Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1567-2026
  • E-ISSN: 1875-5739

Abstract

Objective

Regenerative therapy using stem cells to treat cerebral infarction is currently in the research phase. However, this method is costly. It also faces other significant challenges, including optimization of timing, delivery methods, and dosage. Therefore, more practical and effective therapies are required. Bioabsorbable artificial dura mater made from nonwoven Polyglycolic Acid (PGA) fabric is used clinically to treat cerebral infarction. Basic Fibroblast Growth Factor (bFGF) has attracted considerable attention as a potential therapeutic candidate for the treatment of cerebral infarctions. In this study, we aimed to prepare a bFGF-releasing PGA dura mater and investigate its therapeutic efficacy for the recovery of neurological function in a mouse model of focal cerebral infarction.

Methods

An artificial dura mater (Durawave) made from nonwoven PGA fabric was subjected to oxygen plasma treatment, followed by bFGF adsorption. The release of bFGF from the resulting PGA dura mater was evaluated using enzyme-linked immunosorbent assays. bFGF-releasing PGA dura mater was placed at the site of induced cerebral infarctions in mice. Neurological function was assessed 14 days after insertion, followed by a histological assessment.

Results

The prepared PGA dura mater released bFGF in a dose-dependent manner. Neurological function in the bFGF-treated groups was significantly better than that in the control group. bFGF-releasing PGA dura mater also significantly increased the number of neural progenitor cells in the peri-infarct cortex and striatum and showed a trend toward promoting angiogenesis.

Conclusion

bFGF-releasing PGA dura mater improved neurological function in a mouse model of focal cerebral infarction.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026371969241224112004
2025-01-21
2025-09-28
Loading full text...

Full text loading...

References

  1. ZhangG.L. ZhuZ.H. WangY.Z. Neural stem cell transplantation therapy for brain ischemic stroke: Review and perspectives.World J. Stem Cells2019111081783010.4252/wjsc.v11.i10.81731692854
    [Google Scholar]
  2. PanosL. BargiotasP. ArnoldM. HadjigeorgiouG. PanosG. Revolutionizing stroke recovery: Unveiling the promise of stem cell therapy.Drug Des. Devel. Ther.202418991100610.2147/DDDT.S46099838567255
    [Google Scholar]
  3. LiZ. DongX. TianM. LiuC. WangK. LiL. LiuZ. LiuJ. Stem cell-based therapies for ischemic stroke: A systematic review and meta-analysis of clinical trials.Stem Cell Res. Ther.202011125210.1186/s13287‑020‑01762‑z32586371
    [Google Scholar]
  4. AyH. AyI. KoroshetzW. FinklesteinS. Potential usefulness of basic fibroblast growth factor as a treatment for stroke.Cerebrovasc. Dis.19999313113510.1159/00001594110207203
    [Google Scholar]
  5. ChenC.H. PoucherS. LuJ. HenryP. Fibroblast growth factor 2: From laboratory evidence to clinical application.Curr. Vasc. Pharmacol.200421334310.2174/157016104347650015320831
    [Google Scholar]
  6. OchiT. NakatomiH. ItoA. ImaiH. OkabeS. SaitoN. Temporal changes in the response of SVZ neural stem cells to intraventricular administration of growth factors.Brain Res.2016163611812910.1016/j.brainres.2016.01.04626845459
    [Google Scholar]
  7. Okada-BanM. ThieryJ.P. JouanneauJ. Fibroblast growth factor-2.Int. J. Biochem. Cell Biol.200032326326710.1016/S1357‑2725(99)00133‑810716624
    [Google Scholar]
  8. WadaK. SugimoriH. BhideP.G. MoskowitzM.A. FinklesteinS.P. Effect of basic fibroblast growth factor treatment on brain progenitor cells after permanent focal ischemia in rats.Stroke200334112722272810.1161/01.STR.0000094421.61917.7114576381
    [Google Scholar]
  9. ItoY. OyaneA. YasunagaM. HirataK. HiroseM. TsurushimaH. ItoY. MatsumaruY. IshikawaE. Induction of angiogenesis and neural progenitor cells by basic fibroblast growth factor-releasing polyglycolic acid sheet following focal cerebral infarction in mice.J. Biomed. Mater. Res. A2022110121964197510.1002/jbm.a.3743436183359
    [Google Scholar]
  10. HondermarckH. CourtyJ. ThomasD. ThomasD. Distribution of intravenously administered acidic and basic fibroblast growth factors in the mouse.Experientia199046997397410.1007/BF019393921698658
    [Google Scholar]
  11. WhalenG.F. ShingY. FolkmanJ. The fate of intravenously administered bFGF and the effect of heparin.Growth Factors19891215716410.3109/089771989090291252624780
    [Google Scholar]
  12. FukudaT. KusuharaH. NakagoshiT. IsogaiN. SueyoshiY. A basic fibroblast growth factor slow-release system combined to a biodegradable nerve conduit improves endothelial cell and Schwann cell proliferation: A preliminary study in a rat model.Microsurgery201838889990610.1002/micr.3038730380172
    [Google Scholar]
  13. IshimaruT. KomuraM. SugiyamaM. KomuraH. AraiM. FujishiroJ. UotaniC. MiyakawaK. KakiharaT. HoshiK. TakatoT. TabataY. KomuroH. IwanakaT. Slow release of basic fibroblast growth factor (b-FGF) enhances mechanical properties of rat trachea.J. Pediatr. Surg.201550225525910.1016/j.jpedsurg.2014.11.01225638613
    [Google Scholar]
  14. ItoY. TsurushimaH. SatoM. ItoA. OyaneA. SogoY. MatsumuraA. Angiogenesis therapy for brain infarction using a slow-releasing drug delivery system for fibroblast growth factor 2.Biochem. Biophys. Res. Commun.2013432118218710.1016/j.bbrc.2013.01.01323318176
    [Google Scholar]
  15. QuJ. WangL. NiuL. LinJ. HuangQ. JiangX. LiM. Porous silk fibroin microspheres sustainably releasing bioactive basic fibroblast growth factor.Materials (Basel)2018118128010.3390/ma1108128030044408
    [Google Scholar]
  16. OyaneA. ArakiH. NakamuraM. AikiY. HiguchiK. PyatenkoA. AdachiM. ItoY. Controlled release of basic fibroblast growth factor from a water-floatable polyethylene nonwoven fabric sheet for maintenance culture of iPSCs.RSC Advances20201019510410.1039/C9RA06906B35492512
    [Google Scholar]
  17. YamaguchiS. TerasakaS. OkamotoM. IshiY. MotegiH. KobayashiH. HoukinK. Simplified dural reconstruction procedure using biocompatible polyglycolic acid felt with autologous abdominal fat grafts after a transpetrosal approach.World Neurosurg.2019132e710e71510.1016/j.wneu.2019.08.03331421296
    [Google Scholar]
  18. MatsumuraH. MarushimaA. IshikawaH. ToyomuraJ. OhyamaA. WatanabeM. TakaokaS. BukawaH. MatsumuraA. MatsumaruY. IshikawaE. Induced neural cells from human dental pulp ameliorate functional recovery in a murine model of cerebral infarction.Stem Cell Rev. Rep.202218259560810.1007/s12015‑021‑10223‑w34453695
    [Google Scholar]
  19. JinK. SunY. XieL. PeelA. MaoX.O. BatteurS. GreenbergD.A. Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum.Mol. Cell. Neurosci.200324117118910.1016/S1044‑7431(03)00159‑314550778
    [Google Scholar]
  20. ChenZ. FanT. ZhaoX. ZhangZ. Depleting SOX2 improves ischemic stroke via lncRNA PVT1/microRNA-24-3p/STAT3 axis.Mol. Med.202127110710.1186/s10020‑021‑00346‑834521353
    [Google Scholar]
  21. YangL. KressB.T. WeberH.J. ThiyagarajanM. WangB. DeaneR. BenvenisteH. IliffJ.J. NedergaardM. Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer.J. Transl. Med.201311110710.1186/1479‑5876‑11‑10723635358
    [Google Scholar]
  22. XieH. ChungJ.K. MascelliM.A. McCauleyT.G. Pharmacokinetics and bioavailability of a therapeutic enzyme (idursulfase) in cynomolgus monkeys after intrathecal and intravenous administration.PLoS One2015104e012245310.1371/journal.pone.012245325836678
    [Google Scholar]
  23. OnimaruM. YonemitsuY. TaniiM. NakagawaK. MasakiI. OkanoS. IshibashiH. ShirasunaK. HasegawaM. SueishiK. Fibroblast growth factor-2 gene transfer can stimulate hepatocyte growth factor expression irrespective of hypoxia-mediated downregulation in ischemic limbs.Circ. Res.2002911092393010.1161/01.RES.0000043281.66969.3212433837
    [Google Scholar]
  24. SeghezziG. PatelS. RenC.J. GualandrisA. PintucciG. RobbinsE.S. ShapiroR.L. GallowayA.C. RifkinD.B. MignattiP. Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis.J. Cell Biol.199814171659167310.1083/jcb.141.7.16599647657
    [Google Scholar]
  25. TsutsumiN. YonemitsuY. ShikadaY. OnimaruM. TaniiM. OkanoS. KanekoK. HasegawaM. HashizumeM. MaeharaY. SueishiK. Essential role of PDGFRalpha-p70S6K signaling in mesenchymal cells during therapeutic and tumor angiogenesis in vivo: Role of PDGFRalpha during angiogenesis.Circ. Res.20049491186119410.1161/01.RES.0000126925.66005.3915059936
    [Google Scholar]
  26. AkimotoT. HammermanM.R. Fibroblast growth factor 2 promotes microvessel formation from mouse embryonic aorta.Am. J. Physiol. Cell Physiol.20032842C371C37710.1152/ajpcell.00193.200212388106
    [Google Scholar]
  27. BeckH. PlateK.H. Angiogenesis after cerebral ischemia.Acta Neuropathol.2009117548149610.1007/s00401‑009‑0483‑619142647
    [Google Scholar]
  28. DillenY. KempsH. GervoisP. WolfsE. BronckaersA. Adult neurogenesis in the subventricular zone and its regulation after ischemic stroke: implications for therapeutic approaches.Transl. Stroke Res.2020111607910.1007/s12975‑019‑00717‑831309427
    [Google Scholar]
  29. NakatomiH. KuriuT. OkabeS. YamamotoS. HatanoO. KawaharaN. TamuraA. KirinoT. NakafukuM. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors.Cell2002110442944110.1016/S0092‑8674(02)00862‑012202033
    [Google Scholar]
  30. TazbirJ. MarthalerM.T. MoredichC. KeresztesP. Decompressive hemicraniectomy with duraplasty: A treatment for large-volume ischemic stroke.J. Neurosci. Nurs.200537419419910.1097/01376517‑200508000‑0000416206544
    [Google Scholar]
  31. Hernández-DuránS. HautmannX. RohdeV. von der BrelieC. MielkeD. Surgical timing and indications for decompressive craniectomy in malignant stroke: Results from a single-center retrospective analysis.Acta Neurochir. (Wien)2023165123815382010.1007/s00701‑023‑05817‑x37749288
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026371969241224112004
Loading
/content/journals/cnr/10.2174/0115672026371969241224112004
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test