Skip to content
2000
image of Biogenic Synthesis of NiO Nanoparticles Using Fruit Waste: Modern Insights and Perspectives

Abstract

Nanotechnology is driving revolutionary changes across numerous fields, including physics, medicine, and energy. A more effective approach is needed for managing biodegradable waste compared to the current inorganic methods. Organic waste, such as watermelon peel, can be sustainably used to produce nanoparticles. Biodegradable waste benefits society through its natural decomposition processes. Recently, nanoparticles have attracted significant attention due to their unique chemical, physical, and biological properties, as well as their diverse applications across various scientific disciplines. Most conventional methods for synthesizing nanoparticles involve hazardous chemicals or are costly. However, NiO nanoparticles (NiO-NPs), derived from various biological sources, are inexpensive, durable, nontoxic, and environmentally friendly due to their easy availability. These nanoparticles exhibit a range of biochemical activities, including antimicrobial, anticancer, antioxidant, antibacterial, antifungal, anti-inflammatory, antidiabetic, and anti-larvicidal effects. This review discusses different green synthesis methods for NiO-NPs and recent findings regarding their therapeutic applications. Additionally, this study highlights future opportunities for developing green NiO-NPs as effective therapeutic agents.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615405393251002103711
2025-10-31
2025-12-14
Loading full text...

Full text loading...

References

  1. Ahmad W. Chandra Bhatt S. Verma M. Kumar V. Kim H. A review on current trends in the green synthesis of nickel oxide nanoparticles, characterizations, and their applications. Environ. Nanotechnol. Monit. Manag. 2022 18 100674 10.1016/j.enmm.2022.100674
    [Google Scholar]
  2. Kato Y. Suzuki M. Synthesis of metal nanoparticles by microorganisms. Crystal 2020 10 7 589 10.3390/cryst10070589
    [Google Scholar]
  3. Vanathi P. Rajiv P. Narendhran S. Rajeshwari S. Rahman P.K.S.M. Venckatesh R. Biosynthesis and characterization of phyto mediated zinc oxide nanoparticles: A green chemistry approach. Mater. Lett. 2014 134 13 15 10.1016/j.matlet.2014.07.029
    [Google Scholar]
  4. Sofyan N. Ridhova A. Yuwono A.H. Udhiarto A. Fergus J.W. Synthesis of TiO 2 nanoparticles at low hydrothermal temperature and its performance for DSSC sensitized using natural dye extracted from Melastoma malabathricum L. seeds. Int. J. Energy Res. 2019 43 11 5959 5968 10.1002/er.4710
    [Google Scholar]
  5. Angel Ezhilarasi A. Judith Vijaya J. Kaviyarasu K. John Kennedy L. Ramalingam R.J. Al-Lohedan H.A. Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. J. Photochem. Photobiol. B 2018 180 39 50 10.1016/j.jphotobiol.2018.01.023 29413700
    [Google Scholar]
  6. Abbasi B.A. Iqbal J. Nasir J.A. Environmentally friendly green approach for the fabrication of silver oxide nanoparticles: Characterization and diverse biomedical applications. Microsc. Res. Tech. 2020 83 11 1308 1320 10.1002/jemt.23522 32666568
    [Google Scholar]
  7. Ezhilarasi A.A. Vijaya J.J. Kennedy L.J. Kaviyarasu K. Green mediated NiO nano-rods using Phoenix dactylifera (Dates) extract for biomedical and environmental applications. Mater. Chem. Phys. 2020 241 122419 10.1016/j.matchemphys.2019.122419
    [Google Scholar]
  8. Ismail E. Diallo A. Khenfouch M. Dhlamini S.M. Maaza M. RuO2 nanoparticles by a novel green process via Aspalathus linearis natural extract & their water splitting response. J. Alloys Compd. 2016 662 283 289 10.1016/j.jallcom.2015.11.234
    [Google Scholar]
  9. Pakzad K. Alinezhad H. Nasrollahzadeh M. Green synthesis of Ni@Fe3O4 and CuO nanoparticles using Euphorbia maculata extract as photocatalysts for the degradation of organic pollutants under UV-irradiation. Ceram. Int. 2019 45 14 17173 17182 10.1016/j.ceramint.2019.05.272
    [Google Scholar]
  10. Chen F. Zhou W. Yao H. Self-assembly of NiO nanoparticles in lignin-derived mesoporous carbons for supercapacitor applications. Green Chem. 2013 15 11 3057 3063 10.1039/c3gc41080c
    [Google Scholar]
  11. Njimou J.R. Fai V. Sieugaing M.T. Nguenamadje D. Godwin J. Genola O.B. Noumi G.B. Tripathy B.C. Hydrothermal synthesis of a nickel-oxide-infused orange peel nanobiocomposite for enhanced heavy metal removal from mining wastewater. Hybrid Advances. 2025 9 100392 10.1016/j.hybadv.2025.100392
    [Google Scholar]
  12. Pechyen C. Ponsanti K. Tangnorawich B. Ngernyuang N. Waste fruit peel – Mediated green synthesis of biocompatible gold nanoparticles. J. Mater. Res. Technol. 2021 14 2982 2991 10.1016/j.jmrt.2021.08.111
    [Google Scholar]
  13. Naseem K. Mir K. Sembiring K.C. Khalid A. Khan M.E. Deepati A.K. Mango peel bio-actives for the fabrication of inorganic metal nano- particles and their potential for Wastewater treatment. Water Air Soil Pollut. 2025 236 2 104 10.1007/s11270‑024‑07728‑8
    [Google Scholar]
  14. Thirunavukkarasu S. A facile synthesis of green gold nanoparticles from fruit waste peels and their bioactivity evaluation against Ht-29 colon cancer cell lines. SSRN 5124875 10.2139/ssrn.5124875
    [Google Scholar]
  15. De Luca F. Demoro P. Nduka I. Italiano C. Abate S. Arrigo R. Valorisation of citrus waste for sustainable synthesis of carbon-supported copper nanoparticles active in CO 2 electroreduction. RSC Sustainability. 2025 3 3 1136 1148 10.1039/D4SU00463A
    [Google Scholar]
  16. Thamer B.M. Al-aizari F.A. Abdo H.S. Altaleb H.A. Single-step preparation of copper nanoparticle-enhanced activated carbon for anionic dye adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2025 711 136359 10.1016/j.colsurfa.2025.136359
    [Google Scholar]
  17. Putri R.A. Safitri I. Sofyan M.I. Deliza D. Sol-gel mediated by extract of santang orange peel in synthesis of tiO2 nanoparticle for photocatalytic degradation of methyl orange. Moroccan J Chem 2025 13 2 463 479
    [Google Scholar]
  18. Putri G.E. Labanni A. Arief S. Green synthesis of cerium oxide nanoparticles using Citrus nobilis Lour. Peel extract and evaluation of their potential as antibacterial and antioxidant agents. Case Stud Chem Environ Eng 2025 11 101062 10.1016/j.cscee.2024.101062
    [Google Scholar]
  19. Severiano Carrillo F. Orduña Díaz A. García Salgado G. Salazar Villanueva M. Flores Méndez J. Guillén Cervantes A. Blue, green, red luminescence and infrared response of green synthesized graphene oxide nanoparticles obtained by control numeric assisted laser ablation from lemon peels. J. Laser Appl. 2025 37 1 012013 10.2351/7.0001418
    [Google Scholar]
  20. Afriani F. Lingga R. Rafsanjani R.A. Tiandho Y. Green sythesis of cuo using citrus x microcarpa bunge peel extract and antibacterial activity evaluation. Sci Technol Manag J 2025 5 1 16 24 10.53416/stmj.v5i1.327
    [Google Scholar]
  21. Kabeya J.K. Ngombe N.K. Mutwale P.K. Antimicrobial capping agents on silver nanoparticles made via green method using natural products from banana plant waste. Artif. Cells Nanomed. Biotechnol. 2025 53 1 29 42 10.1080/21691401.2025.2462335 39920563
    [Google Scholar]
  22. Das A.K. Ali M.S. Misra A. Green synthesized biogenic ag nanoparticles with enhanced antibacterial, antifungal, antibiofilm, and antioxidant activities: Catalytic applications in the ipso ‐Hydroxylation of aryl boronic acids. Appl. Organomet. Chem. 2025 39 1 e7796 10.1002/aoc.7796
    [Google Scholar]
  23. Aliannezhadi M. Doost Mohamadi F. Jamali M. Shariatmadar Tehrani F. Ultrasound-assisted green synthesized ZnO nanoparticles with different solution pH for water treatment. Sci. Rep. 2025 15 1 7203 10.1038/s41598‑025‑90305‑8 40021690
    [Google Scholar]
  24. Hu D. Gao T. Kong X. Ginger (Zingiber officinale) extract mediated green synthesis of silver nanoparticles and evaluation of their antioxidant activity and potential catalytic reduction activities with Direct Blue 15 or Direct Orange 26. PLoS One 2022 17 8 e0271408 10.1371/journal.pone.0271408 36006900
    [Google Scholar]
  25. Alzate Acevedo S. Díaz Carrillo Á.J. Flórez-López E. Grande-Tovar C.D. Recovery of banana waste-loss from production and processing: a contribution to a circular economy. Molecules 2021 26 17 5282 10.3390/molecules26175282 34500714
    [Google Scholar]
  26. Easmin S. Bhattacharyya M. Pal K. Papaya peel extract-mediated green synthesis of zinc oxide nanoparticles and determination of their antioxidant, antibacterial, and photocatalytic properties. Bioprocess Biosyst. Eng. 2024 47 1 65 74 10.1007/s00449‑023‑02945‑7 38086975
    [Google Scholar]
  27. Phongtongpasuk S. Poadang S. Yongvanich N. Environmental-friendly method for synthesis of silver nanoparticles from dragon fruit peel extract and their antibacterial activities. Energy Procedia 2016 89 1 239 247 10.1016/j.egypro.2016.05.031
    [Google Scholar]
  28. Vishnupriya B. Nandhini G.R.E. Anbarasi G. Biosynthesis of zinc oxide nanoparticles using Hylocereus undatus fruit peel extract against clinical pathogens. Mater. Today Proc. 2022 48 2 164 168 10.1016/j.matpr.2020.05.474
    [Google Scholar]
  29. Ramesh K. Bhagavanth Reddy G. Noorjahan M. Microwave assisted green synthesis of palladium nanoparticles using dragon fruit peel extract for catalytic reduction of 4-nitrophenol and methylene blue. React. Kinet. Mech. Catal. 2024 137 4 2133 2145 10.1007/s11144‑024‑02652‑8
    [Google Scholar]
  30. Ali O.M. Hasanin M.S. Suleiman W.B. Helal E.E-H. Hashem A.H. Green biosynthesis of titanium dioxide quantum dots using watermelon peel waste: Antimicrobial, antioxidant, and anticancer activities. Biomass Convers. Biorefin. 2024 14 5 6987 6998 10.1007/s13399‑022‑02772‑y
    [Google Scholar]
  31. Chaudhary M. Choudhary P. Tripathi A. Pharmaceutical orientation and applications of silver/zinc oxide nanoparticles developed from various fruit peel extracts: An emerging sustainable approach. Discov. Sustain. 2025 6 1 7 10.1007/s43621‑024‑00728‑y
    [Google Scholar]
  32. Roopan S.M. Elango G. Priya D.D. Sunlight mediated photocatalytic degradation of organic pollutants by statistical optimization of green synthesized NiO NPs as catalyst. J. Mol. Liq. 2019 293 111509 10.1016/j.molliq.2019.111509
    [Google Scholar]
  33. Santhoshkumar J. Rajeshkumar S. Venkat Kumar S. Phyto-assisted synthesis, characterization and applications of gold nanoparticles: A review. Biochem. Biophys. Rep. 2017 11 46 57 10.1016/j.bbrep.2017.06.004 28955767
    [Google Scholar]
  34. Zhang X. Yan S. Tyagi R.D. Surampalli R.Y. Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 2011 82 4 489 494 10.1016/j.chemosphere.2010.10.023 21055786
    [Google Scholar]
  35. Sadeghi B. Mohammadzadeh M. Babakhani B. Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: Characterization and their stability. J. Photochem. Photobiol. B 2015 148 101 106 10.1016/j.jphotobiol.2015.03.025 25900555
    [Google Scholar]
  36. Yang N. WeiHong L, Hao L. Biosynthesis of Au nanoparticles using agricultural waste mango peel extract and its in vitro cytotoxic effect on two normal cells. Mater. Lett. 2014 134 67 70 10.1016/j.matlet.2014.07.025
    [Google Scholar]
  37. Nadagouda M.N. Iyanna N. Lalley J. Han C. Dionysiou D.D. Varma R.S. Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. ACS Sustain. Chem.& Eng. 2014 2 7 1717 1723 10.1021/sc500237k
    [Google Scholar]
  38. Huang C.Y. Ju D.T. Chang C.F. Muralidhar Reddy P. Velmurugan B.K. A review on the effects of current chemotherapy drugs and natural agents in treating non–small cell lung cancer. Biomedicine (Taipei) 2017 7 4 23 10.1051/bmdcn/2017070423 29130448
    [Google Scholar]
  39. Devi J.S. Bhimba B.V. Silver nanoparticles: Antibacterial activity against wound isolates & in vitro cytotoxic activity on Human Caucasian colon adenocarcinoma. Asian Pac. J. Trop. Dis. 2012 2 S87 S93 10.1016/S2222‑1808(12)60129‑7
    [Google Scholar]
  40. Ahmad B. Khan M.I. Naeem M.A. Green synthesis of NiO nanoparticles using Aloe vera gel extract and evaluation of antimicrobial activity. Mater. Chem. Phys. 2022 288 126363 10.1016/j.matchemphys.2022.126363
    [Google Scholar]
  41. Taş R. Köroğlu E. Celebi̇oglu H.U. Extract and Antibacterial Activity. Green synthesis of nickel nanoparticles using Peumus Boldus Koch. Extract and antibacterial activity. Int J Innov Eng Appl 2021 5 2 152 155 10.46460/ijiea.929625
    [Google Scholar]
  42. Lefojane R. Direko P. Mfengwana P. Green synthesis of nickel oxide (NiO) nanoparticles using Spirostachys africana bark extract. Asian J. Sci. Res. 2020 13 4 284 291 10.3923/ajsr.2020.284.291
    [Google Scholar]
  43. Wardani M. Yulizar Y. Abdullah I. Bagus Apriandanu D.O. Synthesis of NiO nanoparticles viagreen route using Ageratum conyzoidesL. leaf extract and their catalytic activity. IOP Conf Ser Mater Sci Eng 2019 509 012077 10.1088/1757‑899X/509/1/012077
    [Google Scholar]
  44. Canton H. United Nations Environment Programme—UNEP. The Europa directory of international organizations. Routledge 2021 188 214
    [Google Scholar]
  45. Rudra S.G. Nishad J. Jakhar N. Kaur C. Food industry waste: Mine of nutraceuticals. Int. J. Sci. Environ. Technol. 2015 4 1 205 229
    [Google Scholar]
  46. Ebrahimi M.A. Khoshtaghaza M.H. Minaei S. Jamshidi B. Vision-based pest detection based on SVM classification method. Comput. Electron. Agric. 2017 137 52 58 10.1016/j.compag.2017.03.016
    [Google Scholar]
  47. Fawcett D. Verduin J.J. Shah M. Sharma S.B. Poinern G.E.J. A review of current research into the biogenic synthesis of metal and metal oxide nanoparticles via marine algae and seagrasses. J Nanosci 2017 2017 1 1 15 10.1155/2017/8013850
    [Google Scholar]
  48. Akhtar M.S. Panwar J. Yun Y.S. Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain. Chem.& Eng. 2013 1 6 591 602 10.1021/sc300118u
    [Google Scholar]
  49. Ghosh A. Gao L. Thakur A. Siu P.M. Lai C.W.K. Role of free fatty acids in endothelial dysfunction. J. Biomed. Sci. 2017 24 1 50 10.1186/s12929‑017‑0357‑5 28750629
    [Google Scholar]
  50. Shah M. Fawcett D. Sharma S. Tripathy S. Poinern G. Green synthesis of metallic nanoparticles via biological entities. Materials 2015 8 11 7278 7308 10.3390/ma8115377 28793638
    [Google Scholar]
  51. Anastas P.T. Warner J.C. Principles of green chemistry. Green chemistry. Theory Pract. 1998 29 14821 14842
    [Google Scholar]
  52. Ahmad N. Sharma S. Green synthesis of silver nanoparticles using extracts of Ananas comosus. Green Sustain Chem 2012 2 4 141 147 10.4236/gsc.2012.24020
    [Google Scholar]
  53. Uddin S. Safdar L.B. Anwar S. Green synthesis of nickel oxide nanoparticles from Berberis balochistanica stem for investigating bioactivities. Molecules 2021 26 6 1548 10.3390/molecules26061548 33799864
    [Google Scholar]
  54. Rajith Kumar C.R. Betageri V.S. Nagaraju G. Pujar G.H. Suma B.P. Latha M.S. Photocatalytic, nitrite sensing and antibacterial studies of facile bio-synthesized nickel oxide nanoparticles. J. Sci. Adv. Mater. Devices 2020 5 1 48 55 10.1016/j.jsamd.2020.02.002
    [Google Scholar]
  55. Tong B. Ichimura M. Electrochemical deposition of transparent P‐type semiconductor NiO. Electron. Commun. Jpn. 2018 101 2 45 50 10.1002/ecj.12043
    [Google Scholar]
  56. Prabhu S. Poulose E.K. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2012 2 1 32 10.1186/2228‑5326‑2‑32
    [Google Scholar]
  57. Singh P. Kim Y.J. Zhang D. Yang D.C. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016 34 7 588 599 10.1016/j.tibtech.2016.02.006 26944794
    [Google Scholar]
  58. Hussain I. Singh N.B. Singh A. Singh H. Singh S.C. Green synthesis of nanoparticles and its potential application. Biotechnol. Lett. 2016 38 4 545 560 10.1007/s10529‑015‑2026‑7 26721237
    [Google Scholar]
  59. Safaepour M. Shahverdi A.R. Shahverdi H.R. Khorramizadeh M.R. Gohari A.R. Green synthesis of small silver nanoparticles using geraniol and its cytotoxicity against fibrosarcoma-were 164. Avicenna J. Med. Biotechnol. 2009 1 2 111 115 23407598
    [Google Scholar]
  60. Armendariz V Herrera I peralta-videa JR Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J. Nanopart. Res. 2004 6 4 377 382 10.1007/s11051‑004‑0741‑4
    [Google Scholar]
  61. Gericke M. Pinches A. Biological synthesis of metal nanoparticles. Hydrometallurgy 2006 83 1-4 132 140 10.1016/j.hydromet.2006.03.019
    [Google Scholar]
  62. Kumar H. Bhardwaj K. Dhanjal D.S. Fruit extract mediated green synthesis of metallic nanoparticles: A new avenue in pomology applications. Int. J. Mol. Sci. 2020 21 22 8458 10.3390/ijms21228458 33187086
    [Google Scholar]
  63. Chaudhary M. Singh A. Synthesis of nanoparticles using fruit waste and its pharmacological & catalytic applications: A review. Bionanoscience 2024 14 4 3830 3845 10.1007/s12668‑024‑01550‑6
    [Google Scholar]
  64. Samuel M.S. Ravikumar M. John J.A. A review on green synthesis of nanoparticles and their diverse biomedical and environmental applications. Catalysts 2022 12 5 459 10.3390/catal12050459
    [Google Scholar]
  65. Kiran S. Rafique M.A. Ashraf A. Green synthesis of nickel nanoparticles using fruit peels of citrus paradise for remediation of Congo red dye. J. Mex. Chem. Soc. 2021 65 4 507 515 10.29356/jmcs.v65i4.1572
    [Google Scholar]
  66. Mandal B.K. Mandal R. Sikdar S. Green synthesis of NiO nanoparticle using Punica granatum peel extract and its characterization for methyl orange degradation. Mater. Today Commun. 2023 34 105302 10.1016/j.mtcomm.2022.105302
    [Google Scholar]
  67. Khodair Z.T. Ibrahim N.M. Kadhim T.J. Mohammad A.M. Synthesis and characterization of nickel oxide (NiO) nanoparticles using an environmentally friendly method, and their biomedical applications. Chem. Phys. Lett. 2022 797 139564 10.1016/j.cplett.2022.139564
    [Google Scholar]
  68. Tailor G. Chaudhary J. Jandu S. A review on green route synthesized nickel nanoparticles: Biological and photo-catalytic applications. Results Chem. 2023 6 101195 10.1016/j.rechem.2023.101195
    [Google Scholar]
  69. Felice B. Prabhakaran M.P. Rodríguez A.P. Ramakrishna S. Drug delivery vehicles on a nano-engineering perspective. Mater. Sci. Eng. C 2014 41 178 195 10.1016/j.msec.2014.04.049 24907751
    [Google Scholar]
  70. Abbasi BA Iqbal J Mahmood T Ahmad R Kanwal S Afridi S Plant-mediated synthesis of nickel oxide nanoparticles (NiO) via Ge-ranium wallichianum: Characterization and different biological ap-plications. Mater Res Express 2019 6 0850a7 10.1088/2053‑1591/ab23e1
    [Google Scholar]
  71. Iqbal J. Abbasi B.A. Ahmad R. Nanomedicines for developing cancer nanotherapeutics: from benchtop to bedside and beyond. Appl. Microbiol. Biotechnol. 2018 102 22 9449 9470 10.1007/s00253‑018‑9352‑3 30219952
    [Google Scholar]
  72. Mamonova I.A. Babushkina I.V. Norkin I.A. Gladkova E.V. Matasov M.D. Puchin’yan D.M. Biological activity of metal nanoparticles and their oxides and their effect on bacterial cells. Nanotechnol. Russ. 2015 10 1-2 128 134 10.1134/S1995078015010139
    [Google Scholar]
  73. Kumar R. Sharma A. Kishore N. Preparation and characterization of MgO nanoparticles by co-precipitation method. IJEAM 2013 7 66 70
    [Google Scholar]
  74. Sundeep D. Vijaya Kumar T. Rao P.S.S. Ravikumar R.V.S.S.N. Gopala Krishna A. Green synthesis and characterization of Ag nanoparticles from Mangifera indica leaves for dental restoration and antibacterial applications. Prog. Biomater. 2017 6 1-2 57 66 10.1007/s40204‑017‑0067‑9 28470622
    [Google Scholar]
  75. Srihasam S. Thyagarajan K. Korivi M. Lebaka V.R. Mallem S.P.R. Phytogenic generation of NiO nanoparticles using Stevia leaf extract and evaluation of their in-vitro antioxidant and antimicrobial properties. Biomolecules 2020 10 1 89 10.3390/biom10010089 31935798
    [Google Scholar]
  76. Bilia A. Efferth T. Bergonzi M.C. Boulos J.C. Nanocarriers to enhance solubility, bioavailability, and efficacy of artemisinins. World J. Tradit. Chin. Med. 2020 6 1 26 36 10.4103/wjtcm.wjtcm_2_20
    [Google Scholar]
  77. Angajala G. Radhakrishnan S. A review on nickel nanoparticles as effective therapeutic agents for inflammation. Inflamm. Cell Signal. 2014 1 3 1 8
    [Google Scholar]
  78. Klaunig J.E. Kamendulis L.M. The role of oxidative stress in carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 2004 44 1 239 267 10.1146/annurev.pharmtox.44.101802.121851 14744246
    [Google Scholar]
  79. Main R. Chakraborty S. Sadaf A. Bhattacharya D. Sasson Y. Halder S. Nickel oxide based nanoparticles: Green synthesis, morphological assessment, and their biological properties. Univ J Green Chem 2024 2 2 229 254 10.37256/ujgc.2220244754
    [Google Scholar]
  80. Valgimigli L. Baschieri A. Amorati R. Antioxidant activity of nanomaterials. J. Mater. Chem. B Mater. Biol. Med. 2018 6 14 2036 2051 10.1039/C8TB00107C 32254427
    [Google Scholar]
  81. Phaniendra A. Jestadi D.B. Periyasamy L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 2015 30 1 11 26 10.1007/s12291‑014‑0446‑0 25646037
    [Google Scholar]
  82. Li Y. Li X. Wong Y.S. The reversal of cisplatin-induced nephrotoxicity by selenium nanoparticles functionalized with 11-mercapto-1-undecanol by inhibition of ROS-mediated apoptosis. Biomaterials 2011 32 34 9068 9076 10.1016/j.biomaterials.2011.08.001 21864903
    [Google Scholar]
  83. Dudjak J. Lachman J. Miholová D. Kolihová D. Pivec V. Effect of cadmium on polyphenol content in young barley plants (Hordeum vulgare L.). Plant Soil Environ. 2004 50 11 471 477 10.17221/4060‑PSE
    [Google Scholar]
  84. Yaksha Singh Y.S. Malik C.P. Phenols and their antioxidant activity in Brassica juncea seedlings growing under HgCl 2 stress. J. Microbiol. Biotechnol. Res. 2017 1 124 130
    [Google Scholar]
  85. Huang Y. Zhu C. Xie R. Ni M. Green synthesis of nickel nanoparticles using Fumaria officinalis as a novel chemotherapeutic drug for the treatment of ovarian cancer. J. Exp. Nanosci. 2021 1 16 10.1080/17458080.2021.1975037
    [Google Scholar]
  86. Mahdavi B. Paydarfard S. Zangeneh M.M. Goorani S. Seydi N. Zangeneh A. Assessment of antioxidant, cytotoxicity, antibacterial, antifungal, and cutaneous wound healing activities of green synthesized manganese nanoparticles using Ziziphora clinopodioides Lam leaves under in vitro and in vivo condition. Appl. Organomet. Chem. 2020 34 1 e5248 10.1002/aoc.5248
    [Google Scholar]
  87. Zu Y. Sun J. Ma N. Effects of arsenic treatments on saponin content and heterogeneity extracted from the rhizome and main root of Panax notoginseng plants grown in shaded field. J. Geosci. Environ. Prot. 2016 4 7 15 27 10.4236/gep.2016.47003
    [Google Scholar]
  88. Mohammed N.M.S. Idrees S.A. Green synthesis of Co-Zn-Ni trimetallic oxide nanoparticles using Cicer Arietinum leaf extract and their antibiofilm activity: Experimental and computational study. Mater. Sci. Eng. B 2024 310 117681 10.1016/j.mseb.2024.117681
    [Google Scholar]
  89. Narayanan M. Devarajan N. Salmen S.H. Characterization of NiONPs synthesized by aqueous extract of orange fruit waste and assessed their antimicrobial and antioxidant potential. Environ. Res. 2023 216 Pt 3 114734 10.1016/j.envres.2022.114734 36343715
    [Google Scholar]
  90. Oehlsen O. Cervantes-Ramírez S.I. Cervantes-Avilés P. Medina-Velo I.A. Approaches on Ferrofluid Synthesis and Applications: Current Status and Future Perspectives. ACS Omega 2022 7 4 3134 3150 10.1021/acsomega.1c05631 35128226
    [Google Scholar]
  91. Selvanathan V. Shahinuzzaman M. Selvanathan S. Phytochemical-assisted green synthesis of nickel oxide nanoparticles for application as electrocatalysts in oxygen evolution reaction. Catalysts 2021 11 12 1523 10.3390/catal11121523
    [Google Scholar]
  92. Nduka F.O. Onwurah I.N.E. Obeta C.J. Effect of nickel oxide nanoparticles on bioethanol production by Pichia kudriavzveii IFM 53048 using banana peel waste substrate. Environ. Technol. 2024 45 16 3283 3302 10.1080/09593330.2023.2215450 37199237
    [Google Scholar]
  93. Awad M.A.G. Method of synthesizing nanoparticles and a nanoparti- cle-polymer composite using a plant extract. U.S. Patent US9491947B1 2016
    [Google Scholar]
  94. Varma R.S. Baruwati B. Hoag G.E. Collins J.B. Green synthesis of nanometals using fruit extracts and use thereof. U.S. Patent US20110110723A1 2011
/content/journals/cnm/10.2174/0124054615405393251002103711
Loading
/content/journals/cnm/10.2174/0124054615405393251002103711
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test