Skip to content
2000
image of Circadian Patterns of Heart Rate and Heart Rate Variability in Wake-up Stroke: Evidence of Parasympathetic Dysregulation

Abstract

Introduction

Although ischemic stroke is associated with complex changes in the autonomic nervous system, the circadian patterns of heart rate (HR) and heart rate variability (HRV) in wake-up stroke (WUS) remain poorly understood. This study compared 24-hour heart rate and HRV patterns between patients with and without WUS.

Methods

This retrospective observational case-control study involved 104 patients with acute ischemic stroke (9 WUS, 95 non-WUS). HRV analysis was performed using a 14-day continuous electrocardiography patch monitor. Time- and frequency-domain HRV metrics were calculated, and 24-hour differences were assessed using generalized additive mixed models (GAMMs), adjusting for confounders.

Results

WUS patients had significantly higher HRs (80.60 ± 12.49 . 73.22 ± 14.49 beats per minute, < 0.001) and lower HRV-measured by SDNN (28.06 ± 21.68 . 39.70 ± 25.73 milliseconds, < 0.001), RMSSD (15.78 ± 12.49 . 22.16 ± 19.22 milliseconds, < 0.001), and pNN50 (1.03% ± 2.78% . 2.61% ± 5.15%, < 0.001)-than non-WUS patients. GAMMs indicated that patients with WUS experienced significant autonomic dysregulation, characterized by higher HRs, lower HRV, and altered circadian rhythms compared to those with non-WUS. These differences were particularly evident during the early morning hours.

Discussion

WUS patients exhibited distinct 24-hour HR and HRV profiles, characterized by higher HRs and reduced autonomic variability compared to non-WUS patients. These differences align with patterns typically associated with lower parasympathetic activity rather than elevated sympathetic tone.

Conclusion

WUS is associated with impaired autonomic regulation and disrupted circadian patterns of HR and HRV.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026418606251007070743
2025-10-21
2025-10-30
Loading full text...

Full text loading...

References

  1. Allada R. Bass J. Circadian mechanisms in medicine. N. Engl. J. Med. 2021 384 6 550 561 10.1056/NEJMra1802337 33567194
    [Google Scholar]
  2. Baschieri F. Cortelli P. Circadian rhythms of cardiovascular autonomic function: Physiology and clinical implications in neurodegenerative diseases. Auton. Neurosci. 2019 217 91 101 10.1016/j.autneu.2019.01.009 30744907
    [Google Scholar]
  3. Sammito S. Thielmann B. Böckelmann I. Update: Factors influencing heart rate variability–a narrative review. Front. Physiol. 2024 15 1430458 10.3389/fphys.2024.1430458 39165281
    [Google Scholar]
  4. Hayter E.A. Wehrens S.M.T. Van Dongen H.P.A. Distinct circadian mechanisms govern cardiac rhythms and susceptibility to arrhythmia. Nat. Commun. 2021 12 1 2472 10.1038/s41467‑021‑22788‑8 33931651
    [Google Scholar]
  5. Shaffer F. Ginsberg J.P. An overview of heart rate variability metrics and norms. Front. Public Health 2017 5 258 10.3389/fpubh.2017.00258 29034226
    [Google Scholar]
  6. Singh B. Huang D. The role of circadian rhythms in stroke: A narrative review. Neurochem. Res. 2024 49 2 290 305 10.1007/s11064‑023‑04040‑5 37838637
    [Google Scholar]
  7. Zhang L. Wu H. Zhang X. Wei X. Hou F. Ma Y. Sleep heart rate variability assists the automatic prediction of long-term cardiovascular outcomes. Sleep Med. 2020 67 217 224 10.1016/j.sleep.2019.11.1259 31972509
    [Google Scholar]
  8. Kamat P.K. Khan M.B. Smith C. The time dimension to stroke: Circadian effects on stroke outcomes and mechanisms. Neurochem. Int. 2023 162 105457 10.1016/j.neuint.2022.105457 36442686
    [Google Scholar]
  9. Lo E.H. Faraci F.M. Circadian mechanisms in cardiovascular and cerebrovascular disease. Circ. Res. 2024 134 6 615 617 10.1161/CIRCRESAHA.124.324462 38484030
    [Google Scholar]
  10. Zhang W. Li Q. Zou N. Zhang G. Qin X. Zhu C. Clinical characteristics and functional outcomes of wake-up stroke in the Chinese population. Eur. Neurol. 2020 83 2 138 146 10.1159/000506198 32492689
    [Google Scholar]
  11. Silva G.S. Lima F.O. Camargo E.C.S. Wake-up stroke: Clinical and neuroimaging characteristics. Cerebrovasc. Dis. 2010 29 4 336 342 10.1159/000278929 20130399
    [Google Scholar]
  12. Zhang Y.L. Zhang J.F. Wang X.X. Wang Y. Anderson C.S. Wu Y.C. Wake-up stroke: Imaging-based diagnosis and recanalization therapy. J. Neurol. 2021 268 11 4002 4012 10.1007/s00415‑020‑10055‑7 32671526
    [Google Scholar]
  13. Jiménez-Conde J. Ois A. Rodríguez-Campello A. Gomis M. Roquer J. Does sleep protect against ischemic stroke? Less frequent ischemic strokes but more severe ones. J. Neurol. 2007 254 6 782 788 10.1007/s00415‑006‑0438‑y 17351725
    [Google Scholar]
  14. Menéndez Albarracín A. Valls Carbó A. Rabaneda Lombarte N. Time of the day and season distribution among stroke code subtypes: Differences between ischemic stroke, intracranial hemorrhage, and stroke mimic. Front. Neurol. 2024 15 1372324 10.3389/fneur.2024.1372324 38595853
    [Google Scholar]
  15. Fodor D.M. Marta M.M. Perju-Dumbravă L. Implications of circadian rhythm in stroke occurrence: Certainties and possibilities. Brain Sci. 2021 11 7 865 10.3390/brainsci11070865 34209758
    [Google Scholar]
  16. Dimova V. Welte-Jzyk C. Kronfeld A. Brain connectivity networks underlying resting heart rate variability in acute ischemic stroke. Neuroimage Clin. 2024 41 103558 10.1016/j.nicl.2023.103558 38142520
    [Google Scholar]
  17. Electrophysiology T.F.E.S.C.N.A. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation 1996 93 5 1043 1065 10.1161/01.CIR.93.5.1043 8598068
    [Google Scholar]
  18. Elliott W.J. Circadian variation in the timing of stroke onset: a meta-analysis. Stroke 1998 29 5 992 996 10.1161/01.STR.29.5.992 9596248
    [Google Scholar]
  19. Lundholm M.D. Rooney M. Maas M.B. Attarian H. Prabhakaran S. Wake-up stroke is associated with greater nocturnal mean arterial pressure variability. Stroke 2017 48 6 1668 1670 10.1161/STROKEAHA.116.016202 28455315
    [Google Scholar]
  20. Ma Y. Chang M.C. Litrownik D. Wayne P.M. Yeh G.Y. Day–night patterns in heart rate variability and complexity: Differences with age and cardiopulmonary disease. J. Clin. Sleep Med. 2023 19 5 873 882 10.5664/jcsm.10434 36692177
    [Google Scholar]
  21. Young M.E. The cardiac circadian clock. JACC Basic Transl. Sci. 2023 8 12 1613 1628 10.1016/j.jacbts.2023.03.024 38205356
    [Google Scholar]
  22. Renna N.F. Ramirez J.M. Murua M. Morning blood pressure surge as a predictor of cardiovascular events in patients with hypertension. Blood Press. Monit. 2023 28 3 149 157 10.1097/MBP.0000000000000641 37058087
    [Google Scholar]
  23. Bilo G. Grillo A. Guida V. Parati G. Morning blood pressure surge: Pathophysiology, clinical relevance and therapeutic aspects. Integr. Blood Press. Control 2018 11 47 56 10.2147/IBPC.S130277 29872338
    [Google Scholar]
  24. Maqsood M.H. Messerli F.H. Skolnick A.H. Newman J.D. Berger J.S. Bangalore S. Timing of antihypertensive drug therapy: A systematic review and meta-analysis of randomized clinical trials. Hypertension 2023 80 7 1544 1554 10.1161/HYPERTENSIONAHA.122.20862 37212152
    [Google Scholar]
  25. Wu C. Zhao P. Xu P. Evening versus morning dosing regimen drug therapy for hypertension. Cochrane Libr. 2024 2024 2 CD004184 10.1002/14651858.CD004184.pub3 38353289
    [Google Scholar]
  26. Mackenzie I.S. Rogers A. Poulter N.R. Cardiovascular outcomes in adults with hypertension with evening versus morning dosing of usual antihypertensives in the UK (TIME study): A prospective, randomised, open-label, blinded-endpoint clinical trial. Lancet 2022 400 10361 1417 1425 TIME Study Group. 10.1016/S0140‑6736(22)01786‑X 36240838
    [Google Scholar]
  27. Hsiao S.H. Hwang T.J. Lin F.J. Sheu J.J. Wu C.H. The association between the use of cholinesterase inhibitors and cardiovascular events among older patients with alzheimer disease. Mayo Clin. Proc. 2021 96 2 350 362 10.1016/j.mayocp.2020.05.048 33549256
    [Google Scholar]
  28. Shahim B. Xu H. Haugaa K. Cholinesterase inhibitors are associated with reduced mortality in patients with Alzheimer’s disease and previous myocardial infarction. Eur. Heart J. Cardiovasc. Pharmacother. 2024 10 2 128 136 10.1093/ehjcvp/pvad102 38224338
    [Google Scholar]
  29. Hsieh M.J. Chen D.Y. Lee C.H. Association between cholinesterase inhibitors and new-onset heart failure in patients with Alzheimer’s disease: A nationwide propensity score matching study. Front. Cardiovasc. Med. 2022 9 831730 10.3389/fcvm.2022.831730 35369359
    [Google Scholar]
  30. Behling A. Moraes R.S. Rohde L.E. Ferlin E.L. Nóbrega A.C.L. Ribeiro J.P. Cholinergic stimulation with pyridostigmine reduces ventricular arrhythmia and enhances heart rate variability in heart failure. Am. Heart J. 2003 146 3 494 500 10.1016/S0002‑8703(03)00319‑3 12947369
    [Google Scholar]
  31. Nóbrega A.C.L. dos Reis A.F. Moraes R.S. Bastos B.G. Ferlin E.L. Ribeiro J.P. Enhancement of heart rate variability by cholinergic stimulation with pyridostigmine in healthy subjects. Clin. Auton. Res. 2001 11 1 11 17 10.1007/BF02317797 11503945
    [Google Scholar]
  32. Martorana A. Esposito Z. Koch G. Beyond the cholinergic hypothesis: Do current drugs work in Alzheimer’s disease? CNS Neurosci. Ther. 2010 16 4 235 245 10.1111/j.1755‑5949.2010.00175.x 20560995
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026418606251007070743
Loading
/content/journals/cnr/10.2174/0115672026418606251007070743
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test