Skip to content
2000
image of Cannabinoid Receptor 1: The Neural Gatekeeper of Health and Disease

Abstract

Introduction

An essential component of the endocannabinoid system, cannabinoid receptor type 1 (CB1) is primarily expressed in the central nervous system, where it regulates several neurophysiological activities. Neurotransmitter release, synaptic plasticity, mood modulation, and cognitive processes are all influenced by CB1 receptors. The CB1 receptor is closely linked to a wide range of brain-related disorders, and regulating its activity may be a way to treat several brain-related diseases.

Methods

Literature search across Google Scholar, Scopus, PubMed, and Web of Science, covering publications from 1985 to 2025, aimed to gather extensive information on the pharmacological role of the CB1 receptor in various brain illnesses. Using keywords such as “CB1,” “Brain,” “Epilepsy,” “Alzheimer’s,” “Parkinson’s disease,” “Neuroprotection,” and “Neurodegeneration,” this review consolidates existing knowledge and identifies potential avenues for future research.

Results

This study incorporates pre-clinical evidence and highlights the involvement of the CB1 receptor in etiologies, symptoms, and treatments related to distinct brain-related disorders.

Discussion

Potential treatment strategies that target the endocannabinoid system and the intricate relationship between CB1 receptor activity and its consequences in several brain disorders, including Parkinson’s disease, Huntington’s disease, Alzheimer’s disease, depression, anxiety, ., have been discussed. Additionally, the difficulties and disputes related to CB1 receptor modulation, including the contradictory actions of CB1 receptor agonists and antagonists, are also addressed.

Conclusion

The CB1 receptor is a promising therapeutic target for brain disorders due to its key role in regulating various physiological functions in the CNS, suggesting potential for the treatment of several brain disorders.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026403497250910124233
2025-09-17
2025-10-30
Loading full text...

Full text loading...

References

  1. Matei D. Trofin D. Iordan D.A. The endocannabinoid system and physical exercise. Int. J. Mol. Sci. 2023 24 3 1989 10.3390/ijms24031989 36768332
    [Google Scholar]
  2. Hill M.N. Haney M. Hillard C.J. Karhson D.S. Vecchiarelli H.A. The endocannabinoid system as a putative target for the development of novel drugs for the treatment of psychiatric illnesses. Psychol. Med. 2023 53 15 7006 7024 10.1017/S0033291723002465 37671673
    [Google Scholar]
  3. Chanda D. Neumann D. Glatz J.F.C. The endocannabinoid system: Overview of an emerging multi-faceted therapeutic target. Prostaglandins Leukot. Essent. Fatty Acids 2019 140 51 56 10.1016/j.plefa.2018.11.016 30553404
    [Google Scholar]
  4. Marzo V.D. Bifulco M. Petrocellis L.D. The endocannabinoid system and its therapeutic exploitation. Nat. Rev. Drug Discov. 2004 3 9 771 784 10.1038/nrd1495 15340387
    [Google Scholar]
  5. Musella A. Centonze D. Electrophysiology of endocannabinoid signaling. Methods Mol. Biol. 2023 2576 461 475 10.1007/978‑1‑0716‑2728‑0_38 36152210
    [Google Scholar]
  6. Oyagawa C.R.M. Grimsey N.L. Cannabinoid receptor CB1 and CB2 interacting proteins: Techniques, progress and perspectives. Methods Cell Biol. 2021 166 83 132 10.1016/bs.mcb.2021.06.011 34752341
    [Google Scholar]
  7. Eraso-Pichot A. Pouvreau S. Olivera-Pinto A. Gomez-Sotres P. Skupio U. Marsicano G. Endocannabinoid signaling in astrocytes. Glia 2023 71 1 44 59 10.1002/glia.24246 35822691
    [Google Scholar]
  8. Martinez Ramirez C.E. Ruiz-Pérez G. Stollenwerk T.M. Behlke C. Doherty A. Hillard C.J. Endocannabinoid signaling in the central nervous system. Glia 2023 71 1 5 35 10.1002/glia.24280 36308424
    [Google Scholar]
  9. Murataeva N. Straiker A. Mackie K. Parsing the players: 2‐arachidonoylglycerol synthesis and degradation in the CNS. Br. J. Pharmacol. 2014 171 6 1379 1391 10.1111/bph.12411 24102242
    [Google Scholar]
  10. Katona I. Freund T.F. Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat. Med. 2008 14 9 923 930 10.1038/nm.f.1869 18776886
    [Google Scholar]
  11. Borgan F. Kokkinou M. Howes O. The cannabinoid CB1 receptor in schizophrenia. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021 6 6 646 659 33077399
    [Google Scholar]
  12. Marsicano G. Lutz B. Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur. J. Neurosci. 1999 11 12 4213 4225 10.1046/j.1460‑9568.1999.00847.x 10594647
    [Google Scholar]
  13. Katona I. Sperlágh B. Sík A. Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J. Neurosci. 1999 19 11 4544 4558 10.1523/JNEUROSCI.19‑11‑04544.1999 10341254
    [Google Scholar]
  14. Marinelli S. Pacioni S. Bisogno T. The endocannabinoid 2-arachidonoylglycerol is responsible for the slow self-inhibition in neocortical interneurons. J. Neurosci. 2008 28 50 13532 13541 10.1523/JNEUROSCI.0847‑08.2008 19074027
    [Google Scholar]
  15. Busquets-Garcia A. Bains J. Marsicano G. CB1 Receptor signaling in the brain: Extracting specificity from ubiquity. Neuropsychopharmacology 2018 43 1 4 20 10.1038/npp.2017.206 28862250
    [Google Scholar]
  16. Busquets-García A. Bolaños J.P. Marsicano G. Metabolic messengers: endocannabinoids. Nat. Metab. 2022 4 7 848 855 10.1038/s42255‑022‑00600‑1 35817852
    [Google Scholar]
  17. Cristino L. Bisogno T. Di Marzo V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat. Rev. Neurol. 2020 16 1 9 29 10.1038/s41582‑019‑0284‑z 31831863
    [Google Scholar]
  18. Vasincu A. Rusu R.N. Ababei D.C. Endocannabinoid modulation in neurodegenerative diseases: In pursuit of certainty. Biology 2022 11 3 440 10.3390/biology11030440 35336814
    [Google Scholar]
  19. Mishra A. Mishra P.S. Bandopadhyay R. Neuroprotective potential of chrysin: Mechanistic insights and therapeutic potential for neurological disorders. Molecules 2021 26 21 6456 10.3390/molecules26216456 34770864
    [Google Scholar]
  20. Goyal A. Singh G. Verma A. A comprehensive review on therapeutic potential of chrysin in brain related disorders. CNS Neurol. Disord. Drug Targets 2023 22 6 789 800 10.2174/1871527321666220602111935 35657041
    [Google Scholar]
  21. Bala A. Gupta B.M. Parkinson′s disease in India: An analysis of publications output during 2002-2011. Int. J. Nutr. Pharmacol. Neurol. Dis. 2013 3 3 254 262 10.4103/2231‑0738.114849
    [Google Scholar]
  22. Pandit L. Kundapur R. Prevalence and patterns of demyelinating central nervous system disorders in urban Mangalore, South India. Mult. Scler. 2014 20 12 1651 1653 10.1177/1352458514521503 24493471
    [Google Scholar]
  23. Mishra A. Bandopadhyay R. Singh P.K. Mishra P.S. Sharma N. Khurana N. Neuroinflammation in neurological disorders: pharmacotherapeutic targets from bench to bedside. Metab. Brain Dis. 2021 36 7 1591 1626 10.1007/s11011‑021‑00806‑4 34387831
    [Google Scholar]
  24. Alger B.E. Retrograde signaling in the regulation of synaptic transmission: focus on endocannabinoids. Prog. Neurobiol. 2002 68 4 247 286 10.1016/S0301‑0082(02)00080‑1 12498988
    [Google Scholar]
  25. Araque A. Castillo P.E. Manzoni O.J. Tonini R. Synaptic functions of endocannabinoid signaling in health and disease. Neuropharmacology 2017 124 13 24 10.1016/j.neuropharm.2017.06.017 28625718
    [Google Scholar]
  26. Serrat R. Covelo A. Kouskoff V. Astroglial ER-mitochondria calcium transfer mediates endocannabinoid-dependent synaptic integration. Cell Rep. 2022 41 2 111499 10.1016/j.celrep.2022.111499 36223755
    [Google Scholar]
  27. Han J. Kesner P. Metna-Laurent M. Acute cannabinoids impair working memory through astroglial CB1 receptor modulation of hippocampal LTD. Cell 2012 148 5 1039 1050 10.1016/j.cell.2012.01.037 22385967
    [Google Scholar]
  28. Martín R. Bajo-Grañeras R. Moratalla R. Perea G. Araque A. Circuit-specific signaling in astrocyte-neuron networks in basal ganglia pathways. Science 2015 349 6249 730 734 10.1126/science.aaa7945 26273054
    [Google Scholar]
  29. Robin L.M. Oliveira da Cruz J.F. Langlais V.C. Astroglial CB1 receptors determine synaptic D-serine availability to enable recognition memory. Neuron 2018 98 5 935 944.e5 10.1016/j.neuron.2018.04.034 29779943
    [Google Scholar]
  30. Varshney V. Garabadu D. Ang(1–7) exerts Nrf2-mediated neuroprotection against amyloid beta-induced cognitive deficits in rodents. Mol. Biol. Rep. 2021 48 5 4319 4331 10.1007/s11033‑021‑06447‑1 34075536
    [Google Scholar]
  31. Goyal A. Verma A. Dubey N. Raghav J. Agrawal A. Naringenin: A prospective therapeutic agent for Alzheimer’s and Parkinson’s disease. J. Food Biochem. 2022 46 12 14415 10.1111/jfbc.14415 36106706
    [Google Scholar]
  32. Varshney V. Garabadu D. Ang (1–7)/Mas receptor-axis activation promotes amyloid beta-induced altered mitochondrial bioenergetics in discrete brain regions of Alzheimer’s disease-like rats. Neuropeptides 2021 86 102122 10.1016/j.npep.2021.102122 33508525
    [Google Scholar]
  33. Asher S. Priefer R. Alzheimer’s disease failed clinical trials. Life Sci. 2022 306 120861 10.1016/j.lfs.2022.120861 35932841
    [Google Scholar]
  34. Hippius H. Neundörfer G. The discovery of Alzheimer’s disease. Dialogues Clin. Neurosci. 2003 5 1 101 108 10.31887/DCNS.2003.5.1/hhippius 22034141
    [Google Scholar]
  35. Berry A.J. Zubko O. Reeves S.J. Howard R.J. Endocannabinoid system alterations in Alzheimer’s disease: A systematic review of human studies. Brain Res. 2020 1749 147135 10.1016/j.brainres.2020.147135 32980333
    [Google Scholar]
  36. Palmisano M. Gargano A. Olabiyi B.F. Lutz B. Bilkei-Gorzo A. Hippocampal deletion of CB1 receptor impairs social memory and leads to age-related changes in the hippocampus of adult mice. Int. J. Mol. Sci. 2022 24 1 26 10.3390/ijms24010026 36613469
    [Google Scholar]
  37. Marchalant Y. Cerbai F. Brothers H.M. Wenk G.L. Cannabinoid receptor stimulation is anti-inflammatory and improves memory in old rats. Neurobiol. Aging 2008 29 12 1894 1901 10.1016/j.neurobiolaging.2007.04.028 17561311
    [Google Scholar]
  38. Prudova A. Bauman Z. Braun A. Vitvitsky V. Lu S.C. Banerjee R. S -adenosylmethionine stabilizes cystathionine β-synthase and modulates redox capacity. Proc. Natl. Acad. Sci. USA 2006 103 17 6489 6494 10.1073/pnas.0509531103 16614071
    [Google Scholar]
  39. Anello G. Guéant-Rodríguez R.M. Bosco P. Homocysteine and methylenetetrahydrofolate reductase polymorphism in Alzheimer’s disease. Neuroreport 2004 15 5 859 861 10.1097/00001756‑200404090‑00025 15073531
    [Google Scholar]
  40. Dong M. Lu Y. Zha Y. Yang H. Endocannabinoid 2-arachidonylglycerol protects primary cultured neurons against homocysteine-induced impairments in rat caudate nucleus through CB1 receptor. J. Mol. Neurosci. 2015 55 2 500 508 10.1007/s12031‑014‑0371‑y 25007951
    [Google Scholar]
  41. Crunfli F. Vrechi T.A. Costa A.P. Torrão A.S. Cannabinoid receptor type 1 agonist ACEA improves cognitive deficit on STZ-induced neurotoxicity through apoptosis pathway and NO modulation. Neurotox. Res. 2019 35 3 516 529 10.1007/s12640‑018‑9991‑2 30607903
    [Google Scholar]
  42. Aso E. Palomer E. Juvés S. Maldonado R. Muñoz F.J. Ferrer I. CB1 agonist ACEA protects neurons and reduces the cognitive impairment of AβPP/PS1 mice. J. Alzheimers Dis. 2012 30 2 439 459 10.3233/JAD‑2012‑111862 22451318
    [Google Scholar]
  43. Moncada S. Higgs E.A. Endogenous nitric oxide: physiology, pathology and clinical relevance. Eur. J. Clin. Invest. 1991 21 4 361 374 10.1111/j.1365‑2362.1991.tb01383.x 1718757
    [Google Scholar]
  44. Esposito G. De Filippis D. Steardo L. CB1 receptor selective activation inhibits β-amyloid-induced iNOS protein expression in C6 cells and subsequently blunts tau protein hyperphosphorylation in co-cultured neurons. Neurosci. Lett. 2006 404 3 342 346 10.1016/j.neulet.2006.06.012 16837132
    [Google Scholar]
  45. Patricio-Martínez A. Sánchez-Zavaleta R. Angulo-Cruz I. The acute activation of the CB1 receptor in the hippocampus decreases neurotoxicity and prevents spatial memory impairment in rats lesioned with β-amyloid 25-35. Neuroscience 2019 416 239 254 10.1016/j.neuroscience.2019.08.001 31400487
    [Google Scholar]
  46. Abate G. Uberti D. Tambaro S. Potential and limits of cannabinoids in Alzheimer’s disease therapy. Biology 2021 10 6 542 10.3390/biology10060542 34204237
    [Google Scholar]
  47. Stumm C. Hiebel C. Hanstein R. Cannabinoid receptor 1 deficiency in a mouse model of Alzheimer’s disease leads to enhanced cognitive impairment despite of a reduction in amyloid deposition. Neurobiol. Aging 2013 34 11 2574 2584 10.1016/j.neurobiolaging.2013.05.027 23838176
    [Google Scholar]
  48. Aso E. Andrés-Benito P. Ferrer I. Genetic deletion of CB1 cannabinoid receptors exacerbates the Alzheimer-like symptoms in a transgenic animal model. Biochem. Pharmacol. 2018 157 210 216 10.1016/j.bcp.2018.08.007 30096288
    [Google Scholar]
  49. Nedaei S.E. Rezayof A. Pourmotabbed A. Nasehi M. Zarrindast M.R. Activation of endocannabinoid system in the rat basolateral amygdala improved scopolamine-induced memory consolidation impairment. Behav. Brain Res. 2016 311 183 191 10.1016/j.bbr.2016.05.043 27230394
    [Google Scholar]
  50. Ramírez B.G. Blázquez C. del Pulgar T.G. Guzmán M. de Ceballos M.L. Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J. Neurosci. 2005 25 8 1904 1913 10.1523/JNEUROSCI.4540‑04.2005 15728830
    [Google Scholar]
  51. Medina-Vera D. Rosell-Valle C. López-Gambero A.J. Imbalance of endocannabinoid/lysophosphatidylinositol receptors marks the severity of alzheimer’s disease in a preclinical model: A therapeutic opportunity. Biology 2020 9 11 377 10.3390/biology9110377 33167441
    [Google Scholar]
  52. González de San Román E. Llorente-Ovejero A. Martínez-Gardeazabal J. Modulation of neurolipid signaling and specific lipid species in the triple transgenic mouse model of Alzheimer’s disease. Int. J. Mol. Sci. 2021 22 22 12256 10.3390/ijms222212256 34830150
    [Google Scholar]
  53. Bedse G. Romano A. Cianci S. Altered expression of the CB1 cannabinoid receptor in the triple transgenic mouse model of Alzheimer’s disease. J. Alzheimers Dis. 2014 40 3 701 712 10.3233/JAD‑131910 24496074
    [Google Scholar]
  54. Albayram O. Bilkei-Gorzo A. Zimmer A. Loss of CB1 receptors leads to differential age-related changes in reward-driven learning and memory. Front. Aging Neurosci. 2012 4 34 10.3389/fnagi.2012.00034 23227007
    [Google Scholar]
  55. Hasegawa Y. Kim J. Ursini G. Microglial cannabinoid receptor type 1 mediates social memory deficits in mice produced by adolescent THC exposure and 16p11.2 duplication. Nat. Commun. 2023 14 1 6559 10.1038/s41467‑023‑42276‑5 37880248
    [Google Scholar]
  56. Tian L. Qiang T. Liu S. Cannabinoid receptor 1 ligands: Biased signaling mechanisms driving functionally selective drug discovery. Pharmacol. Ther. 2025 267 108795 10.1016/j.pharmthera.2025.108795 39828030
    [Google Scholar]
  57. Chiang K.E. Hsiao Y.T. Activation of cannabinoid receptor type 1 impairs spatial and temporal aspects of episodic-like memories in rats. J. Integr. Neurosci. 2020 19 1 11 19 10.31083/j.jin.2020.01.1190 32259882
    [Google Scholar]
  58. Bialuk I. Winnicka M.M. AM251, cannabinoids receptors ligand, improves recognition memory in rats. Pharmacol. Rep. 2011 63 3 670 679 10.1016/S1734‑1140(11)70578‑3 21857077
    [Google Scholar]
  59. Peñaloza-Sancho V. Pérez-Valenzuela C. Gonzalez C. Jujihara G. Bustos P. Dagnino-Subiabre A. Cannabinoid receptor type 1 modulates the effects of polyunsaturated fatty acids on memory of stressed rats. Nutr. Neurosci. 2021 24 8 583 600 10.1080/1028415X.2019.1659561 31637966
    [Google Scholar]
  60. Lee J.H. Agacinski G. Williams J.H. Intact cannabinoid CB1 receptors in the Alzheimer’s disease cortex. Neurochem. Int. 2010 57 8 985 989 10.1016/j.neuint.2010.10.010 21034788
    [Google Scholar]
  61. Manuel I. de San Román E.G. Giralt M.T. Ferrer I. Rodríguez-Puertas R. Type-1 cannabinoid receptor activity during Alzheimer’s disease progression. J. Alzheimers Dis. 2014 42 3 761 766 10.3233/JAD‑140492 24946872
    [Google Scholar]
  62. Verma A. Goyal A. Beyond insulin: The Intriguing role of GLP-1 in Parkinson’s disease. Eur. J. Pharmacol. 2024 982 176936 10.1016/j.ejphar.2024.176936 39182542
    [Google Scholar]
  63. Goyal A. Solanki K. Verma A. Luteolin: Nature’s promising warrior against Alzheimer’s and Parkinson’s disease. J. Biochem. Mol. Toxicol. 2024 38 1 23619 10.1002/jbt.23619 38091364
    [Google Scholar]
  64. More S.V. Choi D.K. Promising cannabinoid-based therapies for Parkinson’s disease: motor symptoms to neuroprotection. Mol. Neurodegener. 2015 10 1 17 10.1186/s13024‑015‑0012‑0 25888232
    [Google Scholar]
  65. Fox S.H. Brotchie J.M. Lang A.E. Non-dopaminergic treatments in development for Parkinson’s disease. Lancet Neurol. 2008 7 10 927 938 10.1016/S1474‑4422(08)70214‑X 18848312
    [Google Scholar]
  66. Benarroch E. Endocannabinoids in basal ganglia circuits. Neurology 2007 69 3 306 309 10.1212/01.wnl.0000267407.79757.75 17636069
    [Google Scholar]
  67. Wilson R.I. Nicoll R.A. Endocannabinoid signaling in the brain. Science 2002 296 5568 678 682 10.1126/science.1063545 11976437
    [Google Scholar]
  68. Molina-Holgado E. Vela J.M. Arévalo-Martín A. Cannabinoids promote oligodendrocyte progenitor survival: involvement of cannabinoid receptors and phosphatidylinositol-3 kinase/Akt signaling. J. Neurosci. 2002 22 22 9742 9753 10.1523/JNEUROSCI.22‑22‑09742.2002 12427829
    [Google Scholar]
  69. Bouaboula M. Bourrié B. Rinaldi-Carmona M. Shire D. Fur G.L. Casellas P. Stimulation of cannabinoid receptor CB1 induces krox-24 expression in human astrocytoma cells. J. Biol. Chem. 1995 270 23 13973 13980 10.1074/jbc.270.23.13973 7775459
    [Google Scholar]
  70. Walter L. Franklin A. Witting A. Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J. Neurosci. 2003 23 4 1398 1405 10.1523/JNEUROSCI.23‑04‑01398.2003 12598628
    [Google Scholar]
  71. Bisogno T. Berrendero F. Ambrosino G. Brain regional distribution of endocannabinoids: implications for their biosynthesis and biological function. Biochem. Biophys. Res. Commun. 1999 256 2 377 380 10.1006/bbrc.1999.0254 10079192
    [Google Scholar]
  72. Van Laere K. Casteels C. Lunskens S. Regional changes in type 1 cannabinoid receptor availability in Parkinson’s disease in vivo. Neurobiol. Aging 2012 33 3 620.e1 620.e8 10.1016/j.neurobiolaging.2011.02.009 21459482
    [Google Scholar]
  73. Ceccarini J. Casteels C. Ahmad R. Regional changes in the type 1 cannabinoid receptor are associated with cognitive dysfunction in Parkinson’s disease. Eur. J. Nucl. Med. Mol. Imaging 2019 46 11 2348 2357 10.1007/s00259‑019‑04445‑x 31342135
    [Google Scholar]
  74. Ajalin R. Al-Abdulrasul H. Tuisku J.M. Impaired gait, postural instability, and rigidity in relation to CB1 receptor availability in Parkinson’s disease. Mov. Disord. 2025 40 1 163 167 10.1002/mds.30042 39435606
    [Google Scholar]
  75. Chaves-Kirsten G.P. Mazucanti C.H.Y. Real C.C. Souza B.M. Britto L.R.G. Torrão A.S. Temporal changes of CB1 cannabinoid receptor in the basal ganglia as a possible structure-specific plasticity process in 6-OHDA lesioned rats. PLoS One 2013 8 10 76874 10.1371/journal.pone.0076874 24116178
    [Google Scholar]
  76. Binda K.H. Landau A.M. Chacur M. Brooks D.J. Real C.C. Treadmill exercise modulates nigral and hippocampal cannabinoid receptor type 1 in the 6-OHDA model of Parkinson’s disease. Brain Res. 2023 1814 148436 10.1016/j.brainres.2023.148436 37268248
    [Google Scholar]
  77. Chung Y.C. Bok E. Huh S.H. Cannabinoid receptor type 1 protects nigrostriatal dopaminergic neurons against MPTP neurotoxicity by inhibiting microglial activation. J. Immunol. 2011 187 12 6508 6517 10.4049/jimmunol.1102435 22079984
    [Google Scholar]
  78. Erustes A.G. Abílio V.C. Bincoletto C. Piacentini M. Pereira G.J.S. Smaili S.S. Cannabidiol induces autophagy via CB1 receptor and reduces α-synuclein cytosolic levels. Brain Res. 2025 1850 149414 10.1016/j.brainres.2024.149414 39710053
    [Google Scholar]
  79. Morgese M.G. Cassano T. Cuomo V. Giuffrida A. Anti-dyskinetic effects of cannabinoids in a rat model of Parkinson’s disease: Role of CB1 and TRPV1 receptors. Exp. Neurol. 2007 208 1 110 119 10.1016/j.expneurol.2007.07.021 17900568
    [Google Scholar]
  80. Di Marzo V. Melck D. Bisogno T. De Petrocellis L. Endocannabinoids: endogenous cannabinoid receptor ligands with neuromodulatory action. Trends Neurosci. 1998 21 12 521 528 10.1016/S0166‑2236(98)01283‑1 9881850
    [Google Scholar]
  81. Gerdeman G. Lovinger D.M. CB1 cannabinoid receptor inhibits synaptic release of glutamate in rat dorsolateral striatum. J. Neurophysiol. 2001 85 1 468 471 10.1152/jn.2001.85.1.468 11152748
    [Google Scholar]
  82. Maneuf Y.P. Nash J.E. Crossman A.R. Brotchie J.M. Activation of the cannabinoid receptor by Δ9-tetrahydrocannabinol reduces γ-aminobutyric acid uptake in the globus pallidus. Eur. J. Pharmacol. 1996 308 2 161 164 10.1016/0014‑2999(96)00326‑3 8840127
    [Google Scholar]
  83. Wallmichrath I. Szabo B. Cannabinoids inhibit striatonigral GABAergic neurotransmission in the mouse. Neuroscience 2002 113 3 671 682 10.1016/S0306‑4522(02)00109‑4 12150787
    [Google Scholar]
  84. Cao X. Liang L. Hadcock J.R. Blockade of cannabinoid type 1 receptors augments the antiparkinsonian action of levodopa without affecting dyskinesias in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri] dine-treated rhesus monkeys. J. Pharmacol. Exp. Ther. 2007 323 1 318 326 10.1124/jpet.107.125666 17630359
    [Google Scholar]
  85. Kelsey J.E. Harris O. Cassin J. The CB1 antagonist rimonabant is adjunctively therapeutic as well as monotherapeutic in an animal model of Parkinson’s disease. Behav. Brain Res. 2009 203 2 304 307 10.1016/j.bbr.2009.04.035 19414037
    [Google Scholar]
  86. Zuccato C. Valenza M. Cattaneo E. Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol. Rev. 2010 90 3 905 981 10.1152/physrev.00041.2009 20664076
    [Google Scholar]
  87. Ferrante R.J. Kowall N.W. Beal M.F. Richardson E.P. Bird E.D. Martin J.B. Selective sparing of a class of striatal neurons in Huntington’s disease. Science 1985 230 4725 561 563 10.1126/science.2931802 2931802
    [Google Scholar]
  88. Graveland G.A. Williams R.S. DiFiglia M. Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington’s disease. Science 1985 227 4688 770 773 10.1126/science.3155875 3155875
    [Google Scholar]
  89. Blázquez C. Chiarlone A. Sagredo O. Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington’s disease. Brain 2011 134 1 119 136 10.1093/brain/awq278 20929960
    [Google Scholar]
  90. Scotter E.L. Goodfellow C.E. Graham E.S. Dragunow M. Glass M. Neuroprotective potential of CB 1 receptor agonists in an in vitro model of Huntington’s disease. Br. J. Pharmacol. 2010 160 3 747 761 10.1111/j.1476‑5381.2010.00773.x 20590577
    [Google Scholar]
  91. Laprairie R.B. Kelly M.E.M. Denovan-Wright E.M. Cannabinoids increase type 1 cannabinoid receptor expression in a cell culture model of striatal neurons: Implications for Huntington’s disease. Neuropharmacology 2013 72 47 57 10.1016/j.neuropharm.2013.04.006 23602984
    [Google Scholar]
  92. Song J. Kim Y.K. Animal models for the study of depressive disorder. CNS Neurosci. Ther. 2021 27 6 633 642 10.1111/cns.13622 33650178
    [Google Scholar]
  93. Nemeroff C.B. Owens M.J. Treatment of mood disorders. Nat. Neurosci. 2002 5 S11 1068 1070 10.1038/nn943 12403988
    [Google Scholar]
  94. Boys A. Marsden J. Strang J. Understanding reasons for drug use amongst young people: a functional perspective. Health Educ. Res. 2001 16 4 457 469 10.1093/her/16.4.457 11525392
    [Google Scholar]
  95. Schlicker E. Kathmann M. Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol. Sci. 2001 22 11 565 572 10.1016/S0165‑6147(00)01805‑8 11698100
    [Google Scholar]
  96. Vinod K.Y. Arango V. Xie S. Elevated levels of endocannabinoids and CB1 receptor-mediated G-protein signaling in the prefrontal cortex of alcoholic suicide victims. Biol. Psychiatry 2005 57 5 480 486 10.1016/j.biopsych.2004.11.033 15737662
    [Google Scholar]
  97. Hungund B.L. Vinod K.Y. Kassir S.A. Upregulation of CB1 receptors and agonist-stimulated [35S]GTPγS binding in the prefrontal cortex of depressed suicide victims. Mol. Psychiatry 2004 9 2 184 190 10.1038/sj.mp.4001376 14966476
    [Google Scholar]
  98. Hill M.N. Miller G.E. Carrier E.J. Gorzalka B.B. Hillard C.J. Circulating endocannabinoids and N-acyl ethanolamines are differentially regulated in major depression and following exposure to social stress. Psychoneuroendocrinology 2009 34 8 1257 1262 10.1016/j.psyneuen.2009.03.013 19394765
    [Google Scholar]
  99. Hill M. Miller G. Ho W.S. Gorzalka B. Hillard C. Serum endocannabinoid content is altered in females with depressive disorders: a preliminary report. Pharmacopsychiatry 2008 41 2 48 53 10.1055/s‑2007‑993211 18311684
    [Google Scholar]
  100. Koethe D. Llenos I.C. Dulay J.R. Expression of CB1 cannabinoid receptor in the anterior cingulate cortex in schizophrenia, bipolar disorder, and major depression. J. Neural Transm. (Vienna) 2007 114 8 1055 1063 10.1007/s00702‑007‑0660‑5 17370106
    [Google Scholar]
  101. Tzavara E.T. Davis R.J. Perry K.W. The CB1 receptor antagonist SR141716A selectively increases monoaminergic neurotransmission in the medial prefrontal cortex: implications for therapeutic actions. Br. J. Pharmacol. 2003 138 4 544 553 10.1038/sj.bjp.0705100 12598408
    [Google Scholar]
  102. Griebel G. Stemmelin J. Scatton B. Effects of the cannabinoid CB1 receptor antagonist rimonabant in models of emotional reactivity in rodents. Biol. Psychiatry 2005 57 3 261 267 10.1016/j.biopsych.2004.10.032 15691527
    [Google Scholar]
  103. Shearman L.P. Rosko K.M. Fleischer R. Antidepressant-like and anorectic effects of the cannabinoid CB1 receptor inverse agonist AM251 in mice. Behav. Pharmacol. 2003 14 8 573 582 10.1097/00008877‑200312000‑00001 14665974
    [Google Scholar]
  104. Bambico F.R. Katz N. Debonnel G. Gobbi G. Cannabinoids elicit antidepressant-like behavior and activate serotonergic neurons through the medial prefrontal cortex. J. Neurosci. 2007 27 43 11700 11711 10.1523/JNEUROSCI.1636‑07.2007 17959812
    [Google Scholar]
  105. Hill M.N. Gorzalka B.B. Pharmacological enhancement of cannabinoid CB1 receptor activity elicits an antidepressant-like response in the rat forced swim test. Eur. Neuropsychopharmacol. 2005 15 6 593 599 10.1016/j.euroneuro.2005.03.003 15916883
    [Google Scholar]
  106. Graham B.M. Langton J.M. Richardson R. Pharmacological enhancement of fear reduction: preclinical models. Br. J. Pharmacol. 2011 164 4 1230 1247 10.1111/j.1476‑5381.2010.01175.x 21175588
    [Google Scholar]
  107. Pillay N.S. Stein D.J. Emerging anxiolytics. Expert Opin. Emerg. Drugs 2007 12 4 541 554 10.1517/14728214.12.4.541 17979598
    [Google Scholar]
  108. Viveros M. Marco E. File S. Endocannabinoid system and stress and anxiety responses. Pharmacol. Biochem. Behav. 2005 81 2 331 342 10.1016/j.pbb.2005.01.029 15927244
    [Google Scholar]
  109. Millan M.J. The neurobiology and control of anxious states. Prog. Neurobiol. 2003 70 2 83 244 10.1016/S0301‑0082(03)00087‑X 12927745
    [Google Scholar]
  110. Rey A.A. Purrio M. Viveros M.P. Lutz B. Biphasic effects of cannabinoids in anxiety responses: CB1 and GABA(B) receptors in the balance of GABAergic and glutamatergic neurotransmission. Neuropsychopharmacology 2012 37 12 2624 2634 10.1038/npp.2012.123 22850737
    [Google Scholar]
  111. Ebrahimi-Ghiri M. Khakpai F. Zarrindast M.R. URB597 abrogates anxiogenic and depressive behaviors in the methamphetamine-withdrawal mice: Role of the cannabinoid receptor type 1, cannabinoid receptor type 2, and transient receptor potential vanilloid 1 channels. J. Psychopharmacol. 2021 35 7 875 884 10.1177/0269881120965934 33155516
    [Google Scholar]
  112. Micale V. Cristino L. Tamburella A. Anxiolytic effects in mice of a dual blocker of fatty acid amide hydrolase and transient receptor potential vanilloid type-1 channels. Neuropsychopharmacology 2009 34 3 593 606 10.1038/npp.2008.98 18580871
    [Google Scholar]
  113. Haller J. Varga B. Ledent C. Freund T.F. CB1 cannabinoid receptors mediate anxiolytic effects: convergent genetic and pharmacological evidence with CB1-specific agents. Behav. Pharmacol. 2004 15 4 299 304 10.1097/01.fbp.0000135704.56422.40 15252281
    [Google Scholar]
  114. Gentile A. Fresegna D. Musella A. Interaction between interleukin-1β and type-1 cannabinoid receptor is involved in anxiety-like behavior in experimental autoimmune encephalomyelitis. J. Neuroinflammation 2016 13 1 231 10.1186/s12974‑016‑0682‑8 27589957
    [Google Scholar]
  115. Houser C.R. Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res. 1990 535 2 195 204 10.1016/0006‑8993(90)91601‑C 1705855
    [Google Scholar]
  116. Manford M. Recent advances in epilepsy. J. Neurol. 2017 264 8 1811 1824 10.1007/s00415‑017‑8394‑2 28120042
    [Google Scholar]
  117. Engel J. Excitation and inhibition in epilepsy. Can. J. Neurol. Sci. 1996 23 3 167 174 10.1017/S0317167100038464 8862837
    [Google Scholar]
  118. Lazarini-Lopes W. Silva-Cardoso G.K. Neuroplastic alterations in cannabinoid receptors type 1 (CB1) in animal models of epileptic seizures. Neurosci. Biobehav. Rev. 2022 137 104675 10.1016/j.neubiorev.2022.104675 35460705
    [Google Scholar]
  119. Falenski K.W. Blair R.E. Sim-Selley L.J. Martin B.R. DeLorenzo R.J. Status epilepticus causes a long-lasting redistribution of hippocampal cannabinoid type 1 receptor expression and function in the rat pilocarpine model of acquired epilepsy. Neuroscience 2007 146 3 1232 1244 10.1016/j.neuroscience.2007.01.065 17433556
    [Google Scholar]
  120. Falenski K.W. Carter D.S. Harrison A.J. Martin B.R. Blair R.E. DeLorenzo R.J. Temporal characterization of changes in hippocampal cannabinoid CB1 receptor expression following pilocarpine-induced status epilepticus. Brain Res. 2009 1262 64 72 10.1016/j.brainres.2009.01.036 19368833
    [Google Scholar]
  121. Roebuck A.J. Greba Q. Smolyakova A.M. Positive allosteric modulation of type 1 cannabinoid receptors reduces spike-and-wave discharges in Genetic Absence Epilepsy Rats from Strasbourg. Neuropharmacology 2021 190 108553 10.1016/j.neuropharm.2021.108553 33845076
    [Google Scholar]
  122. McElroy D.L. Roebuck A.J. Greba Q. The type 1 cannabinoid receptor positive allosteric modulators GAT591 and GAT593 reduce spike-and-wave discharges in Genetic Absence Epilepsy Rats from Strasbourg. IBRO Neuroscience Reports 2022 12 121 130 10.1016/j.ibneur.2022.01.006 35128516
    [Google Scholar]
  123. Mardani P. Oryan S. Sarihi A. Alaei E. Komaki A. Mirnajafi-Zadeh J. Endocannabinoid CB1 receptors are involved in antiepileptogenic effect of low frequency electrical stimulation during perforant path kindling in rats. Epilepsy Res. 2018 144 71 81 10.1016/j.eplepsyres.2018.05.008 29800824
    [Google Scholar]
  124. Van Rijn C.M. Gaetani S. Santolini I. WAG/Rij rats show a reduced expression of CB 1 receptors in thalamic nuclei and respond to the CB1 receptor agonist, R (+)WIN55,212‐2, with a reduced incidence of spike‐wave discharges. Epilepsia 2010 51 8 1511 1521 10.1111/j.1528‑1167.2009.02510.x 20132294
    [Google Scholar]
  125. Blair R.E. Deshpande L.S. Sombati S. Falenski K.W. Martin B.R. DeLorenzo R.J. Activation of the cannabinoid type-1 receptor mediates the anticonvulsant properties of cannabinoids in the hippocampal neuronal culture models of acquired epilepsy and status epilepticus. J. Pharmacol. Exp. Ther. 2006 317 3 1072 1078 10.1124/jpet.105.100354 16469864
    [Google Scholar]
  126. Manna S.S.S. Umathe S.N. Involvement of transient receptor potential vanilloid type 1 channels in the pro-convulsant effect of anandamide in pentylenetetrazole-induced seizures. Epilepsy Res. 2012 100 1-2 113 124 10.1016/j.eplepsyres.2012.02.003 22386872
    [Google Scholar]
  127. Ghanbari M.M. Loron A.G. Sayyah M. The ω-3 endocannabinoid docosahexaenoyl ethanolamide reduces seizure susceptibility in mice by activating cannabinoid type 1 receptors. Brain Res. Bull. 2021 170 74 80 10.1016/j.brainresbull.2021.02.011 33581310
    [Google Scholar]
  128. Shirazi-zand Z. Ahmad-Molaei L. Motamedi F. Naderi N. The role of potassium BK channels in anticonvulsant effect of cannabidiol in pentylenetetrazole and maximal electroshock models of seizure in mice. Epilepsy Behav. 2013 28 1 1 7 10.1016/j.yebeh.2013.03.009 23644464
    [Google Scholar]
  129. Guggenhuber S. Monory K. Lutz B. Klugmann M. AAV vector-mediated overexpression of CB1 cannabinoid receptor in pyramidal neurons of the hippocampus protects against seizure-induced excitoxicity. PLoS One 2010 5 12 15707 10.1371/journal.pone.0015707 21203567
    [Google Scholar]
  130. Lutz B. On-demand activation of the endocannabinoid system in the control of neuronal excitability and epileptiform seizures. Biochem. Pharmacol. 2004 68 9 1691 1698 10.1016/j.bcp.2004.07.007 15450934
    [Google Scholar]
  131. Meng X.D. Wei D. Li J. Astrocytic expression of cannabinoid type 1 receptor in rat and human sclerotic hippocampi. Int. J. Clin. Exp. Pathol. 2014 7 6 2825 2837 25031702
    [Google Scholar]
  132. Johnston S.C. Mendis S. Mathers C.D. Global variation in stroke burden and mortality: estimates from monitoring, surveillance, and modelling. Lancet Neurol. 2009 8 4 345 354 10.1016/S1474‑4422(09)70023‑7 19233730
    [Google Scholar]
  133. Xiong L. Lu Z. Hou L. Pretreatment with repeated electroacupuncture attenuates transient focal cerebral ischemic injury in rats. Chin. Med. J. (Engl.) 2003 116 1 108 111 12667400
    [Google Scholar]
  134. Du J. Wang Q. Hu B. Involvement of ERK 1/2 activation in electroacupuncture pretreatment via cannabinoid CB1 receptor in rats. Brain Res. 2010 1360 1 7 10.1016/j.brainres.2010.07.034 20654595
    [Google Scholar]
  135. Zhao J. Tian Y. Xiao H. Hu M. Chen W. Effects of electroacupuncture on hippocampal and cortical apoptosis in a mouse model of cerebral ischemia-reperfusion injury. J. Tradit. Chin. Med. 2011 31 4 349 355 10.1016/S0254‑6272(12)60017‑X 22462244
    [Google Scholar]
  136. Wang Q. Peng Y. Chen S. Pretreatment with electroacupuncture induces rapid tolerance to focal cerebral ischemia through regulation of endocannabinoid system. Stroke 2009 40 6 2157 2164 10.1161/STROKEAHA.108.541490 19372445
    [Google Scholar]
  137. Yang C. Liu J. Wang J. Activation of astroglial CB1R mediates cerebral ischemic tolerance induced by electroacupuncture. J. Cereb. Blood Flow Metab. 2021 41 9 2295 2310 10.1177/0271678X21994395 33663269
    [Google Scholar]
  138. Zhang H. He S. Hu Y. Zheng H. Antagonism of cannabinoid receptor 1 attenuates the anti-inflammatory effects of electroacupuncture in a rodent model of migraine. Acupunct. Med. 2016 34 6 463 470 10.1136/acupmed‑2016‑011113 27834685
    [Google Scholar]
  139. Silvani A. Berteotti C. Bastianini S. Multiple sleep alterations in mice lacking cannabinoid type 1 receptors. PLoS One 2014 9 2 89432 10.1371/journal.pone.0089432 24586776
    [Google Scholar]
  140. Roser P. Haussleiter I.S. Chong H.J. Inhibition of cerebral type 1 cannabinoid receptors is associated with impaired auditory mismatch negativity generation in the ketamine model of schizophrenia. Psychopharmacology (Berl.) 2011 218 4 611 620 10.1007/s00213‑011‑2352‑y 21590281
    [Google Scholar]
  141. Tamba B.I. Stanciu G.D. Urîtu C.M. Challenges and opportunities in preclinical research of synthetic cannabinoids for pain therapy. Medicina (Kaunas) 2020 56 1 24 10.3390/medicina56010024 31936616
    [Google Scholar]
  142. Murphy T. Le Foll B. Targeting the endocannabinoid CB1 receptor to treat body weight disorders: a preclinical and clinical review of the therapeutic potential of past and present CB1 drugs. Biomolecules 2020 10 6 855 10.3390/biom10060855 32512776
    [Google Scholar]
  143. Moore N.L.T. Greenleaf A.L.R. Acheson S.K. Wilson W.A. Swartzwelder H.S. Kuhn C.M. Role of cannabinoid receptor type 1 desensitization in greater tetrahydrocannabinol impairment of memory in adolescent rats. J. Pharmacol. Exp. Ther. 2010 335 2 294 301 10.1124/jpet.110.169359 20668056
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026403497250910124233
Loading
/content/journals/cnr/10.2174/0115672026403497250910124233
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: neurodegeneration ; cannabinoid ; neuroprotection ; Endocannabinoid ; depression ; brain ; Alzheimer's
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test