Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1567-2026
  • E-ISSN: 1875-5739

Abstract

Background

Bilirubin plays a crucial role in the pathophysiological processes of strokes. However, the relationship between serum bilirubin levels and the prognosis of aneurysmal subarachnoid hemorrhage (aSAH) remains unexplored. This study aims to investigate the association between serum bilirubin levels and the mortality rate of aSAH patients.

Methods

695 aSAH patients were included to analyze the relationship between direct bilirubin (DBil), indirect bilirubin (IDBil), total bilirubin (TBil), and mortality. The univariate and multivariate logistic regression were conducted to discover risk factors for the mortality of aSAH. The restricted cubic spline (RCS) was used to show the correlation between DBil, IDBil, TBil, and mortality. A logistic regression predictive model was developed by incorporating significant factors in the multivariate logistic regression. The receiver operating characteristic (ROC) curve was plotted to evaluate the predictive value of serum bilirubin and the developed predictive model.

Results

139 aSAH patients suffered death, with a mortality of 20.0%. Non-survivors had older age ( =0.007), lower GCS ( <0.001), higher Hunt Hess ( <0.001), and mFisher ( <0.001). Both DBil ( <0.001) and TBil ( =0.011) were significantly higher among non-survivors. While the IDBil did not show a difference between survivors and non-survivors. The multivariate analysis found age ( =0.111), Glasgow Coma Scale ( =0.005), white blood cell ( <0.001), glucose ( =0.004), DBil ( =0.001), delayed cerebral ischemia ( <0.001) were significantly related with the mortality of aSAH. A logistic regression predictive model for mortality was developed incorporating these five factors, which had an area under the ROC curve (AUC) of 0.876. The AUC of DBil, IDBil, and TBil for predicting mortality was 0.607, 0.570, and 0.529, respectively.

Conclusion

Serum DBil level is positively associated with the mortality risk of aSAH. The predictive model incorporating DBil is beneficial for clinicians to evaluate the mortality risk of aSAH and adopt personalized therapeutics.

Loading

Article metrics loading...

/content/journals/cnr/10.2174/0115672026365408241230061133
2025-01-08
2025-11-05
Loading full text...

Full text loading...

References

  1. Rooijd.N.K. LinnF.H.H. van der PlasJ.A. AlgraA. RinkelG.J.E. Incidence of subarachnoid haemorrhage: A systematic review with emphasis on region, age, gender and time trends.J. Neurol. Neurosurg. Psychiatry200778121365137210.1136/jnnp.2007.11765517470467
    [Google Scholar]
  2. NieuwkampD.J. SetzL.E. AlgraA. LinnF.H.H. Rooijd.N.K. RinkelG.J.E. Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: A meta-analysis.Lancet Neurol.20098763564210.1016/S1474‑4422(09)70126‑719501022
    [Google Scholar]
  3. GyldenholmT. HvasC.L. HvasA.M. HviidC.V.B. Serum glial fibrillary acidic protein (GFAP) predicts outcome after intracerebral and subarachnoid hemorrhage.Neurol. Sci.202243106011601910.1007/s10072‑022‑06274‑735896928
    [Google Scholar]
  4. VlachogiannisP. HilleredL. KhalilF. EnbladP. EngströmR.E. Interleukin-6 levels in cerebrospinal fluid and plasma in patients with severe spontaneous subarachnoid hemorrhage.World Neurosurg.2019122e612e61810.1016/j.wneu.2018.10.11330814021
    [Google Scholar]
  5. ZhengY.K. DongX.Q. DuQ. WangH. YangD.B. ZhuQ. CheZ.H. ShenY.F. JiangL. HuW. WangK.Y. YuW.H. Comparison of plasma copeptin and multiple biomarkers for assessing prognosis of patients with aneurysmal subarachnoid hemorrhage.Clin. Chim. Acta2017475646910.1016/j.cca.2017.10.00929037840
    [Google Scholar]
  6. ZhanC.P. ZhugeC.J. YanX.J. DaiW.M. YuG.F. Measuring serum melatonin concentrations to predict clinical outcome after aneurysmal subarachnoid hemorrhage.Clin. Chim. Acta20215131510.1016/j.cca.2020.12.00633309798
    [Google Scholar]
  7. GongJ. ZhuY. YuJ. JinJ. ChenM. LiuW. ZhanR. Increased serum interleukin-33 concentrations predict worse prognosis of aneurysmal subarachnoid hemorrhage.Clin. Chim. Acta201848621421810.1016/j.cca.2018.08.01130102896
    [Google Scholar]
  8. LuoY. LiJ. ZhangJ. XuY. Elevated bilirubin after acute ischemic stroke linked to the stroke severity.Int. J. Dev. Neurosci.201331763463810.1016/j.ijdevneu.2013.08.00223994036
    [Google Scholar]
  9. MuscariA. ColliniA. FabbriE. GiovagnoliM. NapoliC. RossiV. VizioliL. BonfiglioliA. MagalottiD. PudduG.M. ZoliM. Changes of liver enzymes and bilirubin during ischemic stroke: Mechanisms and possible significance.BMC Neurol.201414112210.1186/1471‑2377‑14‑12224903748
    [Google Scholar]
  10. ChenX. YangX. XuX. FuF. HuangX. Higher serum bilirubin levels are associated with hemorrhagic transformation after intravenous thrombolysis in acute ischemic Stroke.Front. Aging Neurosci.202315115910210.3389/fnagi.2023.115910237143690
    [Google Scholar]
  11. JiaY. YeX. SongG. LiX. YeJ. YangY. LuK. HuangS. ZhuS. Direct bilirubin: A predictor of hematoma expansion after intracerebral hemorrhage.Am. J. Emerg. Med.20237115015610.1016/j.ajem.2023.06.04237393774
    [Google Scholar]
  12. FuK. GarvanC.S. HeatonS.C. NagarajaN. DoréS. Association of Serum Bilirubin with the Severity and Outcomes of Intracerebral Hemorrhages.Antioxidants2021109134610.3390/antiox1009134634572977
    [Google Scholar]
  13. OuyangQ WangA TianX Serum bilirubin levels are associated with poor functional outcomes in patients with acute ischemic stroke or transient ischemic attack.BMC. Neurol.202121137310.1186/s12883‑021‑02398‑z
    [Google Scholar]
  14. PengQ. BiR. ChenS. ChenJ. LiZ. LiJ. JinH. HuB. Predictive value of different bilirubin subtypes for clinical outcomes in patients with acute ischemic stroke receiving thrombolysis therapy.CNS Neurosci. Ther.202228222623610.1111/cns.1375934779141
    [Google Scholar]
  15. BalchM.H.H. NimjeeS.M. RinkC. HannawiY. Beyond the brain: The systemic pathophysiological response to acute ischemic stroke.J. Stroke202022215917210.5853/jos.2019.0297832635682
    [Google Scholar]
  16. MaS. ZhaoH. JiX. LuoY. Peripheral to central: Organ interactions in stroke pathophysiology.Exp. Neurol.2015272414910.1016/j.expneurol.2015.05.01426054885
    [Google Scholar]
  17. ZeeshanHM LeeGH KimHR ChaeHJ Endoplasmic reticulum stress and associated ros.Int. J. Mol. Sci.201617332710.3390/ijms17030327
    [Google Scholar]
  18. WangY.Y. LinS.Y. ChuangY.H. SheuW.H.H. TungK.C. ChenC.J. Activation of hepatic inflammatory pathways by catecholamines is associated with hepatic insulin resistance in male ischemic stroke rats.Endocrinology201415541235124610.1210/en.2013‑159324437486
    [Google Scholar]
  19. BereczkiD.Jr BallaJ. BereczkiD. Heme oxygenase-1: Clinical relevance in ischemic stroke.Curr. Pharm. Des.201824202229223510.2174/138161282466618071710110430014798
    [Google Scholar]
  20. ClarkJ.F. SharpF.R. Bilirubin oxidation products (BOXes) and their role in cerebral vasospasm after subarachnoid hemorrhage.J. Cereb. Blood Flow Metab.200626101223123310.1038/sj.jcbfm.960028016467784
    [Google Scholar]
  21. ZibernaL. MartelancM. FrankoM. PassamontiS. Bilirubin is an endogenous antioxidant in human vascular endothelial cells.Sci. Rep.2016612924010.1038/srep2924027381978
    [Google Scholar]
  22. DoréS. TakahashiM. FerrisC.D. HesterL.D. GuastellaD. SnyderS.H. SnyderS.H. Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury.Proc. Natl. Acad. Sci. USA19999652445245010.1073/pnas.96.5.244510051662
    [Google Scholar]
  23. WuT.W. CareyD. WuJ. SugiyamaH. The cytoprotective effects of bilirubin and biliverdin on rat hepatocytes and human erythrocytes and the impact of albumin.Biochem. Cell Biol.1991691282883410.1139/o91‑1231818587
    [Google Scholar]
  24. KapitulnikJ. Bilirubin: An endogenous product of heme degradation with both cytotoxic and cytoprotective properties.Mol. Pharmacol.200466477377910.1124/mol.104.00283215269289
    [Google Scholar]
  25. SedlakT.W. SnyderS.H. Bilirubin benefits: Cellular protection by a biliverdin reductase antioxidant cycle.Pediatrics200411361776178210.1542/peds.113.6.177615173506
    [Google Scholar]
  26. ClarkJ.F. LoftspringM. WursterW.L. Bilirubin oxidation products, oxidative stress, and intracerebral hemorrhage.Cerebral Hemorrhage. ZhouL-F. ChenX-C. HuangF-P. XiG. KeepR.F. HuaY. ViennaSpringer Vienna200871210.1007/978‑3‑211‑09469‑3_2
    [Google Scholar]
  27. LoftspringM.C. JohnsonH.L. FengR. JohnsonA.J. ClarkJ.F. Unconjugated bilirubin contributes to early inflammation and edema after intracerebral hemorrhage.J. Cereb. Blood Flow Metab.20113141133114210.1038/jcbfm.2010.20321102603
    [Google Scholar]
  28. GeithmanP.G.J. MorganC.J. WagnerK. DulaneyE.M. CarrozzellaJ. KanterD.S. ZuccarelloM. ClarkJ.F. Bilirubin production and oxidation in CSF of patients with cerebral vasospasm after subarachnoid hemorrhage.J. Cereb. Blood Flow Metab.20052581070107710.1038/sj.jcbfm.960010115789034
    [Google Scholar]
  29. GeithmanP.G.J. NairS.G. StamperD.N.C. ClarkJ.F. Role of bilirubin oxidation products in the pathophysiology of DIND following SAH.Acta Neurochir. Suppl.201311526727310.1007/978‑3‑7091‑1192‑5_4722890679
    [Google Scholar]
  30. CardosoFL KittelA VeszelkaS PalmelaI TóthA BritesD Exposure to lipopolysaccharide and/or unconjugated bilirubin impair the integrity and function of brain microvascular endothelial cells.PLoS One.201275e3591910.1371/journal.pone.0035919
    [Google Scholar]
  31. PalmelaI. CardosoF.L. BernasM. CorreiaL. VazA.R. SilvaR.F. FernandesA. KimK.S. BritesD. BritoM.A. Elevated levels of bilirubin and long-term exposure impair human brain microvascular endothelial cell integrity.Curr. Neurovasc. Res.20118215316910.2174/15672021179549535821463246
    [Google Scholar]
  32. ChoH.S. LeeS.W. KimE.S. ShinJ. MoonS.D. HanJ.H. ChaB.Y. Serum bilirubin levels are inversely associated with PAI-1 and fibrinogen in Korean subjects.Atherosclerosis201624420421010.1016/j.atherosclerosis.2015.11.00826684255
    [Google Scholar]
  33. HansenT.W.R. WongR.J. StevensonD.K. Molecular physiology and pathophysiology of bilirubin handling by the blood, liver, intestine, and brain in the newborn.Physiol. Rev.202010031291134610.1152/physrev.00004.201932401177
    [Google Scholar]
/content/journals/cnr/10.2174/0115672026365408241230061133
Loading
/content/journals/cnr/10.2174/0115672026365408241230061133
Loading

Data & Media loading...

Supplements

Supplementray material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test