Cell. Mol. Neurobiol.20234383815383210.1007/s10571‑023‑01402‑z 37665407
    [Google Scholar]
  32. ChongthamA. RamakrishnanA. FarinasM. BroekaartD.W.M. SeoJ.H. ZhuC.W. SanoM. ShenL. PereiraA.C. Neocortical tau propagation is a mediator of clinical heterogeneity in Alzheimer’s disease.Mol. Psychiatry202510.1038/s41380‑025‑02998‑y 40234685
    [Google Scholar]
  33. ClemmensenF.K. GramkowM.H. SimonsenA.H. AshtonN.J. HuberH. BlennowK. ZetterbergH. WaldemarG. HasselbalchS.G. FrederiksenK.S. Short-term variability of Alzheimer’s disease plasma biomarkers in a mixed memory clinic cohort.Alzheimers Res. Ther.20251712610.1186/s13195‑024‑01658‑7 39838483
    [Google Scholar]
  34. ElbazE.M. IbrahimS.M. RashadE. YasinN.A.E. GhaiadH.R. MehanaN.A. Therapeutic role of l -theanine in mitigating cognitive dysfunction and neuropathology in scopolamine-treated mice. ACSChem. Neurosci.2025acschemneuro.5c00351.10.1021/acschemneuro.5c00351 40504752
    [Google Scholar]
  35. HunjanG. AranK.R. Role of mGluR7 in Alzheimer’s disease: Pathophysiological insights and therapeutic approaches.Inflammopharmacology202510.1007/s10787‑025‑01765‑3 40316832
    [Google Scholar]
  36. NazirS.S. GoelD. VohoraD. A network pharmacology-based approach to decipher the pharmacological mechanisms of Salvia officinalis in neurodegenerative disorders.Metab. Brain Dis.202540519010.1007/s11011‑025‑01599‑6 40266402
    [Google Scholar]
  37. ZhangC. HuY. CaoX. DengY. WangY. GuanM. WuX. JiangH. Lower water-soluble vitamins and higher homocysteine are associated with neurodegenerative diseases.Sci. Rep.20251511886610.1038/s41598‑025‑03859‑y 40442330
    [Google Scholar]
  38. MaieseK. Biological gases, oxidative stress, artificial intelligence, and machine learning for neurodegeneration and metabolic disorders.Med. Gas Res.202515114514710.4103/mgr.MEDGASRES‑D‑24‑00059 39436188
    [Google Scholar]
  39. MaieseK. Diabetes mellitus and glymphatic dysfunction: Roles for oxidative stress, mitochondria, circadian rhythm, artificial intelligence, and imaging.World J. Diabetes20251619894810.4239/wjd.v16.i1.98948 39817214
    [Google Scholar]
  40. XieL. CuiS. GuoN. LiA. ZhangJ. Research hotspots and frontiers of stem cells for Alzheimer’s disease. Chin J.Tissue Eng. Res.202529714751485
    [Google Scholar]
  41. MosharafM.P. AlamK. GowJ. MahumudR.A. MollahM.N.H. Common molecular and pathophysiological underpinnings of delirium and Alzheimer’s disease: Molecular signatures and therapeutic indications.BMC Geriatr.202424171610.1186/s12877‑024‑05289‑3 39210294
    [Google Scholar]
  42. JellingerK.A. Cognitive impairment in multiple sclerosis: From phenomenology to neurobiological mechanisms.J. Neural Transm.2024131887189910.1007/s00702‑024‑02786‑y 38761183
    [Google Scholar]
  43. ShafiekM.S. MekkyR.Y. NassarN.N. El-YamanyM.F. RabieM.A. Vortioxetine ameliorates experimental autoimmune encephalomyelitis model of multiple sclerosis in mice via activation of PI3K/Akt/CREB/BDNF cascade and modulation of serotonergic pathway signaling.Eur. J. Pharmacol.202498217692910.1016/j.ejphar.2024.176929 39181226
    [Google Scholar]
  44. MaieseK. Clinical depression, the mechanistic target of rapamycin (mTOR), and forkhead transcription factors (FoxOs).Curr. Neurovasc. Res.202320442943310.2174/1567202620999230928124725 37767959
    [Google Scholar]
  45. AravapallyP.S.N. ChandrasekarN. VermaA. ShahR.P. Strategic approaches to assess and quantify the oxidative stress biomarkers in complex biological systems.Bioanalysis202517856157410.1080/17576180.2025.2486929 40183176
    [Google Scholar]
  46. BaserK.H.C. HaskologluI.C. ErdagE. Molecular links between circadian rhythm disruption, melatonin, and neurodegenerative diseases: An updated review.Molecules2025309188810.3390/molecules30091888 40363695
    [Google Scholar]
  47. KhaitinA.M. GuzenkoV.V. BachurinS.S. DemyanenkoS.V. c-Myc and FOXO3a—the everlasting decision between neural regeneration and degeneration.Int. J. Mol. Sci.202425231262110.3390/ijms252312621 39684331
    [Google Scholar]
  48. MaieseK. The mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (SIRT1): Oversight for neurodegenerative disorders.Biochem. Soc. Trans.201846235136010.1042/BST20170121 29523769
    [Google Scholar]
  49. MaieseK. The impact of aging and oxidative stress in metabolic and nervous system disorders: Programmed cell death and molecular signal transduction crosstalk.Front. Immunol.202314127357010.3389/fimmu.2023.1273570
    [Google Scholar]
  50. ParabS. ParekhN. ApteK. SinghD. KumawatV. Bagwe-ParabS. Unraveling the mechanisms of hydrophilic vitamins in Alzheimer’s and Parkinson’s: Preclinical and clinical evidence.In: Hydrophilic Vitamins in Health. and Disease. ShahA.K. TappiaP.S. DhallaN.S. ChamAdvances in Biochemistry in Health and Disease Springer20242910.1007/978‑3‑031‑55474‑2_8
    [Google Scholar]
  51. ShafieA. AshourA.A. AnwarS. AnjumF. HassanM.I. Exploring molecular mechanisms, therapeutic strategies, and clinical manifestations of Huntington’s disease.Arch. Pharm. Res.202447657159510.1007/s12272‑024‑01499‑w 38764004
    [Google Scholar]
  52. AbdallaM.M.I. Insulin resistance as the molecular link between diabetes and Alzheimer’s disease.World J. Diabetes20241571430144710.4239/wjd.v15.i7.1430 39099819
    [Google Scholar]
  53. KwokI. LattieE.G. YangD. SummersA. CottenP. LeongC.A. MoskowitzJ.T. Developing social enhancements for a web-based, positive emotion intervention for Alzheimer disease caregivers: Qualitative focus group and interview study.JMIR Form. Res.202485023410.2196/50234 38662432
    [Google Scholar]
  54. WertmanE. Essential new complexity-based themes for patient-centered diagnosis and treatment of dementia and predementia in older people: Multimorbidity and multilevel phenomenology.J. Clin. Med.20241314420210.3390/jcm13144202 39064242
    [Google Scholar]
  55. MaieseK. Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR.Neural Regen. Res.201611337238510.4103/1673‑5374.179032 27127460
    [Google Scholar]
  56. MaieseK. Impacting dementia and cognitive loss with innovative strategies: Mechanistic target of rapamycin, clock genes, circular non-coding ribonucleic acids, and Rho/Rock.Neural Regen. Res.201914577377410.4103/1673‑5374.249224 30688262
    [Google Scholar]
  57. MaieseK. Cognitive impairment with diabetes mellitus and metabolic disease: Innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways.Expert Rev. Clin. Pharmacol.2020131233410.1080/17512433.2020.1698288 31794280
    [Google Scholar]
  58. MaieseK. Cornerstone cellular pathways for metabolic disorders and diabetes mellitus: Non-coding RNAs, wnt signaling, and AMPK.Cells20231222259510.3390/cells12222595 37998330
    [Google Scholar]
  59. FesselJ. Personalized, precision medicine to cure Alzheimer’s dementia: Approach #1.Int. J. Mol. Sci.2024257
    [Google Scholar]
  60. GrimaldiL. BoviE. FormisanoR. SancesarioG. ApoE. ApoE. The non-protagonist actor in neurological diseases.Genes20241511139710.3390/genes15111397 39596597
    [Google Scholar]
  61. IbrahimW.W. SayedR.H. AbdelhameedM.F. OmaraE.A. NassarM.I. AbdelkaderN.F. FaragM.A. ElshamyA.I. AfifiS.M. Neuroprotective potential of Erigeron bonariensis ethanolic extract against ovariectomized/D-galactose-induced memory impairments in female rats in relation to its metabolite fingerprint as revealed using UPLC/MS.Inflammopharmacology20243221091111210.1007/s10787‑023‑01418‑3 38294617
    [Google Scholar]
  62. KaratiD. MeurS. RoyS. MukherjeeS. DebnathB. JhaS.K. Glycogen synthase kinase 3 (GSK3) inhibition: A potential therapeutic strategy for Alzheimer’s disease.Naunyn Schmiedebergs Arch. Pharmacol.2024[PMID: 39432068
    [Google Scholar]
  63. MaieseK. Cognitive impairment and dementia: Gaining insight through circadian clock gene pathways.Biomolecules2021117100210.3390/biom11071002 34356626
    [Google Scholar]
  64. MaieseK. Cellular metabolism: A fundamental component of degeneration in the nervous system.Biomolecules202313581610.3390/biom13050816 37238686
    [Google Scholar]
  65. NagarajanA. LairdJ. UgochukwuO. ReppeS. GautvikK. RossR.D. BennettD.A. RosenC. KielD.P. HigginbothamL.A. SeyfriedN.T. LaryC.W. Network analysis of brain and bone tissue transcripts reveals shared molecular mechanisms underlying Alzheimer’s disease and related dementias and osteoporosis.J. Gerontol. A Biol. Sci. Med. Sci.20247911glae21110.1093/gerona/glae211 39194133
    [Google Scholar]
  66. TangH. ShaabanC.E. DeKoskyS.T. SmithG.E. HuX. JaffeeM. SalloumR.G. BianJ. GuoJ. Association of education attainment, smoking status, and alcohol use disorder with dementia risk in older adults: A longitudinal observational study.Alzheimers Res. Ther.202416120610.1186/s13195‑024‑01569‑7 39294787
    [Google Scholar]
  67. Trujillo-RangelW.Á. Acuña-VacaS. Padilla-PonceD.J. García-MercadoF.G. Torres-MendozaB.M. Pacheco-MoisesF.P. Escoto-DelgadilloM. García-BenavidesL. Delgado-LaraD.L.C. Modulation of the circadian rhythm and oxidative stress as molecular targets to improve vascular dementia: A pharmacological perspective.Int. J. Mol. Sci.2024258440110.3390/ijms25084401 38673986
    [Google Scholar]
  68. VargasK.G. MilicJ. ZaciragicA. WenK. JaspersL. NanoJ. DhanaK. BramerW.M. KrajaB. van BeeckE. IkramM.A. MukaT. FrancoO.H. The functions of estrogen receptor beta in the female brain: A systematic review.Maturitas201693415710.1016/j.maturitas.2016.05.014 27338976
    [Google Scholar]
  69. MaieseK. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease.Int. Rev. Neurobiol.202015513510.1016/bs.irn.2020.01.009 32854851
    [Google Scholar]
  70. AmidfarM. GarcezM.L. KimY.K. The shared molecular mechanisms underlying aging of the brain, major depressive disorder, and Alzheimer’s disease: The role of circadian rhythm disturbances.Prog. Neuropsychopharmacol. Biol. Psychiatry202312311072110.1016/j.pnpbp.2023.110721 36702452
    [Google Scholar]
  71. MaieseK. Moving to the rhythm with clock (circadian) genes, autophagy, mTOR, and SIRT1 in degenerative disease and cancer.Curr. Neurovasc. Res.2017143299304[PMID: 28721811
    [Google Scholar]
  72. RoccaroI. SmirniD. Fiat lux: The light became therapy. An overview on the bright light therapy in Alzheimer’s disease sleep disorders.J. Alzheimers Dis.202077111312510.3233/JAD‑200478 32804145
    [Google Scholar]
  73. LiuB. ZhaoG. JinL. ShiJ. Nicotinamide improves cognitive function in mice with chronic cerebral hypoperfusion.Front. Neurol.20211259664110.3389/fneur.2021.596641 33569040
    [Google Scholar]
  74. NaD. LimD.H. HongJ.S. LeeH.M. ChoD. YuM.S. ShakerB. RenJ. LeeB. SongJ.G. OhY. LeeK. OhK.S. LeeM.Y. ChoiM.S. ChoiH.S. KimY.H. BuiJ.M. LeeK. KimH.W. LeeY.S. GsponerJ. A multi‐layered network model identifies Akt1 as a common modulator of neurodegeneration.Mol. Syst. Biol.202319121180110.15252/msb.202311801 37984409
    [Google Scholar]
  75. MaieseK. Targeting the core of neurodegeneration: FoxO, mTOR, and SIRT1.Neural Regen. Res.202116344845510.4103/1673‑5374.291382 32985464
    [Google Scholar]
  76. HadamitzkyM. HerringA. KirchhofJ. BendixI. HaightM.J. KeyvaniK. LückemannL. UnteroberdörsterM. SchedlowskiM. Repeated systemic treatment with rapamycin affects behavior and amygdala protein expression in rats.Int. J. Neuropsychopharmacol.201821659260210.1093/ijnp/pyy017 29462337
    [Google Scholar]
  77. Colín-MartínezE. Espino-de-la-FuenteC. AriasC. Age- and sex-associated wnt signaling dysregulation is exacerbated from the early stages of neuropathology in an Alzheimer’s disease model.Neurochem. Res.202449113094310410.1007/s11064‑024‑04224‑7 39167347
    [Google Scholar]
  78. MaieseK. Microglia: Formidable players in Alzheimer’s disease and other neurodegenerative disorders.Curr. Neurovasc. Res.202320551551810.2174/1567202620999231027155308 37888824
    [Google Scholar]
  79. TrisalA. SinghA.K. Clinical insights on caloric restriction mimetics for mitigating brain aging and related neurodegeneration.Cell. Mol. Neurobiol.20244416710.1007/s10571‑024‑01493‑2 39412683
    [Google Scholar]
  80. JuD.T. HuangR.F.S. TsaiB.C.K. SuY.C. ChiuP.L. ChangY.M. PadmaV.V. HoT.J. YaoC.H. KuoW.W. HuangC.Y. Folic acid and folinic acid protect hearts of aging triple-transgenic Alzheimer’s disease mice via IGF1R/PI3K/AKT and SIRT1/AMPK pathways.Neurotox. Res.202341664865910.1007/s12640‑023‑00666‑z 37707697
    [Google Scholar]
  81. MaieseK. The metabolic basis for nervous system dysfunction in Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease.Curr. Neurovasc. Res.202320331433310.2174/1567202620666230721122957 37488757
    [Google Scholar]
  82. ZhangW. HuangY. GuoX. ZhangM. YuanX. ZuH. DHCR24 reverses Alzheimer’s disease-related pathology and cognitive impairment via increasing hippocampal cholesterol levels in 5xFAD mice.Acta Neuropathol. Commun.202311110210.1186/s40478‑023‑01593‑y 37344916
    [Google Scholar]
  83. ConzeC. TrushinaN.I. Monteiro-AbreuN. SinghL. RomeroD.V. WienbeukerE. SchwarzeA.S. HoltmannspötterM. BakotaL. BrandtR. Redox signaling modulates axonal microtubule organization and induces a specific phosphorylation signature of microtubule-regulating proteins.Redox Biol.20258310362610.1016/j.redox.2025.103626 40222271
    [Google Scholar]
  84. GuptaS. AfzalM. AgrawalN. AlmalkiW.H. RanaM. GangolaS. ChinniS.V. KumarK. B.; Ali, H.; Singh, S.K.; Jha, S.K.; Gupta, G. Harnessing the FOXO-SIRT1 axis: Insights into cellular stress, metabolism, and aging.Biogerontology20252626510.1007/s10522‑025‑10207‑0 40011269
    [Google Scholar]
  85. LiuS. LiuT. LiJ. HongJ. Moosavi-MovahediA.A. WeiJ. Type 2 diabetes mellitus exacerbates pathological processes of Parkinson’s disease: Insights from signaling pathways mediated by insulin receptors.Neurosci. Bull.202541467669010.1007/s12264‑024‑01342‑8 39754628
    [Google Scholar]
  86. MaieseK. Nicotinamide as a foundation for treating neurodegenerative disease and metabolic disorders.Curr. Neurovasc. Res.202118113414910.2174/18755739MTEzaMDMw2 33397266
    [Google Scholar]
  87. MaieseK. FoxO. FoxO transcription factors and regenerative pathways in diabetes mellitus.Curr. Neurovasc. Res.201512440441310.2174/1567202612666150807112524 26256004
    [Google Scholar]
  88. MaieseK. Prospects and perspectives for WISP1 (CCN4) in diabetes mellitus.Curr. Neurovasc. Res.202017332733110.2174/1567202617666200327125257 32216738
    [Google Scholar]
  89. MohanM. MannanA. SinghT.G. Unravelling the role of protein kinase R (PKR) in neurodegenerative disease: A review.Mol. Biol. Rep.202552137710.1007/s11033‑025‑10484‑5 40205152
    [Google Scholar]
  90. PangJ. CenC. TianY. CaoX. HaoL. TaoX. CaoZ. Targeting Shp2 as a therapeutic strategy for neurodegenerative diseases.Transl. Psychiatry2025151610.1038/s41398‑024‑03222‑1 39794316
    [Google Scholar]
  91. MaieseK. Mitochondria, mitophagy, mitoptosis, and programmed cell death: Implications from aging to cancer.Curr. Neurovasc. Res.20242111510.2174/1567202621999240118155618 38251666
    [Google Scholar]
  92. ShenY. ChenQ.C. LiC.Y. HanF.J. Independent organelle and organelle—organelle interactions: Essential mechanisms for malignant gynecological cancer cell survival.Front. Immunol.202415139385210.3389/fimmu.2024.1393852 38711526
    [Google Scholar]
  93. ZhouR. BarnesK. GibsonS. FillmoreN. Dual-edged role of SIRT1 in energy metabolism and cardiovascular disease.Am. J. Physiol. Heart Circ. Physiol.20243275H1162H117310.1152/ajpheart.00001.2024 39269450
    [Google Scholar]
  94. ZhuG. ZuoQ. LiuS. ZhengP. ZhangY. ZhangX. RollinsJ.A. LiuJ. PanH. A FOX transcription factor phosphorylated for regulation of autophagy facilitates fruiting body development in Sclerotinia sclerotiorum.New Phytol.202524662683270110.1111/nph.70151 40248859
    [Google Scholar]
  95. GaoF. YangZ. LiJ. The miR-34a-5p promotes hippocampal neuronal ferroptosis in epilepsy by regulating SIRT1.Neurochem. Res.202550212410.1007/s11064‑025‑04378‑y 40126751
    [Google Scholar]
  96. HanG. HuK. LuoT. WangW. ZhangD. OuyangL. LiuX. LiuJ. WuY. LiangJ. LingJ. ChenY. XuanR. ZhangJ. YuP. Research progress of non-coding RNA regulating the role of PANoptosis in diabetes mellitus and its complications.Apoptosis2025303-451653610.1007/s10495‑024‑02066‑w 39755822
    [Google Scholar]
  97. DzikK.P. FlisD.J. Kaczor-KellerK.B. BytowskaZ.K. KarniaM.J. ZiółkowskiW. KaczorJ.J. Spinal cord abnormal autophagy and mitochondria energy metabolism are modified by swim training in SOD1-G93A mice.J. Mol. Med.2024102337939010.1007/s00109‑023‑02410‑8 38197966
    [Google Scholar]
  98. MaieseK. New insights for nicotinamide Metabolic disease autophagy and mTOR.Front. Biosci.202025111925197310.2741/4886 32472766
    [Google Scholar]
  99. MaieseK. Innovative therapeutic strategies for cardiovascular disease.EXCLI J.202322690715[PMID: 37593239
    [Google Scholar]
  100. FoserS. MaieseK. DigumarthyS.R. Puig-ButilleJ.A. RebhanC. Looking to the future of early detection in cancer: Liquid biopsies, imaging, and artificial intelligence.Clin. Chem.2024701273210.1093/clinchem/hvad196 38175601
    [Google Scholar]
  101. MaieseK. Cardiovascular and nonalcoholic fatty liver disease: Sharing common ground through SIRT1 pathways.World J. Cardiol.2024161163264310.4330/wjc.v16.i11.632 39600987
    [Google Scholar]
  102. KlionskyD.J. Abdel-AzizA.K. AbdelfatahS. AbdellatifM. AbdoliA. AbelS. Guidelines for the use and interpretation of assays for monitoring autophagy.Autophagy20211711382
    [Google Scholar]
  103. MaieseK. ChongZ.Z. ShangY.C. WangS. mTOR: On target for novel therapeutic strategies in the nervous system.Trends Mol. Med.2013191516010.1016/j.molmed.2012.11.001 23265840
    [Google Scholar]
  104. FuJ. DuM. WuB. WuC. LiX. TanW. HuangX. ZhuZ. ZhangJ. LiaoZ.B. CircRNA Itm2b induces oxidative stress via the interaction with Sirt1-Nox4 to aggravate sleep disturbances after traumatic brain injury.Cell Biosci.20251512110.1186/s13578‑025‑01353‑6 39962534
    [Google Scholar]
  105. ChenY.C. WangW.S. LewisS.J.G. WuS.L. Fighting against the clock: Circadian disruption and Parkinson’s disease.J. Mov. Disord.202417111410.14802/jmd.23216 37989149
    [Google Scholar]
  106. DiT. GuoM. XuJ. FengC. DuY. WangL. ChenY. Circadian clock genes REV-ERBα regulates the secretion of IL-1β in deciduous tooth pulp stem cells by regulating autophagy in the process of physiological root resorption of deciduous teeth.Dev. Biol.202451081610.1016/j.ydbio.2024.02.008 38403101
    [Google Scholar]
  107. DiT. ZhouZ. LiuF. ChenY. WangL. Autophagy and circadian rhythms: Interactions and clinical implications.Biocell2024481334510.32604/biocell.2023.031638
    [Google Scholar]
  108. MaieseK. Neurodegeneration, memory loss, and dementia: The impact of biological clocks and circadian rhythm.Front. Biosci.202126961462710.52586/4971 34590471
    [Google Scholar]
  109. MieleckiD. Bratek-GerejE. SalińskaE. Metabotropic glutamate receptors—guardians and gatekeepers in neonatal hypoxic-ischemic brain injury.Pharmacol. Rep.20247661272128510.1007/s43440‑024‑00653‑x 39289333
    [Google Scholar]
  110. EyobW. GeorgeA.K. HommeR.P. StanisicD. SandhuH. TyagiS.C. SinghM. Regulation of the parental gene GRM4 by circGrm4 RNA transcript and glutamate-mediated neurovascular toxicity in eyes.Mol. Cell. Biochem.2021476266367310.1007/s11010‑020‑03934‑0 33074445
    [Google Scholar]
  111. ZhangZ. ZhengX. LiuY. LuanY. WangL. ZhaoL. ZhangJ. TianY. LuH. ChenX. LiuY. Activation of metabotropic glutamate receptor 4 regulates proliferation and neural differentiation in neural stem/progenitor cells of the rat subventricular zone and increases phosphatase and tensin homolog protein expression.J. Neurochem.2021156446548010.1111/jnc.14984 32052426
    [Google Scholar]
  112. ChongZ.Z. LiF. MaieseK. Oxidative stress in the brain: Novel cellular targets that govern survival during neurodegenerative disease.Prog. Neurobiol.200575320724610.1016/j.pneurobio.2005.02.004 15882775
    [Google Scholar]
  113. MaieseK. ChongZ. LiF. Driving cellular plasticity and survival through the signal transduction pathways of metabotropic glutamate receptors.Curr. Neurovasc. Res.20052542544610.2174/156720205774962692 16375723
    [Google Scholar]
  114. MaieseK. ChongZ.Z. ShangY.C. HouJ. Therapeutic promise and principles: Metabotropic glutamate receptors.Oxid. Med. Cell. Longev.20081111410.4161/oxim.1.1.6842 19750024
    [Google Scholar]
  115. AliT. RahmanS.U. HaoQ. LiW. LiuZ. Ali ShahF. MurtazaI. ZhangZ. YangX. LiuG. LiS. Melatonin prevents neuroinflammation and relieves depression by attenuating autophagy impairment through FOXO3a regulation.J. Pineal Res.20206921266710.1111/jpi.12667 32375205
    [Google Scholar]
  116. GuS. LiY. JiangY. HuangJ.H. WangF. Glymphatic dysfunction induced oxidative stress and neuro-inflammation in major depression disorders.Antioxidants20221111229610.3390/antiox11112296
    [Google Scholar]
  117. SakaiM. YuZ. HirayamaR. NakasatoM. KikuchiY. OnoC. KomatsuH. NakanishiM. YoshiiH. StellwagenD. FuruyashikiT. KomatsuM. TomitaH. Deficient autophagy in microglia aggravates repeated social defeat stress-induced social avoidance.Neural Plast.2022202211310.1155/2022/7503553 35222638
    [Google Scholar]
  118. TaiS.H. ChaoL.C. HuangS.Y. LinH.W. LeeA.H. ChenY.Y. LeeE.J. Nicotinamide deteriorates post-stroke immunodepression following cerebral ischemia–reperfusion injury in mice.Biomedicines2023118214510.3390/biomedicines11082145 37626642
    [Google Scholar]
  119. AdhikariU.K. KhanR. MikhaelM. BalezR. DavidM.A. MahnsD. HardyJ. TayebiM. Therapeutic anti‐amyloid β antibodies cause neuronal disturbances.Alzheimers Dement.20231962479249610.1002/alz.12833 36515320
    [Google Scholar]
  120. FangmaY. WanH. ShaoC. JinL. HeY. Research progress on the role of sirtuin 1 in cerebral ischemia.Cell. Mol. Neurobiol.20234351769178310.1007/s10571‑022‑01288‑3 36153473
    [Google Scholar]
  121. InoueM. TanidaT. KondoT. TakenakaS. NakajimaT. Oxygen-glucose deprivation-induced glial cell reactivity in the rat primary neuron-glia co-culture.J. Vet. Med. Sci.202385879980810.1292/jvms.23‑0175 37407448
    [Google Scholar]
  122. MaieseK. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders.Br. J. Clin. Pharmacol.20168251245126610.1111/bcp.12804 26469771
    [Google Scholar]
  123. GaoJ. XuH. RongZ. ChenL. Wnt family member 1 (Wnt1) overexpression-induced M2 polarization of microglia alleviates inflammation-sensitized neonatal brain injuries.Bioengineered2022135124091242010.1080/21655979.2022.2074767 35603707
    [Google Scholar]
  124. González-FernándezC. GonzálezP. González-PérezF. RodríguezF.J. Characterization of ex vivo and in vitro wnt transcriptome induced by spinal cord injury in rat microglial cells.Brain Sci.202212670810.3390/brainsci12060708 35741593
    [Google Scholar]
  125. ShangY.C. ChongZ.Z. HouJ. MaieseK. Wnt1, FoxO3a, and NF-κB oversee microglial integrity and activation during oxidant stress.Cell. Signal.20102291317132910.1016/j.cellsig.2010.04.009 20462515
    [Google Scholar]
  126. ShangY.C. ChongZ.Z. WangS. MaieseK. Prevention of β-amyloid degeneration of microglia by erythropoietin depends on Wnt1, the PI 3-K/mTOR pathway, Bad, and Bcl-xL.Aging20124318720110.18632/aging.100440 22388478
    [Google Scholar]
  127. RangarajanP. KarthikeyanA. LuJ. LingE.A. DheenS.T. Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia.Neuroscience201531139841410.1016/j.neuroscience.2015.10.048 26523980
    [Google Scholar]
  128. WangY. LinY. WangL. ZhanH. LuoX. ZengY. WuW. ZhangX. WangF. TREM2 ameliorates neuroinflammatory response and cognitive impairment via PI3K/AKT/FoxO3a signaling pathway in Alzheimer’s disease mice.Aging20201220208622087910.18632/aging.104104 33065553
    [Google Scholar]
  129. MaieseK. ChongZ.Z. HouJ. ShangY.C. Oxidative stress: Biomarkers and novel therapeutic pathways.Exp. Gerontol.201045321723410.1016/j.exger.2010.01.004 20064603
    [Google Scholar]
  130. MaieseK. ChongZ.Z. ShangY.C. OutFOXOing disease and disability: The therapeutic potential of targeting FoxO proteins.Trends Mol. Med.200814521922710.1016/j.molmed.2008.03.002 18403263
    [Google Scholar]
  131. LoaneD.J. StoicaB.A. ByrnesK.R. JeongW. FadenA.I. Activation of mGluR5 and inhibition of NADPH oxidase improves functional recovery after traumatic brain injury.J. Neurotrauma201330540341210.1089/neu.2012.2589 23199080
    [Google Scholar]
  132. WilliamsC.J. DexterD.T. Neuroprotective and symptomatic effects of targeting group III mG lu receptors in neurodegenerative disease.J. Neurochem.2014129142010.1111/jnc.12608 24224472
    [Google Scholar]
  133. LinS.H. MaieseK. The metabotropic glutamate receptor system protects against ischemic free radical programmed cell death in rat brain endothelial cells.J. Cereb. Blood Flow Metab.200121326227510.1097/00004647‑200103000‑00010 11295881
    [Google Scholar]
  134. MaieseK. Cellular mechanisms of neuronal protection by metabotropic glutamate receptors.In: Frontiers in Cerebrovascular Disease: Mechanisms, Diagnosis, and Treatment Robertson JT. NowakT.S. Armonk, NYFutura Publishing Company, Inc.1998281297
    [Google Scholar]
  135. SunN. VictorM.B. ParkY.P. XiongX. ScannailA.N. LearyN. ProsperS. ViswanathanS. LunaX. BoixC.A. JamesB.T. TanigawaY. GalaniK. MathysH. JiangX. NgA.P. BennettD.A. TsaiL.H. KellisM. Human microglial state dynamics in Alzheimer’s disease progression.Cell20231862043864403.e2910.1016/j.cell.2023.08.037 37774678
    [Google Scholar]
  136. HaratizadehS. NematiM. BasiriM. NozariM. Erythropoietin and glial cells in central and peripheral nervous systems.Mol. Biol. Rep.2024511106510.1007/s11033‑024‑09997‑2 39422776
    [Google Scholar]
  137. SamuelsJ.D. LukensJ.R. PriceR.J. Emerging roles for ITAM and ITIM receptor signaling in microglial biology and Alzheimer’s disease-related amyloidosis.J. Neurochem.20241681035583573[PMID: 37822118
    [Google Scholar]
  138. FesselJ. Cure of Alzheimer’s dementia requires addressing all of the affected brain cell types.J. Clin. Med.2023125204910.3390/jcm12052049 36902833
    [Google Scholar]
  139. WangM. ZhangS. LiuX. WangP. ZhuY. ZhuJ. LvC. LiS. LiuS. WenL. Salvianolic acid B ameliorates retinal deficits in an early-stage Alzheimer’s disease mouse model through downregulating BACE1 and Aβ generation.Acta Pharmacol. Sin.202344112151216810.1038/s41401‑023‑01125‑3 37420104
    [Google Scholar]
  140. WangR. ZhuY. QinL.F. XuZ.G. GaoX.R. LiuC.B. XuG.T. ChenY.Z. Comprehensive bibliometric analysis of stem cell research in Alzheimer’s disease from 2004 to 2022.Dement. Geriatr. Cogn. Disord.2023522477310.1159/000528886 37068473
    [Google Scholar]
  141. MorrisG. BerkM. MaesM. PuriB.K. Could Alzheimer’s disease originate in the periphery and if so how so?Mol. Neurobiol.201956140643410.1007/s12035‑018‑1092‑y 29705945
    [Google Scholar]
  142. CarobeneA. MaieseK. Abou-DiwanC. LocatelliM. SerteserM. CoskunA. UnsalI. Biological variation estimates for serum neurofilament light chain in healthy subjects.Clin. Chim. Acta202355111760810.1016/j.cca.2023.117608 37844678
    [Google Scholar]
  143. LiX. LiK. ChuF. HuangJ. YangZ. Graphene oxide enhances β-amyloid clearance by inducing autophagy of microglia and neurons.Chem. Biol. Interact.202032510912610.1016/j.cbi.2020.109126 32430275
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026423887250627095817
Loading

  • Article Type:
    Editorial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test