Skip to content
2000
image of Future Directions in Anxiolytic Therapy: A Comprehensive Review of Novel Targets and Strategies

Abstract

Background

With 301 million cases worldwide, anxiety disorders represent a serious public health concern. Many people endure ongoing distress while receiving several treatments because of the drawbacks of traditional therapy, such as adverse effects, dependence, and inconsistent efficacy. This emphasizes the absolute need for novel treatment approaches.

Objective

This review examines emerging pharmacological and non-pharmacological strategies for anxiety disorders, assessing existing and developing therapeutic options while examining the drawbacks of conventional therapies.

Methods

A comprehensive literature review was carried out using the NIH, PubMed, and Google Scholar databases. Studies from 2020-2025 were given priority in the inclusion criteria, with a few supporting references from earlier years. Personalized medicine, combination therapy, non-pharmacological interventions, and novel anxiolytic targets, ., were among the keywords used.

Results

Conventional therapies, including benzodiazepines, SSRIs, and SNRIs, are still the major choices, but they have significant disadvantages. The protein kinase pathway, endocannabinoid and orexin systems, NK1R antagonists, and microbiome modulation are examples of emerging targets. Emerging strategies that show preliminary promise include digital therapeutics, gene therapy, optogenetics, personalized medicine, combination therapy, herbal therapy, and peptide-based medicines (., NPY, NPS, oxytocin analogs, CRF, vasopressin, and melanocortin receptor antagonist). Several of these approaches modulate key neural circuits, such as the involvement of the amygdala–prefrontal cortex axis, the HPA axis, and biomarker-informed personalization, among others; yet many remain in early-phase or preclinical investigation. However, limited comparative data exist between these novel strategies and standard therapies, underlining the need for rigorous head-to-head evaluations.

Conclusion

Advances in molecular neuroscience and precision medicine offer potential alternatives to conventional treatments. However, most emerging therapies require further clinical validation, large-scale trials, and translational refinement before they can be integrated into real-world decision-making for anxiety disorders.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026394052250808075022
2025-08-18
2025-09-04
Loading full text...

Full text loading...

References

  1. Askarizadeh M.M. Gholamhosseini L. Khajouei R. Homayee S. Askarizadeh F. Ahmadian L. Determining the impact of mobile-based self-care applications on reducing anxiety in healthcare providers: A systematic review. BMC Med. Inform. Decis. Mak. 2025 25 1 37 10.1186/s12911‑024‑02817‑4 39849432
    [Google Scholar]
  2. Razack S. Kandikattu H.K. Amruta N. Khanum F. Neuroprotective effects of Nardostachys jatamansi against BSO induced anxiety via its antioxidant machinery and by elevating catecholamines and GABA levels in mice. Curr. Tradit. Med. 2021 7 2 222 245 10.2174/2215083806999201202153612
    [Google Scholar]
  3. Mufford M.S. van der Meer D. Andreassen O.A. Ramesar R. Stein D.J. Dalvie S. A review of systems biology research of anxiety disorders. Br. J. Psychiatry 2021 43 4 414 423 10.1590/1516‑4446‑2020‑1090 33053074
    [Google Scholar]
  4. Peterson P.R. Ho R. Nervous and scared: Understanding anxiety and trauma/stressor-related disorders and obsessive-compulsive disorders. Physician Assist Clin 2021 6 3 479 493 10.1016/j.cpha.2021.03.002
    [Google Scholar]
  5. Akiki T.J. Jubeir J. Bertrand C. Tozzi L. Williams L.M. Neural circuit basis of pathological anxiety. Nat. Rev. Neurosci. 2025 26 1 5 22 10.1038/s41583‑024‑00880‑4 39604513
    [Google Scholar]
  6. Gu Y. Gu S. Lei Y. Li H. From uncertainty to anxiety: How uncertainty fuels anxiety in a process mediated by intolerance of uncertainty. Neural Plast. 2020 2020 1 1 8 10.1155/2020/8866386 33299402
    [Google Scholar]
  7. Bhatt S. Devadoss T. Manjula S.N. Rajangam J. 5-HT3 receptor antagonism a potential therapeutic approach for the treatment of depression and other disorders. Curr. Neuropharmacol. 2021 19 9 1545 1559 10.2174/1570159X18666201015155816 33059577
    [Google Scholar]
  8. Mendez E.M. Mills J.A. Suresh V. Stimpfl J.N. Strawn J.R. Trajectory and magnitude of response in adults with anxiety disorders: A Bayesian hierarchical modeling meta-analysis of selective serotonin reuptake inhibitors, serotonin norepinephrine reuptake inhibitors, and benzodiazepines. CNS Spectr. 2024 29 3 187 196 10.1017/S1092852924000142 38523533
    [Google Scholar]
  9. Gupta A. Bhattacharya G. Farheen S.A. Systematic review of benzodiazepines for anxiety disorders in late life. Ann. Clin. Psychiatry 2020 32 2 114 127 [PMID: 32343283
    [Google Scholar]
  10. Chakraborty D. Das R. Drugs Acting on Central Nervous System. In:Essentials of Pharmacodynamics and Drug Action. Singapore Springer 2024 89 121 10.1007/978‑981‑97‑2776‑6_5
    [Google Scholar]
  11. Heesbeen E.J. van Kampen T. Verdouw P.M. van Lissa C. Bijlsma E.Y. Groenink L. The effect of SSRIs on unconditioned anxiety: A systematic review and meta-analysis of animal studies. Psychopharmacology 2024 241 9 1731 1755 10.1007/s00213‑024‑06645‑2 38980348
    [Google Scholar]
  12. Engler J. Filliter C. Montastruc F. Abenhaim H. Rej S. Renoux C. Risk of abnormal uterine bleeding associated with high-affinity compared with low-affinity serotonin and norepinephrine reuptake inhibitors. J. Affect. Disord. 2024 350 813 821 10.1016/j.jad.2024.01.163 38246277
    [Google Scholar]
  13. Also Fontanet A. Kostov B. Benavent Àreu J. Pilot psychotherapy program for the deprescription of benzodiazepines for anxiety disorders. Ansiedad Estres 2021 28 1 71 77 10.5093/anyes2022a8
    [Google Scholar]
  14. Garakani A. Murrough J.W. Freire R.C. Pharmacotherapy of anxiety disorders: Current and emerging treatment options. Front. Psychiatry 2020 11 595584 10.3389/fpsyt.2020.595584 33424664
    [Google Scholar]
  15. Nasir M. Trujillo D. Levine J. Dwyer J.B. Rupp Z.W. Bloch M.H. Glutamate systems in DSM-5 anxiety disorders: Their role and a review of glutamate and GABA psychopharmacology. Front. Psychiatry 2020 11 548505 10.3389/fpsyt.2020.548505 33329087
    [Google Scholar]
  16. Kenwood M.M. Kalin N.H. Barbas H. The prefrontal cortex, pathological anxiety, and anxiety disorders. Neuropsychopharmacology 2022 47 1 260 275 10.1038/s41386‑021‑01109‑z 34400783
    [Google Scholar]
  17. Tafet G.E. Nemeroff C.B. Pharmacological treatment of anxiety disorders: The role of the HPA axis. Front. Psychiatry 2020 11 443 10.3389/fpsyt.2020.00443 32499732
    [Google Scholar]
  18. Khalifeh S. Pour M.S. Ghermezian A. Introduction to neurocircuitry and neurobiology of anxiety. Arch Adv Biosci 2021 12 1 45 51 10.22037/aab.v12i1.25279
    [Google Scholar]
  19. Georg Jensen M. Goode M. Heinrich M. Herbal medicines and botanicals for managing insomnia, stress, anxiety, and depression: A critical review of the emerging evidence focusing on the Middle East and Africa. PharmaNutrition 2024 29 100399 10.1016/j.phanu.2024.100399
    [Google Scholar]
  20. Zhou Y. Wang G. Liang X. Xu Z. Hindbrain networks: Exploring the hidden anxiety circuits in rodents. Behav. Brain Res. 2024 115281 10.1016/j.bbr.2024.115281 39374875
    [Google Scholar]
  21. Azargoonjahromi A. The role of epigenetics in anxiety disorders. Mol. Biol. Rep. 2023 50 11 9625 9636 10.1007/s11033‑023‑08787‑6 37804465
    [Google Scholar]
  22. Nobis A. Zalewski D. Waszkiewicz N. Peripheral markers of depression. J. Clin. Med. 2020 9 12 3793 10.3390/jcm9123793 33255237
    [Google Scholar]
  23. Omopo O.E. Exploring post-traumatic stress disorder: Causes, diagnostic criteria, and treatment options. Int J Acad Inf Syst Res 2024 8 7 35 44
    [Google Scholar]
  24. Zhao D. Wang D. Wang W. The altered sensitivity of acute stress induced anxiety-related behaviors by modulating insular cortex-paraventricular thalamus-bed nucleus of the stria terminalis neural circuit. Neurobiol. Dis. 2022 174 105890 10.1016/j.nbd.2022.105890 36220611
    [Google Scholar]
  25. Robayo A.M. Hypotalamus-pituitary-adrenal (HPA) axes and their relationship with stress, mood, personality, and neurocognitive functioning. In:The Theory of Mind Under Scrutiny Cham Springer 2024 34 341 365 10.1007/978‑3‑031‑46742‑4_11
    [Google Scholar]
  26. Singh H. Chopra C. Singh H. Gut-brain axis and Alzheimer’s disease: Therapeutic interventions and strategies. J. Funct. Foods 2024 112 105915 10.1016/j.jff.2023.105915
    [Google Scholar]
  27. Clark T.D. Reichelt A.C. Ghosh-Swaby O. Simpson S.J. Crean A.J. Nutrition, anxiety and hormones. Why sex differences matter in the link between obesity and behavior. Physiol. Behav. 2022 247 113713 10.1016/j.physbeh.2022.113713 35066061
    [Google Scholar]
  28. Park H.R. Cai M. Yang E.J. Neurogenic interventions for fear memory via modulation of the hippocampal function and neural circuits. Int. J. Mol. Sci. 2022 23 7 3582 10.3390/ijms23073582 35408943
    [Google Scholar]
  29. Łoś K. Waszkiewicz N. Biological markers in anxiety disorders. J. Clin. Med. 2021 10 8 1744 10.3390/jcm10081744 33920547
    [Google Scholar]
  30. Song J. Amygdala activity and amygdala-hippocampus connectivity: Metabolic diseases, dementia, and neuropsychiatric issues. Biomed. Pharmacother. 2023 162 114647 10.1016/j.biopha.2023.114647 37011482
    [Google Scholar]
  31. Arora I. Mal P. Arora P. Paul A. Kumar M. GABAergic implications in anxiety and related disorders. Biochem. Biophys. Res. Commun. 2024 724 150218 10.1016/j.bbrc.2024.150218 38865810
    [Google Scholar]
  32. Schiele M.A. Domschke K. Epigenetics at the crossroads between genes, environment and resilience in anxiety disorders. Genes Brain Behav. 2018 17 3 12423 10.1111/gbb.12423 28873274
    [Google Scholar]
  33. Sharma R. Kumarasamy M. Parihar V.K. Ravichandiran V. Kumar N. Monoamine oxidase: A potential link in papez circuit to generalized anxiety disorders. CNS Neurol. Disord. Drug Targets 2024 23 5 638 655 10.2174/1871527322666230412105711 37055898
    [Google Scholar]
  34. Koskinen M.K. Hovatta I. Genetic insights into the neurobiology of anxiety. Trends Neurosci. 2023 46 4 318 331 10.1016/j.tins.2023.01.007 36828693
    [Google Scholar]
  35. Khan M.M.A. Khan M.N. Effects of psychosocial and socio‐environmental factors on anxiety disorder among adolescents in Bangladesh. Brain Behav. 2020 10 12 01899 10.1002/brb3.1899 33085214
    [Google Scholar]
  36. Shi H.J. Wang S. Wang X.P. Zhang R.X. Zhu L.J. Hippocampus: Molecular, cellular, and circuit features in anxiety. Neurosci. Bull. 2023 39 6 1009 1026 10.1007/s12264‑023‑01020‑1 36680709
    [Google Scholar]
  37. Schank J.R. Neurokinin receptors in drug and alcohol addiction. Brain Res. 2020 1734 146729 10.1016/j.brainres.2020.146729 32067964
    [Google Scholar]
  38. Solomon M.G. Nennig S.E. Cotton M.R. Whiting K.E. Fulenwider H.D. Schank J.R. Neurokinin-1 receptors in the nucleus accumbens shell influence sensitivity to social defeat stress and stress-induced alcohol consumption in male mice. Addict Neurosci 2024 13 100174 10.1016/j.addicn.2024.100174 39801674
    [Google Scholar]
  39. Esteban F. Ramos-García P. Muñoz M. González-Moles M.Á. Substance P and neurokinin 1 receptor in chronic inflammation and cancer of the head and neck: A review of the literature. Int. J. Environ. Res. Public Health 2021 19 1 375 10.3390/ijerph19010375 35010633
    [Google Scholar]
  40. Fagan H.A. Baldwin D.S. Pharmacological treatment of generalised anxiety disorder: Current practice and future directions. Expert Rev. Neurother. 2023 23 6 535 548 10.1080/14737175.2023.2211767 37183813
    [Google Scholar]
  41. Hasbi A. Madras B.K. George S.R. Endocannabinoid system and exogenous cannabinoids in depression and anxiety: A review. Brain Sci. 2023 13 2 325 10.3390/brainsci13020325 36831868
    [Google Scholar]
  42. Chen C. Inhibiting degradation of 2-arachidonoylglycerol as a therapeutic strategy for neurodegenerative diseases. Pharmacol. Ther. 2023 244 108394 10.1016/j.pharmthera.2023.108394 36966972
    [Google Scholar]
  43. Dasram M.H. Walker R.B. Khamanga S.M. Recent advances in endocannabinoid system targeting for improved specificity: Strategic approaches to targeted drug delivery. Int. J. Mol. Sci. 2022 23 21 13223 10.3390/ijms232113223 36362014
    [Google Scholar]
  44. Basavarajappa B.S. Subbanna S. Molecular insights into epigenetics and cannabinoid receptors. Biomolecules 2022 12 11 1560 10.3390/biom12111560 36358910
    [Google Scholar]
  45. Bietar B. Tanner S. Lehmann C. Neuroprotection and beyond: The central role of CB1 and CB2 receptors in stroke recovery. Int. J. Mol. Sci. 2023 24 23 16728 10.3390/ijms242316728 38069049
    [Google Scholar]
  46. Bhuller R. Schlage W.K. Hoeng J. Review of the current ongoing clinical trials exploring the possible anti-anxiety effects of cannabidiol. J Cannabis Res 2024 6 1 40 10.1186/s42238‑024‑00250‑y 39394179
    [Google Scholar]
  47. Jászberényi M. Thurzó B. Bagosi Z. Vécsei L. Tanaka M. The orexin/hypocretin system, the peptidergic regulator of vigilance, orchestrates adaptation to stress. Biomedicines 2024 12 2 448 10.3390/biomedicines12020448 38398050
    [Google Scholar]
  48. Maruyama T. Ueta Y. Internal and external modulation factors of the orexin system (REVIEW). Peptides 2023 165 171009 10.1016/j.peptides.2023.171009 37054895
    [Google Scholar]
  49. Abounoori M. Maddah M.M. Ardeshiri M.R. Orexin neuropeptides modulate the hippocampal-dependent memory through basolateral amygdala interconnections. Cereb Circ Cogn Behav 2022 3 100035 10.1016/j.cccb.2021.100035 36324409
    [Google Scholar]
  50. Gupta P.R. Prabhavalkar K. Combination therapy with neuropeptides for the treatment of anxiety disorder. Neuropeptides 2021 86 102127 10.1016/j.npep.2021.102127 33607407
    [Google Scholar]
  51. Gorka S.M. Khorrami K.J. Manzler C.A. Phan K.L. Acute orexin antagonism selectively modulates anticipatory anxiety in humans: Implications for addiction and anxiety. Transl. Psychiatry 2022 12 1 308 10.1038/s41398‑022‑02090‑x 35918313
    [Google Scholar]
  52. Ten-Blanco M. Flores Á. Pereda-Pérez I. Amygdalar CB2 cannabinoid receptor mediates fear extinction deficits promoted by orexin-A/hypocretin-1. Biomed. Pharmacother. 2022 149 112925 10.1016/j.biopha.2022.112925 35477218
    [Google Scholar]
  53. Issinger O.G. Guerra B. Phytochemicals in cancer and their effect on the PI3K/AKT-mediated cellular signalling. Biomed. Pharmacother. 2021 139 111650 10.1016/j.biopha.2021.111650 33945911
    [Google Scholar]
  54. Martínez-Alcantar L. Hernández-Padilla L. Díaz-Pérez A.L. Cyclic peptides as protein kinase modulators and their involvement in the treatment of diverse human diseases. Kinases and Phosphatases 2024 2 4 346 378 10.3390/kinasesphosphatases2040023
    [Google Scholar]
  55. Roskoski R. Small molecule protein kinase inhibitors approved by regulatory agencies outside of the United States. Pharmacol. Res. 2023 194 106847 10.1016/j.phrs.2023.106847 37454916
    [Google Scholar]
  56. Chen D. Wang J. Cao J. Zhu G. cAMP-PKA signaling pathway and anxiety: Where do we go next? Cell. Signal. 2024 122 111311 10.1016/j.cellsig.2024.111311 39059755
    [Google Scholar]
  57. Gao F. Wang J. Yang S. Ji M. Zhu G. Fear extinction induced by activation of PKA ameliorates anxiety-like behavior in PTSD mice. Neuropharmacology 2023 222 109306 10.1016/j.neuropharm.2022.109306 36341808
    [Google Scholar]
  58. Zlobin A. Bloodworth J.C. Osipo C. Mitogen-Activated Protein Kinase (MAPK) Signaling. In:Predictive Biomarkers in Oncology. Cham Springer 2019 213 221 10.1007/978‑3‑319‑95228‑4_16
    [Google Scholar]
  59. Islam F. Roy S. Zehravi M. Polyphenols targeting MAP kinase signaling pathway in neurological diseases: Understanding molecular mechanisms and therapeutic targets. Mol. Neurobiol. 2024 61 5 2686 2706 10.1007/s12035‑023‑03706‑z 37922063
    [Google Scholar]
  60. Amini J. Beyer C. Zendedel A. Sanadgol N. MAPK is a mutual pathway targeted by anxiety-related miRNAs, and E2F5 is a putative target for anxiolytic miRNAs. Biomolecules 2023 13 3 544 10.3390/biom13030544 36979479
    [Google Scholar]
  61. Bommaraju S. Dhokne M.D. Arun E.V. Srinivasan K. Sharma S.S. Datusalia A.K. An insight into crosstalk among multiple signalling pathways contributing to the pathophysiology of PTSD and depressive disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 2024 131 110943 10.1016/j.pnpbp.2024.110943 38228244
    [Google Scholar]
  62. Dash S. Syed Y.A. Khan M.R. Understanding the role of the gut microbiome in brain development and its association with neurodevelopmental psychiatric disorders. Front. Cell Dev. Biol. 2022 10 880544 10.3389/fcell.2022.880544 35493075
    [Google Scholar]
  63. Kumar A. Pramanik J. Goyal N. Gut microbiota in anxiety and depression: Unveiling the relationships and management options. Pharmaceuticals 2023 16 4 565 10.3390/ph16040565 37111321
    [Google Scholar]
  64. Socała K. Doboszewska U. Szopa A. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol. Res. 2021 172 105840 10.1016/j.phrs.2021.105840 34450312
    [Google Scholar]
  65. Simpson C.A. Diaz-Arteche C. Eliby D. Schwartz O.S. Simmons J.G. Cowan C.S.M. The gut microbiota in anxiety and depression – A systematic review. Clin. Psychol. Rev. 2021 83 101943 10.1016/j.cpr.2020.101943 33271426
    [Google Scholar]
  66. Mori P. Chauhan M. Modasiya I. Kumar V. Dietary modulation of the nervous and immune system: Role of probiotics/prebiotics/] synbiotics/postbiotics. In:Probiotics, Prebiotics, Synbiotics, and Postbiotics. Singapore Springer 2023 307 328 10.1007/978‑981‑99‑1463‑0_16
    [Google Scholar]
  67. Sharma R. Gupta D. Mehrotra R. Mago P. Psychobiotics: The next-generation probiotics for the brain. Curr. Microbiol. 2021 78 2 449 463 10.1007/s00284‑020‑02289‑5 33394083
    [Google Scholar]
  68. Cocean A-M. Vodnar D.C. Exploring the gut-brain Axis: Potential therapeutic impact of Psychobiotics on mental health. Prog. Neuropsychopharmacol. Biol. Psychiatry 2024 134 111073 10.1016/j.pnpbp.2024.111073
    [Google Scholar]
  69. Isaac-Bamgboye F.J. Mgbechidinma C.L. Onyeaka H. Isaac-Bamgboye I.T. Chukwugozie D.C. Exploring the potential of postbiotics for food safety and human health improvement. J. Nutr. Metab. 2024 2024 1 1868161 10.1155/2024/1868161 39139215
    [Google Scholar]
  70. Porras-García E. Fernández-Espada Calderón I. Gavala-González J. Fernández-García J.C. Potential neuroprotective effects of fermented foods and beverages in old age: A systematic review. Front. Nutr. 2023 10 1170841 10.3389/fnut.2023.1170841 37396132
    [Google Scholar]
  71. Merkouris E. Mavroudi T. Miliotas D. Probiotics’ effects in the treatment of anxiety and depression: A comprehensive review of 2014–2023 clinical trials. Microorganisms 2024 12 2 411 10.3390/microorganisms12020411 38399815
    [Google Scholar]
  72. Huang F. Wu X. Brain neurotransmitter modulation by gut microbiota in anxiety and depression. Front. Cell Dev. Biol. 2021 9 649103 10.3389/fcell.2021.649103 33777957
    [Google Scholar]
  73. Pinho L.G. Lopes M.J. Correia T. Patient-centered care for patients with depression or anxiety disorder: An integrative review. J. Pers. Med. 2021 11 8 776 10.3390/jpm11080776 34442420
    [Google Scholar]
  74. Radosavljevic M. Svob Strac D. Jancic J. Samardzic J. The role of pharmacogenetics in personalizing the antidepressant and anxiolytic therapy. Genes 2023 14 5 1095 10.3390/genes14051095 37239455
    [Google Scholar]
  75. Sugandh F.N.U. Chandio M. Raveena F.N.U. Advances in the management of diabetes mellitus: A focus on personalized medicine. Cureus 2023 15 8 43697 10.7759/cureus.43697 37724233
    [Google Scholar]
  76. Scherf-Clavel M. Weber H. Deckert J. Erhardt-Lehmann A. The role of pharmacogenetics in the treatment of anxiety disorders and the future potential for targeted therapeutics. Expert Opin. Drug Metab. Toxicol. 2021 17 11 1249 1260 10.1080/17425255.2021.1991912 34643143
    [Google Scholar]
  77. Tomasi J. Lisoway A.J. Zai C.C. Towards precision medicine in generalized anxiety disorder: Review of genetics and pharmaco(epi)genetics. J. Psychiatr. Res. 2019 119 33 47 10.1016/j.jpsychires.2019.09.002 31563039
    [Google Scholar]
  78. Kalungi A. Womersley J.S. Kinyanda E. The 5-HTTLPR-rs25531 SASA haplotype and chronic stress moderate the association between acute stress and internalizing mental disorders among HIV+ children and adolescents in Uganda. Front. Genet. 2021 12 649055 10.3389/fgene.2021.649055 33968131
    [Google Scholar]
  79. Radenković L. Karanović J. Pantović-Stefanović M. Dynamic model of serotonin presynapse and its application to suicide attempt in patients with bipolar disorder. Int. J. Mol. Sci. 2025 26 9 4085 10.3390/ijms26094085 40362322
    [Google Scholar]
  80. Felten A. Plieger T. Reuter M. Predicting anxiety-related personality traits by means of serotonergic VNTR variants STin2 and 5-HTTLPR. J Mood Anxiety Disord 2023 4 100031 10.1016/j.xjmad.2023.100031
    [Google Scholar]
  81. Zhang P. Gao Y. Hu Y. Altered fractional amplitude of low-frequency fluctuation in anxious Parkinson’s disease. Brain Sci. 2023 13 1 87 10.3390/brainsci13010087 36672068
    [Google Scholar]
  82. Wilkinson A.V. Swann A.C. Graham D.P. Emotional self-regulation, impulsivity, 5-HTTLPR and tobacco use behavior among psychiatric inpatients. J. Affect. Disord. 2022 311 631 636 10.1016/j.jad.2022.05.114 35623482
    [Google Scholar]
  83. Gellner A.K. Voelter J. Schmidt U. Molecular and neurocircuitry mechanisms of social avoidance. Cell. Mol. Life Sci. 2021 78 4 1163 1189 10.1007/s00018‑020‑03649‑x 32997200
    [Google Scholar]
  84. Stein K. Maruf A.A. Müller D.J. Bishop J.R. Bousman C.A. Serotonin transporter genetic variation and antidepressant response and tolerability: A systematic review and meta-analysis. J. Pers. Med. 2021 11 12 1334 10.3390/jpm11121334 34945806
    [Google Scholar]
  85. Kleine Schaars K. van Westrhenen R. Pharmacogenomics and the management of mood disorders—A review. J. Pers. Med. 2023 13 7 1183 10.3390/jpm13071183 37511796
    [Google Scholar]
  86. Bradley P. Shiekh M. Mehra V. Improved efficacy with targeted pharmacogenetic-guided treatment of patients with depression and anxiety: A randomized clinical trial demonstrating clinical utility. J. Psychiatr. Res. 2018 96 100 107 10.1016/j.jpsychires.2017.09.024 28992526
    [Google Scholar]
  87. Lewandrowski K.U. Blum K. Sharafshah A. Genetic and regulatory mechanisms of comorbidity of anxiety, depression and ADHD: A GWAS meta-meta-analysis through the lens of a system biological and pharmacogenomic perspective in 18.5 M subjects. J. Pers. Med. 2025 15 3 103 10.3390/jpm15030103 40137419
    [Google Scholar]
  88. Bandelow B. Michaelis S. Wedekind D. Treatment of anxiety disorders. Dialogues Clin. Neurosci. 2017 19 2 93 107 10.31887/DCNS.2017.19.2/bbandelow 28867934
    [Google Scholar]
  89. Mrozek W. Socha J. Sidorowicz K. Pathogenesis and treatment of depression: Role of diet in prevention and therapy. Nutrition 2023 115 112143 10.1016/j.nut.2023.112143 37562078
    [Google Scholar]
  90. Masdrakis V.G. Baldwin D.S. Anticonvulsant and antipsychotic medications in the pharmacotherapy of panic disorder: A structured review. Ther. Adv. Psychopharmacol. 2021 11 20451253211002320 10.1177/20451253211002320 33815761
    [Google Scholar]
  91. Strawn JR Mills JA Suresh V Peris TS Walkup JT Croarkin PE Combining selective serotonin reuptake inhibitors and cognitive behavioral therapy in youth with depression and anxiety. J Affect Disord 2022 298 (Pt A) 292 300 10.1016/j.jad.2021.10.047 34728290
    [Google Scholar]
  92. Mangolini V.I. Andrade L.H. Lotufo-Neto F. Wang Y.P. Treatment of anxiety disorders in clinical practice: A critical overview of recent systematic evidence. Clinics 2019 74 1316 10.6061/clinics/2019/e1316 31721908
    [Google Scholar]
  93. Pourkazem T. Ghazanfari A. Ahmadi R. Comparison of the effectiveness of mindfulness-based stress reduction and compassion-focused therapy on the cognitive emotion regulation in patients with irritable bowel syndrome. Middle East J. Dig. Dis. 2023 15 4 277 284 10.34172/mejdd.2023.358 38523884
    [Google Scholar]
  94. Ma L. Wang Y. Pan L. Cui Z. Schluter P.J. Mindfulness-informed (ACT) and Mindfulness-based Programs (MBSR/MBCT) applied for college students to reduce symptoms of depression and anxiety. J Behav Cogn Ther 2022 32 4 271 289 10.1016/j.jbct.2022.05.002
    [Google Scholar]
  95. Bhattacharya S. Hofmann S.G. Mindfulness-based interventions for anxiety and depression. Clinics in Integrated Care 2023 16 100138 10.1016/j.intcar.2023.100138
    [Google Scholar]
  96. Khanna M.S. Carper M. Digital mental health interventions for child and adolescent anxiety. Cognit. Behav. Pract. 2022 29 1 60 68 10.1016/j.cbpra.2021.05.003
    [Google Scholar]
  97. Johannsen M. Nissen E.R. Lundorff M. O’Toole M.S. Mediators of acceptance and mindfulness-based therapies for anxiety and depression: A systematic review and meta-analysis. Clin. Psychol. Rev. 2022 94 102156 10.1016/j.cpr.2022.102156 35483275
    [Google Scholar]
  98. Lee S.H. Cho S.J. Cognitive behavioral therapy and mindfulness-based cognitive therapy for depressive disorders. Adv. Exp. Med. Biol. 2021 1305 295 310 10.1007/978‑981‑33‑6044‑0_16 33834406
    [Google Scholar]
  99. Pegg S. Hill K. Argiros A. Olatunji B.O. Kujawa A. Cognitive Behavioral therapy for anxiety disorders in youth: Efficacy, moderators, and new advances in predicting outcomes. Curr. Psychiatry Rep. 2022 24 12 853 859 10.1007/s11920‑022‑01384‑7 36370264
    [Google Scholar]
  100. Sabri S. Rashid N. Mao Z.X. Physical activity and exercise as a tool to cure anxiety and posttraumatic stress disorder. Ment. Illn. 2023 2023 1 1 20 10.1155/2023/4294753
    [Google Scholar]
  101. Jermaina N. Kusmaedi N. Mamun A. Gaffar V. Purnomo E. Marheni E. Effects of relaxation exercises to reduce anxiety in beginner athletes. Int J Hum Mov Sports Sci 2022 10 6 1275 1283 10.13189/saj.2022.100618
    [Google Scholar]
  102. Ridout SJ Ridout KK Lin TY Campbell CI Clinical use of mental health digital therapeutics in a large health care delivery system: Retrospective patient cohort study and provider survey. JMIR Mental Health 2024 11 v11i8e56574 10.2196/56574 39356493
    [Google Scholar]
  103. Rajendran A. Kella A. Narayanasamy D. The revolution of digital therapeutics (DTx) in the pharmaceutical industry and their quality impacts. Cureus 2024 16 8 66792 10.7759/cureus.66792 39268306
    [Google Scholar]
  104. Kwon H. Choi I.Y. Kim D.J. Yoo J.H. A review of current digital mental health care applications for anxiety symptoms and future prospects. Psychiatry Investig. 2024 21 6 551 560 10.30773/pi.2023.0339 38960432
    [Google Scholar]
  105. Arifin M. Sekarwana N. Mediawati A.S. Susilaningsih F.S. Assessing the effectiveness of an e-coaching intervention in improving family support for individuals with mental disorders: A Quasi-experimental approach. J. Multidiscip. Healthc. 2023 16 2405 2415 10.2147/JMDH.S417685 37609053
    [Google Scholar]
  106. Maher A.R. Apaydin E.A. Raaen L. Motala A. Baxi S. Hempel S. The use of technology in the clinical care of anxiety: An evidence map. Psychiatr. Serv. 2021 72 2 195 199 10.1176/appi.ps.202000178 33291972
    [Google Scholar]
  107. Liu Z. Ren L. Xiao C. Zhang K. Demian P. Virtual reality aided therapy towards health 4.0: A two-decade bibliometric analysis. Int. J. Environ. Res. Public Health 2022 19 3 1525 10.3390/ijerph19031525 35162546
    [Google Scholar]
  108. Blackburn A.M. Goetter E.M. Treatment of anxiety disorders in the digital age. In:Clinical handbook of anxiety disorders: From theory to practice. Cham Humana 2020 297 313 10.1007/978‑3‑030‑30687‑8_16
    [Google Scholar]
  109. Choi H. Kim B. Kim I. Analysis of the status and future direction for digital therapeutics in children and adolescent psychiatry. J. Korean Acad. Child Adolesc. Psychiatry 2023 34 4 192 203 10.5765/jkacap.230044 37841489
    [Google Scholar]
  110. Vindigni G. Exploring digital therapeutics: Game-based and ehealth interventions in mental health care: Potential, challenges, and policy implications. J Biomed Eng Med Imaging 2023 10 3 10.14738/bjhmr.103.14804
    [Google Scholar]
  111. Refolo P. Sacchini D. Raimondi C. Spagnolo A.G. Ethics of digital therapeutics (DTx). Eur. Rev. Med. Pharmacol. Sci. 2022 26 18 6418 6423 10.26355/eurrev_202209_29741 36196692
    [Google Scholar]
  112. Hong J.S. Wasden C. Han D.H. Introduction of digital therapeutics. Comput. Methods Programs Biomed. 2021 209 106319 10.1016/j.cmpb.2021.106319 34364181
    [Google Scholar]
  113. Buragohain D. Khichar S. Deng C. Meng Y. Chaudhary S. Analyzing metaverse-based digital therapies, their effectiveness, and potential risks in mental healthcare. Sci. Rep. 2025 15 1 17066 10.1038/s41598‑025‑00916‑4 40379748
    [Google Scholar]
  114. Sayed N. Allawadhi P. Khurana A. Gene therapy: Comprehensive overview and therapeutic applications. Life Sci. 2022 294 120375 10.1016/j.lfs.2022.120375 35123997
    [Google Scholar]
  115. Zhou A. Ryan J. Biological embedding of early-life adversity and a scoping review of the evidence for intergenerational epigenetic transmission of stress and trauma in humans. Genes 2023 14 8 1639 10.3390/genes14081639 37628690
    [Google Scholar]
  116. Rohn TT Radin D Brandmeyer T Genetic modulation of the HTR2A gene reduces anxiety-related behavior in mice. PNAS Nexus 2023 2 6 pgad170 10.1093/pnasnexus/pgad170 37346271
    [Google Scholar]
  117. Kverno K.S. Mangano E. Treatment-resistant depression: Approaches to treatment. J. Psychosoc. Nurs. Ment. Health Serv. 2021 59 9 7 11 10.3928/02793695‑20210816‑01 34459676
    [Google Scholar]
  118. Vaz A. Salgado A. Patrício P. Pinto L. Patient-derived induced pluripotent stem cells: Tools to advance the understanding and drug discovery in Major Depressive Disorder. Psychiatry Res. 2024 339 116033 10.1016/j.psychres.2024.116033 38968917
    [Google Scholar]
  119. Jarrin S. Finn D.P. Optogenetics and its application in pain and anxiety research. Neurosci. Biobehav. Rev. 2019 105 200 211 10.1016/j.neubiorev.2019.08.007 31421140
    [Google Scholar]
  120. Motti R. de Falco B. Traditional herbal remedies used for managing anxiety and insomnia in Italy: An ethnopharmacological overview. Horticulturae 2021 7 12 523 10.3390/horticulturae7120523
    [Google Scholar]
  121. Alonso-Castro A.J. Ruiz-Padilla A.J. Ortiz-Cortes M. Self-treatment and adverse reactions with herbal products for treating symptoms associated with anxiety and depression in adults from the central-western region of Mexico during the Covid-19 pandemic. J. Ethnopharmacol. 2021 272 113952 10.1016/j.jep.2021.113952 33610705
    [Google Scholar]
  122. Choque Olsson N. Juth P. Högberg Ragnarsson E. Lundgren T. Jansson-Fröjmark M. Parling T. Treatment satisfaction with cognitive-behavioral therapy among children and adolescents with anxiety and depression: A systematic review and meta-synthesis. J Behav Cogn Ther 2021 31 2 147 191 10.1016/j.jbct.2020.10.006
    [Google Scholar]
  123. Ren L. Fan Y. Wu W. Anxiety disorders: Treatments, models, and circuitry mechanisms. Eur. J. Pharmacol. 2024 983 176994 10.1016/j.ejphar.2024.176994 39271040
    [Google Scholar]
  124. Pontone G.M. Mills K.A. Optimal treatment of depression and anxiety in Parkinson’s disease. Am. J. Geriatr. Psychiatry 2021 29 6 530 540 10.1016/j.jagp.2021.02.037 33648830
    [Google Scholar]
  125. Geronimo A.C.R. Melo E.S.P. Silva K.R.N. Human health risk assessment of heavy metals and metalloids in herbal medicines used to treat anxiety: Monitoring of safety. Front. Pharmacol. 2021 12 772928 10.3389/fphar.2021.772928 34858191
    [Google Scholar]
  126. Banu Z. Sri C.R. Inayet A. Begum F.U. Systemic review of medicinal plants used for the treatment of anxiety. Eur. J. Pharm. Med. Res. 2024 11 2 139 158
    [Google Scholar]
  127. Zhang W. Yan Y. Wu Y. Medicinal herbs for the treatment of anxiety: A systematic review and network meta-analysis. Pharmacol. Res. 2022 179 106204 10.1016/j.phrs.2022.106204 35378276
    [Google Scholar]
  128. Petrović B. Vukomanović P. Popović V. Herbal remedies in the treatment of anxiety disorders. In:AnIntroductiontoMedicinalHerbs. New York Nova Science Publishers 2021 205 236
    [Google Scholar]
  129. Musa H.H. Musa T.H. Oderinde O. Traditional herbal medicine: Overview of research indexed in the scopus database. Advances in Traditional Medicine 2023 23 4 1173 1183 10.1007/s13596‑022‑00670‑2
    [Google Scholar]
  130. Trkulja V. Barić H. Current research on complementary and alternative medicine (CAM) in the treatment of anxiety disorders: An evidence-based review. Adv. Exp. Med. Biol. 2020 1191 415 449 10.1007/978‑981‑32‑9705‑0_22 32002940
    [Google Scholar]
  131. Nimmons D. Aker N. Burnand A. Clinical effectiveness of pharmacological and non-pharmacological treatments for the management of anxiety in community dwelling people living with dementia: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2024 157 105507 10.1016/j.neubiorev.2023.105507 38097097
    [Google Scholar]
  132. Oracz J. Kowalski S. Żyżelewicz D. The influence of microwave-assisted extraction on the phenolic compound profile and biological activities of extracts from selected Scutellaria species. Molecules 2023 28 9 3877 10.3390/molecules28093877 37175287
    [Google Scholar]
  133. Zanardi R. Carminati M. Fazio V. Maccario M. Verri G. Colombo C. Add-On treatment with Passiflora incarnata L., herba, during benzodiazepine tapering in patients with depression and Anxiety: A real-world study. Pharmaceuticals 2023 16 3 426 10.3390/ph16030426 36986524
    [Google Scholar]
  134. Xu T. Cock I.E. A review of the sedative, anti-anxiety and immunosti-mulant properties of Withania somnifera (L.) Dunal (Ashwagandha). Pharmacogn. Commun. 2023 13 1 15 23 10.5530/pc.2023.1.4
    [Google Scholar]
  135. Borrás S. Martínez-Solís I. Ríos J.L. Medicinal plants for insomnia related to anxiety: An updated review. Planta Med. 2021 87 10/11 738 753 10.1055/a‑1510‑9826 34116572
    [Google Scholar]
  136. Bandopadhyay S. Mandal S. Ghorai M. Therapeutic properties and pharmacological activities of asiaticoside and madecassoside: A review. J. Cell. Mol. Med. 2023 27 5 593 608 10.1111/jcmm.17635 36756687
    [Google Scholar]
  137. Meesakul P. Shea T. Wong S.X. Kuroki Y. Cao S. Hawaiian plants with beneficial effects on sleep, anxiety, and mood, etc. Pharmaceuticals 2023 16 9 1228 10.3390/ph16091228 37765036
    [Google Scholar]
  138. Kuruvalli G. Wankhade I. Wankhede S. A comprehensive review on the ethno-medicinal and pharmacological properties of Bacopa monnieri. Pharmacogn. Rev. 2023 17 34 418 425 10.5530/phrev.2023.17.17
    [Google Scholar]
  139. Panigrahi A.K. Satapathy S. Mishra S.K. Jena S.K. Effect of Ocimum sanctum leaf extract in animal models of anxiety. Natl. J. Physiol. Pharm. Pharmacol. 2022 12 7 1084 1088 10.5455/njppp.2022.12.062671202209062022
    [Google Scholar]
  140. Motahareh B. Shahin H. Masoud M. Tabandeh S. The effects of Melissa officinalis leaf extract on anxiety among patients undergoing orthopedic surgeries. J. Herb. Med. 2022 31 100532 10.1016/j.hermed.2021.100532
    [Google Scholar]
  141. Yoo O. Park S.A. Anxiety-reducing effects of lavender essential oil inhalation: A systematic review. Healthc. 2023 11 22 2978 10.3390/healthcare11222978 37998470
    [Google Scholar]
  142. Savage K. Sarris J. Hughes M. Neuroimaging insights: Kava’s (Piper methysticum) effect on dorsal anterior cingulate Cortex GABA in generalized anxiety disorder. Nutrients 2023 15 21 4586 10.3390/nu15214586 37960239
    [Google Scholar]
  143. Kamat D. Al-Ajlouni Y.A. Hall R.C.W. The therapeutic impact of Plant-Based and Nutritional supplements on anxiety, depressive symptoms and sleep quality among adults and Elderly: A systematic review of the literature. Int. J. Environ. Res. Public Health 2023 20 6 5171 10.3390/ijerph20065171 36982079
    [Google Scholar]
  144. Siddiqui N. Talib M. Tripathi P.N. Kumar A. Sharma A. An insight into the neurodegenerative exploration of Baicalein: A review. Health Sci Rev 2024 100172 10.1016/j.hsr.2024.100172
    [Google Scholar]
  145. Kupcova I. Danisovic L. Grgac I. Harsanyi S. Anxiety and depression: What do we know of neuropeptides? Behav. Sci. 2022 12 8 262 10.3390/bs12080262 36004833
    [Google Scholar]
  146. Mukhina A.Y. Mishina E.S. Bobyntsev I.I. Morphological changes in the large intestine of rats subjected to chronic restraint stress and treated with selank. Bull. Exp. Biol. Med. 2020 169 2 281 285 10.1007/s10517‑020‑04868‑9 32651826
    [Google Scholar]
  147. Mizushige T. Neuromodulatory peptides: Orally active anxiolytic-like and antidepressant-like peptides derived from dietary plant proteins. Peptides 2021 142 170569 10.1016/j.peptides.2021.170569 33984426
    [Google Scholar]
  148. Fonseca I.C.F. Castelo-Branco M. Cavadas C. Abrunhosa A.J. PET imaging of the neuropeptide Y system: A systematic review. Molecules 2022 27 12 3726 10.3390/molecules27123726 35744852
    [Google Scholar]
  149. Tanaka M. Yamada S. Watanabe Y. The role of neuropeptide Y in the nucleus accumbens. Int. J. Mol. Sci. 2021 22 14 7287 10.3390/ijms22147287 34298907
    [Google Scholar]
  150. Shende P. Desai D. Physiological and therapeutic roles of neuropeptide Y on biological functions. Adv. Exp. Med. Biol. 2020 1237 37 47 10.1007/5584_2019_427 31468359
    [Google Scholar]
  151. Clark C.M. Clark R.M. Hoyle J.A. Dickson T.C. Pathogenic or protective? Neuropeptide Y in amyotrophic lateral sclerosis. J. Neurochem. 2021 156 3 273 289 10.1111/jnc.15125 32654149
    [Google Scholar]
  152. Salluzzo M. Carboni L. Anxiety-Like Behaviors and Neuropeptide Y, Tachykinins and Beyond. In:Handbook of the Biology and Pathology of Mental Disorders. Cham Springer 2024 1 21 10.1007/978‑3‑031‑32035‑4_122‑1
    [Google Scholar]
  153. Al Jowf G.I. Ahmed Z.T. Reijnders R.A. de Nijs L. Eijssen L.M.T. To predict, prevent, and manage post-traumatic stress disorder (PTSD): A review of pathophysiology, treatment, and biomarkers. Int. J. Mol. Sci. 2023 24 6 5238 10.3390/ijms24065238 36982313
    [Google Scholar]
  154. Yamada S. Islam M.S. van Kooten N. Neuropeptide Y neurons in the nucleus accumbens modulate anxiety-like behavior. Exp. Neurol. 2020 327 113216 10.1016/j.expneurol.2020.113216 32014439
    [Google Scholar]
  155. Botticelli L. Micioni Di Bonaventura E. Ubaldi M. Ciccocioppo R. Cifani C. Micioni Di Bonaventura M. The Neural Network of Neuropeptide S (NPS): Implications in food intake and gastrointestinal functions. Pharmaceuticals 2021 14 4 293 10.3390/ph14040293 33810221
    [Google Scholar]
  156. Kushikata T. Hirota K. Saito J. Takekawa D. Roles of neuropeptide S in anesthesia, analgesia, and sleep. Pharmaceuticals 2021 14 5 483 10.3390/ph14050483 34069327
    [Google Scholar]
  157. Tobinski A.M. Rappeneau V. Role of the neuropeptide S system in emotionality, stress responsiveness and addiction-like behaviours in rodents: Relevance to stress-related disorders. Pharmaceuticals 2021 14 8 780 10.3390/ph14080780 34451877
    [Google Scholar]
  158. Markiewicz-Gospodarek A. Kuszta P. Baj J. Dobrowolska B. Markiewicz R. Can neuropeptide S be an indicator for assessing anxiety in psychiatric disorders? Front. Public Health 2022 10 872430 10.3389/fpubh.2022.872430 35558538
    [Google Scholar]
  159. Li S. Guo C. Zhang X. Self-assembling modified neuropeptide S enhances nose-to-brain penetration and exerts a prolonged anxiolytic-like effect. Biomater. Sci. 2021 9 13 4765 4777 10.1039/D1BM00380A 34037635
    [Google Scholar]
  160. Bhargava A. Unraveling corticotropin-releasing factor family-orchestrated signaling and function in both sexes. Vitam. Horm. 2023 123 27 65 10.1016/bs.vh.2023.01.009 37717988
    [Google Scholar]
  161. Mbiydzenyuy N.E. Qulu L.A. Stress, hypothalamic-pituitary-adrenal axis, hypothalamic-pituitary-gonadal axis, and aggression. Metab. Brain Dis. 2024 39 8 1613 1636 10.1007/s11011‑024‑01393‑w 39083184
    [Google Scholar]
  162. Goto S. Kojima N. Komori M. Vitamin C deficiency alters the transcriptome of the rat brain in a glucocorticoid-dependent manner, leading to microglial activation and reduced neurogenesis. J. Nutr. Biochem. 2024 128 109608 10.1016/j.jnutbio.2024.109608 38458474
    [Google Scholar]
  163. Yang X. Geng F. Corticotropin‐releasing factor signaling and its potential role in the prefrontal cortex‐dependent regulation of anxiety. J. Neurosci. Res. 2023 101 12 1781 1794 10.1002/jnr.25238 37592912
    [Google Scholar]
  164. Csabafi K. Ibos K.E. Bodnár É. Filkor K. Szakács J. Bagosi Z. A brain region-dependent alteration in the expression of vasopressin, corticotropin-releasing factor, and their receptors might be in the background of Kisspeptin-13-induced hypothalamic-pituitary-adrenal axis activation and anxiety in rats. Biomedicines 2023 11 9 2446 10.3390/biomedicines11092446 37760887
    [Google Scholar]
  165. Bertagna N.B. dos Santos P.G.C. Queiroz R.M. Fernandes G.J.D. Cruz F.C. Miguel T.T. Involvement of the ventral, but not dorsal, hippocampus in anxiety-like behaviors in mice exposed to the elevated plus maze: Participation of CRF1 receptor and PKA pathway. Pharmacol. Rep. 2021 73 1 57 72 10.1007/s43440‑020‑00182‑3 33175366
    [Google Scholar]
  166. Agoglia A.E. Tella J. Herman M.A. Sex differences in corticotropin releasing factor peptide regulation of inhibitory control and excitability in central amygdala corticotropin releasing factor receptor 1-neurons. Neuropharmacology 2020 180 108296 10.1016/j.neuropharm.2020.108296 32950560
    [Google Scholar]
  167. Lawrence S. Scofield R.H. Post traumatic stress disorder associated hypothalamic-pituitary-adrenal axis dysregulation and physical illness. Brain Behav Immun Health 2024 41 100849 10.1016/j.bbih.2024.100849 39280087
    [Google Scholar]
  168. Casello S.M. Flores R.J. Yarur H.E. Neuropeptide system regulation of prefrontal cortex circuitry: Implications for neuropsychiatric disorders. Front. Neural Circuits 2022 16 796443 10.3389/fncir.2022.796443 35800635
    [Google Scholar]
  169. Mishra S. Grewal J. Wal P. Bhivshet G.U. Tripathi A.K. Walia V. Therapeutic potential of vasopressin in the treatment of neurological disorders. Peptides 2024 174 171166 10.1016/j.peptides.2024.171166 38309582
    [Google Scholar]
  170. Gomes D.A. de Almeida Beltrão R.L. de Oliveira Junior F.M. Vasopressin and copeptin release during sepsis and septic shock. Peptides 2021 136 170437 10.1016/j.peptides.2020.170437 33181268
    [Google Scholar]
  171. Glavaš M. Gitlin-Domagalska A. Dębowski D. Ptaszyńska N. Łęgowska A. Rolka K. Vasopressin and its analogues: From natural hormones to multitasking peptides. Int. J. Mol. Sci. 2022 23 6 3068 10.3390/ijms23063068 35328489
    [Google Scholar]
  172. Lago T.R. Brownstein M.J. Page E. The novel vasopressin receptor (V1aR) antagonist SRX246 reduces anxiety in an experimental model in humans: A randomized proof-of-concept study. Psychopharmacology 2021 238 9 2393 2403 10.1007/s00213‑021‑05861‑4 33970290
    [Google Scholar]
  173. Takayanagi Y. Onaka T. Roles of oxytocin in stress responses, allostasis and resilience. Int. J. Mol. Sci. 2021 23 1 150 10.3390/ijms23010150 35008574
    [Google Scholar]
  174. Yoon S. Kim Y.K. Possible oxytocin-related biomarkers in anxiety and mood disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 2022 116 110531 10.1016/j.pnpbp.2022.110531 35150782
    [Google Scholar]
  175. Grinevich V. Neumann I.D. Brain oxytocin: How puzzle stones from animal studies translate into psychiatry. Mol. Psychiatry 2021 26 1 265 279 10.1038/s41380‑020‑0802‑9 32514104
    [Google Scholar]
  176. Yin H. Jiang M. Han T. Xu X. Intranasal oxytocin as a treatment for anxiety and autism: From subclinical to clinical applications. Peptides 2024 176 171211 10.1016/j.peptides.2024.171211 38579916
    [Google Scholar]
  177. Xu Y. Guan X. Zhou R. Gong R. Melanocortin 5 receptor signaling pathway in health and disease. Cell. Mol. Life Sci. 2020 77 19 3831 3840 10.1007/s00018‑020‑03511‑0 32248247
    [Google Scholar]
  178. Dinparastisaleh R. Mirsaeidi M. Antifibrotic and anti-inflammatory actions of α-melanocytic hormone: New roles for an old player. Pharmaceuticals 2021 14 1 45 10.3390/ph14010045 33430064
    [Google Scholar]
  179. Hou Z.S. Wen H.S. Neuropeptide Y and melanocortin receptors in fish: Regulators of energy homeostasis. Mar. Life Sci. Technol. 2022 4 1 42 51 10.1007/s42995‑021‑00106‑x 37073356
    [Google Scholar]
  180. Mun Y. Kim W. Shin D. Melanocortin 1 receptor (MC1R): Pharmacological and therapeutic aspects. Int. J. Mol. Sci. 2023 24 15 12152 10.3390/ijms241512152 37569558
    [Google Scholar]
  181. Micioni Di Bonaventura E. Botticelli L. Del Bello F. Investigating the role of the central melanocortin system in stress and stress-related disorders. Pharmacol. Res. 2022 185 106521 10.1016/j.phrs.2022.106521 36272641
    [Google Scholar]
  182. Markov D.D. Dolotov O.V. Grivennikov I.A. The melanocortin system: A promising target for the development of new antidepressant drugs. Int. J. Mol. Sci. 2023 24 7 6664 10.3390/ijms24076664 37047638
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026394052250808075022
Loading
/content/journals/cnr/10.2174/0115672026394052250808075022
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test