Skip to content
2000
image of New Perspectives on Stroke: The Immune-inflammatory-mitochondrial Axis

Abstract

Introduction

To delineate the distinct immunoregulatory and mitochondrial characteristics in patients with acute ischemic stroke (AIS) and intracerebral hemorrhage (ICH).

Methods

We conducted a cross-sectional study (34 AIS, 27 ICH, 30 controls) and a dynamic tracking study (1 AIS, 1 ICH). T-cell subpopulations, mitochondrial mass (MM), low mitochondrial membrane potential (MMPlow, %), and cytokine profiles were analyzed. Limitations include the small dynamic cohort and potential treatment-related confounding.

Results

The percentages of T regulatory lymphocytes (Treg%) and effector T regulatory

lymphocytes (eTreg%) were significantly higher in AIS patients than in ICH patients ( = 0.029, = 0.017) and correlated with disease severity in AIS patients ( = 0.024, = 0.014). The

IL-10/IL-6 ratio was significantly higher in AIS than in ICH patients ( = 0.004). AIS patients exhibited predominant changes in CD4+ (T4) lymphocyte subsets, whereas ICH patients showed more pronounced alterations in CD8+ (T8) subsets, with corresponding mitochondrial damage observed in T-cells in both groups.

Discussion

Despite limitations from the small dynamic cohort and inherent clinical confounders, this study demonstrates that AIS and ICH are characterized by distinct and evolving immune-inflammatory-mitochondrial axes. These preliminary findings highlight the role of Treg cells in AIS and suggest divergent T-cell subset involvement, providing a rationale for developing subtype-specific therapeutic strategies targeting the immune–mitochondrial axis.

Conclusion

Our study delineates a distinct immune–inflammatory–mitochondrial axis in stroke, characterized by predominant CD4+ involvement in AIS CD8+ T-cell alterations in ICH. These findings underscore the potential for immunomodulatory and mitochondrial-protective strategies tailored to specific stroke subtypes.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026420631251201053456
2025-12-30
2026-01-26
Loading full text...

Full text loading...

References

  1. Naghavi M. Ong K.L. Aali A. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2024 403 10440 2100 2132 10.1016/S0140‑6736(24)00367‑2 38582094
    [Google Scholar]
  2. Kleindorfer D.O. Towfighi A. Chaturvedi S. 2021 guideline for the prevention of stroke in patients with stroke and transient ischemic attack: A guideline from the American Heart Association/American Stroke Association. Stroke 2021 52 7 e364 e467 10.1161/STR.0000000000000375 34024117
    [Google Scholar]
  3. Flippo K.H. Strack S. Mitochondrial dynamics in neuronal injury, development and plasticity. J. Cell Sci. 2017 130 4 671 681 10.1242/jcs.171017 28154157
    [Google Scholar]
  4. Alsbrook D.L. Di Napoli M. Bhatia K. Neuroinflammation in Acute Ischemic and Hemorrhagic Stroke. Curr. Neurol. Neurosci. Rep. 2023 23 8 407 431 10.1007/s11910‑023‑01282‑2 37395873
    [Google Scholar]
  5. Li X. Chen G. CNS-peripheral immune interactions in hemorrhagic stroke. J. Cereb. Blood Flow Metab. 2023 43 2 185 197 10.1177/0271678X221145089 36476130
    [Google Scholar]
  6. Wang Y. Zhang Z. Hang X. Wang W. Associations of Inflammatory Markers With Neurological Dysfunction and Prognosis in Patients With Progressive Stroke. Eur. J. Neurol. 2025 32 2 e70080 10.1111/ene.70080 39957269
    [Google Scholar]
  7. Yu Y.R. Imrichova H. Wang H. Disturbed mitochondrial dynamics in CD8+ TILs reinforce T cell exhaustion. Nat. Immunol. 2020 21 12 1540 1551 10.1038/s41590‑020‑0793‑3 33020660
    [Google Scholar]
  8. Collier J.J. Oláhová M. McWilliams T.G. Taylor R.W. Mitochondrial signalling and homeostasis: From cell biology to neurological disease. Trends Neurosci. 2023 46 2 137 152 10.1016/j.tins.2022.12.001 36635110
    [Google Scholar]
  9. An H. Zhou B. Ji X. Mitochondrial quality control in acute ischemic stroke. J. Cereb. Blood Flow Metab. 2021 41 12 3157 3170 10.1177/0271678X211046992 34551609
    [Google Scholar]
  10. Ma Y. Song R. Duan C. Mitochondrial quality control and transfer communication in neurological disorders and neuroinflammation. Front. Immunol. 2025 16 1542369 10.3389/fimmu.2025.1542369 40356918
    [Google Scholar]
  11. Liu J. Liu L. Wang X. Jiang R. Bai Q. Wang G. Microglia: A double-edged sword in intracerebral hemorrhage from basic mechanisms to clinical research. Front. Immunol. 2021 12 675660 10.3389/fimmu.2021.675660 34025674
    [Google Scholar]
  12. Jurcau A. Simion A. Neuroinflammation in cerebral ischemia and ischemia/reperfusion injuries: From pathophysiology to therapeutic strategies. Int. J. Mol. Sci. 2021 23 1 14 10.3390/ijms23010014 35008440
    [Google Scholar]
  13. Qiu Y. Zhang C. Chen A. Immune Cells in the BBB Disruption After Acute Ischemic Stroke: Targets for Immune Therapy? Front. Immunol. 2021 12 678744 10.3389/fimmu.2021.678744 34248961
    [Google Scholar]
  14. Gong Z. Guo J. Liu B. Mechanisms of immune response and cell death in ischemic stroke and their regulation by natural compounds. Front. Immunol. 2024 14 1287857 10.3389/fimmu.2023.1287857 38274789
    [Google Scholar]
  15. Xue M. Yong V.W. Neuroinflammation in intracerebral haemorrhage: immunotherapies with potential for translation. Lancet Neurol. 2020 19 12 1023 1032 10.1016/S1474‑4422(20)30364‑1 33212054
    [Google Scholar]
  16. Yao M. Fang J. Li J. Modulation of the proteoglycan receptor PTPσ promotes white matter integrity and functional recovery after intracerebral hemorrhage stroke in mice. J. Neuroinflammation 2022 19 1 207 10.1186/s12974‑022‑02561‑4 35982473
    [Google Scholar]
  17. Tschoe C. Bushnell C.D. Duncan P.W. Alexander-Miller M.A. Wolfe S.Q. Neuroinflammation after Intracerebral Hemorrhage and Potential Therapeutic Targets. J. Stroke 2020 22 1 29 46 10.5853/jos.2019.02236 32027790
    [Google Scholar]
  18. Yang J.L. Mukda S. Chen S.D. Diverse roles of mitochondria in ischemic stroke. Redox Biol. 2018 16 263 275 10.1016/j.redox.2018.03.002 29549824
    [Google Scholar]
  19. Watts L. Lloyd R. Garling R. Duong T. Stroke neuroprotection: Targeting mitochondria. Brain Sci. 2013 3 2 540 560 10.3390/brainsci3020540 24961414
    [Google Scholar]
  20. Hayakawa K. Esposito E. Wang X. Transfer of mitochondria from astrocytes to neurons after stroke. Nature 2016 535 7613 551 555 10.1038/nature18928 27466127
    [Google Scholar]
  21. Wang C. Gu L. Zhang Y. Gao Y. Jian Z. Xiong X. Bibliometric insights into the inflammation and mitochondrial stress in ischemic stroke. Exp. Neurol. 2024 378 114845 10.1016/j.expneurol.2024.114845 38838802
    [Google Scholar]
  22. Sun Y. Li Q. Guo H. He Q. Ferroptosis and iron metabolism after intracerebral hemorrhage. Cells 2022 12 1 90 10.3390/cells12010090 36611883
    [Google Scholar]
  23. Zhu H. Wang Z. Yu J. Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage. Prog. Neurobiol. 2019 178 101610 10.1016/j.pneurobio.2019.03.003 30923023
    [Google Scholar]
  24. Chen W. Guo C. Feng H. Chen Y. Mitochondria: Novel mechanisms and therapeutic targets for secondary brain injury after intracerebral hemorrhage. Front. Aging Neurosci. 2021 12 615451 10.3389/fnagi.2020.615451 33584246
    [Google Scholar]
  25. Melmed K.R. Lele A.V. Ayodele M. Time to Acute Treatment in Intracerebral Hemorrhage Lags Significantly Behind Ischemic Stroke: A Multicenter, Observational Retrospective Study. Stroke 2025 56 11 3268 3279 10.1161/STROKEAHA.125.051422 40899253
    [Google Scholar]
  26. El Seblani N. Kalra S. Kalra D. Al-Mufti F. Nagaraja N. Effect of prior use of statins on endovascular thrombectomy outcomes in acute ischemic stroke. Clin. Neurol. Neurosurg. 2025 249 108724 10.1016/j.clineuro.2025.108724 39787891
    [Google Scholar]
  27. Anthony S. Cabantan D. Monsour M. Borlongan C.V. Neuroinflammation, Stem Cells, and Stroke. Stroke 2022 53 5 1460 1472 10.1161/STROKEAHA.121.036948 35380050
    [Google Scholar]
  28. Wen P. Sun Z. Gou F. Oxidative stress and mitochondrial impairment: Key drivers in neurodegenerative disorders. Ageing Res. Rev. 2025 104 102667 10.1016/j.arr.2025.102667 39848408
    [Google Scholar]
  29. Lai B. Wu D. Xiao Q. Qiangji decoction mitigates neuronal damage, synaptic and mitochondrial dysfunction in SAMP8 mice through the regulation of ROCK2/Drp1-mediated mitochondrial dynamics. J. Ethnopharmacol. 2025 342 119424 10.1016/j.jep.2025.119424 39884484
    [Google Scholar]
  30. Shi X. Luo L. Wang J. Stroke subtype-dependent synapse elimination by reactive gliosis in mice. Nat. Commun. 2021 12 1 6943 10.1038/s41467‑021‑27248‑x 34836962
    [Google Scholar]
  31. Iadecola C. Buckwalter M.S. Anrather J. Immune responses to stroke: Mechanisms, modulation, and therapeutic potential. J. Clin. Invest. 2020 130 6 2777 2788 10.1172/JCI135530 32391806
    [Google Scholar]
  32. Biltz R.G. Sawicki C.M. Sheridan J.F. Godbout J.P. The neuroimmunology of social-stress-induced sensitization. Nat. Immunol. 2022 23 11 1527 1535 10.1038/s41590‑022‑01321‑z 36369271
    [Google Scholar]
  33. Ma L. Han Q. Cheng L. Altered mitochondrial mass and low mitochondrial membrane potential of immune cells in patients with HBV infection and correlation with liver inflammation. Front. Immunol. 2024 15 1477646 10.3389/fimmu.2024.1477646 39650657
    [Google Scholar]
  34. Pang L.X. Cai W.W. Chen L. The diagnostic value of mitochondrial mass of peripheral T lymphocytes in early sepsis. Front. Public Health 2022 10 928306 10.3389/fpubh.2022.928306 35910903
    [Google Scholar]
  35. Wang B. Chen Z. Huang Y. Mitochondrial mass of circulating NK cells as a novel biomarker in severe SARS-CoV-2 infection. Int. Immunopharmacol. 2023 124 110839 10.1016/j.intimp.2023.110839
    [Google Scholar]
  36. Yang M. He Y. Deng S. Mitochondrial quality control: A Pathophysiological mechanism and therapeutic target for stroke. Front. Mol. Neurosci. 2022 14 786099 10.3389/fnmol.2021.786099 35153669
    [Google Scholar]
  37. Liesz A. Suri-Payer E. Veltkamp C. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat. Med. 2009 15 2 192 199 10.1038/nm.1927 19169263
    [Google Scholar]
  38. Liesz A. Hu X. Kleinschnitz C. Offner H. Functional role of regulatory lymphocytes in stroke: facts and controversies. Stroke 2015 46 5 1422 1430 10.1161/STROKEAHA.114.008608 25791715
    [Google Scholar]
  39. Zhou X. Xue S. Si X.K. Impact of peripheral lymphocyte subsets on prognosis for patients after acute ischemic stroke: A potential disease prediction model approach. CNS Neurosci. Ther. 2024 30 8 e70023 10.1111/cns.70023 39205499
    [Google Scholar]
  40. Ohashi S.N. DeLong J.H. Kozberg M.G. Role of inflammatory processes in hemorrhagic stroke. Stroke 2023 54 2 605 619 10.1161/STROKEAHA.122.037155 36601948
    [Google Scholar]
  41. Costa S. Bevilacqua D. Cassatella M.A. Scapini P. Recent advances on the crosstalk between neutrophils and B or T lymphocytes. Immunology 2019 156 1 23 32 10.1111/imm.13005 30259972
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026420631251201053456
Loading
/content/journals/cnr/10.2174/0115672026420631251201053456
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test