Skip to content
2000
Volume 23, Issue 14
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Parkinson's disease (PD) presents a complex challenge in neurodegenerative disorders, necessitating innovative therapeutic approaches. This review article elucidates the therapeutic potential of traditional herbal formulations alongside computational methods in PD research. Through comprehensive examination, we explore their mechanisms of action, synergistic effects, and implications for PD management. Furthermore, we discuss the significance of computational techniques such as molecular docking, molecular dynamics simulations, pharmacophore modeling, and network pharmacology. Our analysis underscores the integration of traditional wisdom with modern scientific inquiry, paving the way for nuanced interventions in PD.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X23666250523112027
2025-05-26
2025-12-07
Loading full text...

Full text loading...

References

  1. PellegrinoL.D. PetersM.E. LyketsosC.G. MaranoC.M. Depression in cognitive impairment.Curr. Psychiatry Rep.201315938410.1007/s11920‑013‑0384‑123933974
    [Google Scholar]
  2. LitwinT. DusekP. SzafrańskiT. DzieżycK. CzłonkowskaA. RybakowskiJ.K. Psychiatric manifestations in wilson’s disease: Possibilities and difficulties for treatment.Ther. Adv. Psychopharmacol.20188719921110.1177/204512531875946129977520
    [Google Scholar]
  3. BarthR. GeguschM. Functional neurological disorders - A Common but Often Unrecognized Diagnosis.Praxis (Bern)20231125-632933410.1024/1661‑8157/a00399737042404
    [Google Scholar]
  4. DeMaagdG. PhilipA. Parkinson’s disease and its management: Part 1: Disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis.P&T201540850453226236139
    [Google Scholar]
  5. DeMaagdG. PhilipA. Parkinson’s disease and its management: Part 4: Treatment of motor complications.P&T2015401174777326609209
    [Google Scholar]
  6. GiugniJ.C. OkunM.S. Treatment of advanced Parkinson’s disease.Curr. Opin. Neurol.201427445046010.1097/WCO.000000000000011824978634
    [Google Scholar]
  7. WitztumE. MargolinJ. LevyA. Misdiagnosis and labeling in psychiatry and their consequences: Part II.Harefuah19951291-21520, 797557701
    [Google Scholar]
  8. MoellerJ.J. KurniawanJ. GubitzG.J. RossJ.A. BhanV. Diagnostic accuracy of neurological problems in the emergency department.Can. J. Neurol. Sci.200835333534110.1017/S031716710000892118714802
    [Google Scholar]
  9. FujikawaJ. MorigakiR. YamamotoN. OdaT. NakanishiH. IzumiY. TakagiY. Therapeutic devices for motor symptoms in Parkinson’s disease: Current progress and a systematic review of recent randomized controlled trials.Front. Aging Neurosci.20221480790910.3389/fnagi.2022.80790935462692
    [Google Scholar]
  10. MagrinelliF. PicelliA. ToccoP. FedericoA. RoncariL. SmaniaN. ZanetteG. TamburinS. Pathophysiology of motor dysfunction in Parkinson’s disease as the rationale for drug treatment and rehabilitation.Parkinsons Dis.2016201611810.1155/2016/983283927366343
    [Google Scholar]
  11. BystritskyA. KhalsaS.S. CameronM.E. SchiffmanJ. Current diagnosis and treatment of anxiety disorders.P&T2013381305723599668
    [Google Scholar]
  12. JenaB.N. KalraS. YeravdekarR. Emotional and psychological needs of people with diabetes.Indian J. Endocrinol. Metab.201822569670410.4103/ijem.IJEM_579_1730294583
    [Google Scholar]
  13. AlexanderG.E. Biology of parkinson’s disease: Pathogenesis and pathophysiology of a multisystem neurodegenerative disorder.Dialogues Clin. Neurosci.20046325928010.31887/DCNS.2004.6.3/galexander22033559
    [Google Scholar]
  14. SmithY. WichmannT. FactorS.A. DeLongM.R. Parkinson’s disease therapeutics: New developments and challenges since the introduction of levodopa.Neuropsychopharmacology201237121324610.1038/npp.2011.21221956442
    [Google Scholar]
  15. LatifS. JahangeerM. Maknoon RaziaD. AshiqM. GhaffarA. AkramM. El AllamA. BouyahyaA. GaripovaL. Ali ShariatiM. ThiruvengadamM. AnsariA.M. Dopamine in Parkinson’s disease.Clin. Chim. Acta202152211412610.1016/j.cca.2021.08.00934389279
    [Google Scholar]
  16. LeeC.S. SauerH. BjörklundA. Dopaminergic neuronal degeneration and motor impairments following axon terminal lesion by intrastriatal 6-hydroxydopamine in the rat.Neuroscience199672364165310.1016/0306‑4522(95)00571‑49157311
    [Google Scholar]
  17. DiasV. JunnE. MouradianM.M. The role of oxidative stress in Parkinson’s disease.J. Parkinsons Dis.20133446149110.3233/JPD‑13023024252804
    [Google Scholar]
  18. MeadeR.M. FairlieD.P. MasonJ.M. Alpha-synuclein structure and Parkinson’s disease – Lessons and emerging principles.Mol. Neurodegener.20191412910.1186/s13024‑019‑0329‑131331359
    [Google Scholar]
  19. OzansoyM. BaşakA.N. The central theme of Parkinson’s disease: α-synuclein.Mol. Neurobiol.201347246046510.1007/s12035‑012‑8369‑323180276
    [Google Scholar]
  20. Gómez-BenitoM. GranadoN. García-SanzP. MichelA. DumoulinM. MoratallaR. Modeling Parkinson’s disease with the alpha-synuclein protein.Front. Pharmacol.20201135610.3389/fphar.2020.0035632390826
    [Google Scholar]
  21. DelenclosM. BurgessJ.D. LamprokostopoulouA. OuteiroT.F. VekrellisK. McLeanP.J. Cellular models of alpha‐synuclein toxicity and aggregation.J. Neurochem.2019150556657610.1111/jnc.1480631265132
    [Google Scholar]
  22. WongY.C. KraincD. α-synuclein toxicity in neurodegeneration: Mechanism and therapeutic strategies.Nat. Med.201723211310.1038/nm.426928170377
    [Google Scholar]
  23. GuoC. SunL. ChenX. ZhangD. Oxidative stress, mitochondrial damage and neurodegenerative diseases.Neural Regen. Res.20138212003201410.3969/j.issn.1673‑5374.2013.21.00925206509
    [Google Scholar]
  24. GeP. DawsonV.L. DawsonT.M. PINK1 and Parkin mitochondrial quality control: A source of regional vulnerability in Parkinson’s disease.Mol. Neurodegener.20201512010.1186/s13024‑020‑00367‑732169097
    [Google Scholar]
  25. IsikS. Yeman KiyakB. AkbayirR. SeyhaliR. ArpaciT. Microglia mediated neuroinflammation in Parkinson’s disease.Cells2023127101210.3390/cells1207101237048085
    [Google Scholar]
  26. MousaA. BakhietM. Role of cytokine signaling during nervous system development.Int. J. Mol. Sci.2013147139311395710.3390/ijms14071393123880850
    [Google Scholar]
  27. SinghA. KukretiR. SasoL. KukretiS. Oxidative stress: A key modulator in neurodegenerative diseases.Molecules2019248158310.3390/molecules2408158331013638
    [Google Scholar]
  28. ForloniG. Alpha synuclein: Neurodegeneration and inflammation.Int. J. Mol. Sci.2023246591410.3390/ijms2406591436982988
    [Google Scholar]
  29. GaoH.M. ZhangF. ZhouH. KamW. WilsonB. HongJ.S. Neuroinflammation and α-synuclein dysfunction potentiate each other, driving chronic progression of neurodegeneration in a mouse model of Parkinson’s disease.Environ. Health Perspect.2011119680781410.1289/ehp.100301321245015
    [Google Scholar]
  30. NuytemansK. TheunsJ. CrutsM. Van BroeckhovenC. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: A mutation update.Hum. Mutat.201031776378010.1002/humu.2127720506312
    [Google Scholar]
  31. BallN. TeoW.P. ChandraS. ChapmanJ. Parkinson’s disease and the environment.Front. Neurol.20191021810.3389/fneur.2019.0021830941085
    [Google Scholar]
  32. KlineE.M. HouserM.C. HerrickM.K. SeiblerP. KleinC. WestA. TanseyM.G. Genetic and environmental factors in Parkinson’s disease converge on immune function and inflammation.Mov. Disord.2021361253610.1002/mds.2841133314312
    [Google Scholar]
  33. EmamzadehF.N. SurguchovA. Parkinson’s disease: Biomarkers, treatment, and risk factors.Front. Neurosci.20181261210.3389/fnins.2018.0061230214392
    [Google Scholar]
  34. HöglingerG.U. RizkP. MurielM.P. DuyckaertsC. OertelW.H. CailleI. HirschE.C. Dopamine depletion impairs precursor cell proliferation in Parkinson disease.Nat. Neurosci.20047772673510.1038/nn126515195095
    [Google Scholar]
  35. MaitiP. MannaJ. DunbarG.L. Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments.Transl. Neurodegener.2017612810.1186/s40035‑017‑0099‑z29090092
    [Google Scholar]
  36. StefanisL. α-synuclein in Parkinson’s disease.Cold Spring Harb. Perspect. Med.201222a00939910.1101/cshperspect.a00939922355802
    [Google Scholar]
  37. VidovićM. RikalovicM.G. Alpha-synuclein aggregation pathway in Parkinson’s disease: Current status and novel therapeutic approaches.Cells20221111173210.3390/cells1111173235681426
    [Google Scholar]
  38. CodoloG. PlotegherN. PozzobonT. BrucaleM. TessariI. BubaccoL. de BernardM. Triggering of inflammasome by aggregated α-synuclein, an inflammatory response in synucleinopathies.PLoS One201381e5537510.1371/journal.pone.005537523383169
    [Google Scholar]
  39. Lema ToméC.M. TysonT. ReyN.L. GrathwohlS. BritschgiM. BrundinP. Inflammation and α-synuclein’s prion-like behavior in Parkinson’s disease-is there a link?Mol. Neurobiol.201347256157410.1007/s12035‑012‑8267‑822544647
    [Google Scholar]
  40. StansleyB. YamamotoB. L-dopa and brain serotonin system dysfunction.Toxics201531758810.3390/toxics301007529056652
    [Google Scholar]
  41. HaddadF. SawalhaM. KhawajaY. NajjarA. KaramanR. Dopamine and levodopa prodrugs for the treatment of parkinson’s disease.Molecules20172314010.3390/molecules2301004029295587
    [Google Scholar]
  42. The international BNA 2023 festival of neuroscience.Brain Neurosci. Adv.2023710.1177/23982128231180246
    [Google Scholar]
  43. AmmannC. DileoneM. PaggeC. CatanzaroV. Mata-MarínD. Hernández-FernándezF. MonjeM.H.G. Sánchez-FerroÁ. Fernández-RodríguezB. Gasca-SalasC. Máñez-MiróJ.U. Martínez-FernándezR. Vela-DesojoL. Alonso-FrechF. OlivieroA. ObesoJ.A. FoffaniG. Cortical disinhibition in Parkinson’s disease.Brain2020143113408342110.1093/brain/awaa27433141146
    [Google Scholar]
  44. MdS. HaqueS. SahniJ.K. BabootaS. AliJ. New non-oral drug delivery systems for Parkinson’s disease treatment.Expert Opin. Drug Deliv.20118335937410.1517/17425247.2011.55661621314492
    [Google Scholar]
  45. Abstracts.Mov. Disord. Clin. Pract. (Hoboken)20207S2S6S4410.1002/mdc3.12923
    [Google Scholar]
  46. LeWittP.A. StocchiF. ArkadirD. CaracoY. AdarL. PerlsteinI. CaseR. GiladiN. The pharmacokinetics of continuous subcutaneous levodopa/carbidopa infusion: Findings from the ND0612 clinical development program.Front. Neurol.202213103606810.3389/fneur.2022.103606836438968
    [Google Scholar]
  47. AbbruzzeseG. BaroneP. BonuccelliU. LopianoL. AntoniniA. Continuous intestinal infusion of levodopa/carbidopa in advanced Parkinson’s disease: Efficacy, safety and patient selection.Funct. Neurol.201227314715423402675
    [Google Scholar]
  48. DeMaagdG. PhilipA. Part 2: Introduction to the pharmacotherapy of Parkinson’s disease, with a focus on the use of dopaminergic agents.P&T201540959060026417179
    [Google Scholar]
  49. AhlskogJ.E. MaraganoreD.M. UittiR.J. UhlG.R. Brain imaging to assess the effects of dopamine agonists on progression of parkinson disease.JAMA20022883312
    [Google Scholar]
  50. CavanaghJ.F. MuellerA.A. BrownD.R. JanowichJ.R. Story-RemerJ.H. WegeleA. RichardsonS.P. Cognitive states influence dopamine-driven aberrant learning in Parkinson’s disease.Cortex20179011512410.1016/j.cortex.2017.02.02128384481
    [Google Scholar]
  51. BlanchetP.J. Rationale for use of dopamine agonists in Parkinson’s disease: Review of ergot derivatives.Can. J. Neurol. Sci.199926S2S21S2610.1017/S031716710000005610451756
    [Google Scholar]
  52. De VecchisR. CantatrioneC. MazzeiD. BaldiC. Di MaioM. Non-Ergot dopamine agonists do not increase the risk of heart failure in Parkinson’s disease patients: A meta-analysis of randomized controlled trials.J. Clin. Med. Res.20168644946010.14740/jocmr2541e27222673
    [Google Scholar]
  53. WuC. GuoH. XuY. LiL. LiX. TangC. ChenD. ZhuM. The comparative efficacy of non-ergot dopamine agonist and potential risk factors for motor complications and side effects from NEDA use in early Parkinson’s disease: Evidence from clinical trials.Front. Aging Neurosci.20221483188410.3389/fnagi.2022.83188435527736
    [Google Scholar]
  54. MontastrucJ.L. RascolO. SenardJ.M. Current status of dopamine agonists in Parkinson’s disease management.Drugs199346338439310.2165/00003495‑199346030‑000057693430
    [Google Scholar]
  55. SchiffP.L.Jr Ergot and its alkaloids.Am. J. Pharm. Educ.20067059810.1016/S0002‑9459(24)07817‑317149427
    [Google Scholar]
  56. ConnollyB.S. LangA.E. Pharmacological treatment of Parkinson disease: A review.JAMA2014311161670168310.1001/jama.2014.365424756517
    [Google Scholar]
  57. JuárezO.H. CalderónG.D. HernándezG.E. BarragánM.G. The role of dopamine and its dysfunction as a consequence of oxidative stress.Oxid. Med. Cell. Longev.201620161973046710.1155/2016/973046726770661
    [Google Scholar]
  58. MishraA. SinghS. ShuklaS. Physiological and functional basis of dopamine receptors and their role in neurogenesis: Possible implication for Parkinson’s disease.J. Exp. Neurosci.201812117906951877982910.1177/117906951877982929899667
    [Google Scholar]
  59. KelleyB.J. DukerA.P. ChiuP. Dopamine agonists and pathologic behaviors.Parkinsons Dis.201220121510.1155/2012/60363122567537
    [Google Scholar]
  60. CawelloW. BraunM. BoekensH. Absorption, disposition, metabolic fate, and elimination of the dopamine agonist rotigotine in man: Administration by intravenous infusion or transdermal delivery.Drug Metab. Dispos.200937102055206010.1124/dmd.109.02738319608695
    [Google Scholar]
  61. RothJ. UlmanováO. RůzickaE. Organ changes induced by ergot derivative dopamine agonist drugs: Time to change treatment guidelines in Parkinson’s disease?Cas. Lek. Cesk.2005144212312615807300
    [Google Scholar]
  62. De KeyserJ. De BackerJ.P. WilczakN. HerroelenL. Dopamine agonists used in the treatment of Parkinson’s disease and their selectivity for the D1, D2, and D3 dopamine receptors in human striatum.Prog. Neuropsychopharmacol. Biol. Psychiatry19951971147115410.1016/0278‑5846(95)00232‑48787038
    [Google Scholar]
  63. KontaB. FrankW. The treatment of Parkinson’s disease with dopamine agonists.GMS Health Technol. Assess.20084Doc0521289911
    [Google Scholar]
  64. KujawaK. LeurgansS. RamanR. BlasucciL. GoetzC.G. Acute orthostatic hypotension when starting dopamine agonists in Parkinson’s disease.Arch. Neurol.200057101461146310.1001/archneur.57.10.146111030798
    [Google Scholar]
  65. FigueroaJ.J. BasfordJ.R. LowP.A. Preventing and treating orthostatic hypotension: As easy as A, B, C.Cleve. Clin. J. Med.201077529830610.3949/ccjm.77a.0911820439562
    [Google Scholar]
  66. HomannC.N. WenzelK. SuppanK. IvanicG. KriechbaumN. CrevennaR. OttE. Sleep attacks in patients taking dopamine agonists: ReviewBMJ200232473521483148710.1136/bmj.324.7352.148312077032
    [Google Scholar]
  67. CantorC.R. SternM.B. Dopamine agonists and sleep in Parkinson’s disease.Neurology2002584Suppl. 1S71S7810.1212/WNL.58.suppl_1.S7111909988
    [Google Scholar]
  68. TanY.Y. JennerP. ChenS.D. Monoamine Oxidase-B inhibitors for the treatment of Parkinson’s disease: Past, present, and future.J. Parkinsons Dis.202212247749310.3233/JPD‑21297634957948
    [Google Scholar]
  69. FinbergJ.P.M. RabeyJ.M. Inhibitors of MAO-A and MAO-B in psychiatry and neurology.Front. Pharmacol.2016734010.3389/fphar.2016.0034027803666
    [Google Scholar]
  70. AlborghettiM. NicolettiF. Different generations of Type-B monoamine oxidase inhibitors in Parkinson’s disease: From bench to bedside.Curr. Neuropharmacol.201917986187310.2174/1570159X1666618083010075430160213
    [Google Scholar]
  71. Leegwater-KimJ. BortanE. The role of rasagiline in the treatment of Parkinson’s disease.Clin. Interv. Aging2010514915610.2147/CIA.S414520517484
    [Google Scholar]
  72. LechtS. HaroutiunianS. HoffmanA. LazaroviciP. Rasagiline - A novel MAO b inhibitor in Parkinson’s disease therapy.Ther. Clin. Risk Manag.20073346747418488080
    [Google Scholar]
  73. MhyreT.R. BoydJ.T. HamillR.W. Maguire-ZeissK.A. Parkinson’s disease.Subcell. Biochem.20126538945510.1007/978‑94‑007‑5416‑4_1623225012
    [Google Scholar]
  74. GoldmanJ.G. LitvanI. Mild cognitive impairment in parkinson’s disease.Minerva Med.2011102644145922193376
    [Google Scholar]
  75. LitvanI. GoldmanJ.G. TrösterA.I. SchmandB.A. WeintraubD. PetersenR.C. MollenhauerB. AdlerC.H. MarderK. Williams-GrayC.H. AarslandD. KulisevskyJ. Rodriguez-OrozM.C. BurnD.J. BarkerR.A. EmreM. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement disorder society task force guidelines.Mov. Disord.201227334935610.1002/mds.2489322275317
    [Google Scholar]
  76. AarslandD. BatzuL. HallidayG.M. GeurtsenG.J. BallardC. RayC.K. WeintraubD. Parkinson disease-associated cognitive impairment.Nat. Rev. Dis. Primers2021714710.1038/s41572‑021‑00280‑334210995
    [Google Scholar]
  77. OlivaresD. DeshpandeV.K. ShiY. LahiriD.K. GreigN.H. RogersJ.T. HuangX. N-methyl D-aspartate (NMDA) receptor antagonists and memantine treatment for Alzheimer’s disease, vascular dementia and Parkinson’s disease.Curr. Alzheimer Res.20129674675810.2174/15672051280132256421875407
    [Google Scholar]
  78. HauerK. DutziI. GordtK. SchwenkM. Specific motor and cognitive performances predict falls during ward-based geriatric rehabilitation in patients with dementia.Sensors (Basel)20202018538510.3390/s2018538532962248
    [Google Scholar]
  79. SousaN.M.F. MacedoR.C. Relationship between cognitive performance and mobility in patients with Parkinson’s disease: A cross-sectional study.Dement. Neuropsychol.201913440340910.1590/1980‑57642018dn13‑04000631844493
    [Google Scholar]
  80. PrangeS. KlingerH. LaurencinC. DanailaT. ThoboisS. Depression in patients with parkinson’s disease: Current understanding of its neurobiology and implications for treatment.Drugs Aging202239641743910.1007/s40266‑022‑00942‑135705848
    [Google Scholar]
  81. MarshL. Depression and parkinson’s disease: Current knowledge.Curr. Neurol. Neurosci. Rep.2013131240910.1007/s11910‑013‑0409‑524190780
    [Google Scholar]
  82. ŚlifirskiG. KrólM. TurłoJ. 5-HT receptors and the development of new antidepressants.Int. J. Mol. Sci.20212216901510.3390/ijms2216901534445721
    [Google Scholar]
  83. FergusonJ.M. SSRI antidepressant medications.Prim. Care Companion CNS Disord.200131222710.4088/PCC.v03n010515014625
    [Google Scholar]
  84. KanoO. IkedaK. CridebringD. TakazawaT. YoshiiY. IwasakiY. Neurobiology of depression and anxiety in parkinson’s disease.Parkinsons Dis.201120111510.4061/2011/14354721687804
    [Google Scholar]
  85. BrileyM. ChantalM. The importance of norepinephrine in depression.Neuropsychiatr. Dis. Treat.20117Suppl. 191310.2147/NDT.S1961921750623
    [Google Scholar]
  86. HeimB. PeballM. KrismerF. DjamshidianA. SeppiK. Pimavanserin: A truly effective treatment for Parkinson’s disease psychosis? A review of interventions.Neuropsychiatr. Dis. Treat.2023191303131210.2147/NDT.S37164137274140
    [Google Scholar]
  87. MeltzerH.Y. MillsR. RevellS. WilliamsH. JohnsonA. BahrD. FriedmanJ.H. Pimavanserin, a serotonin(2A) receptor inverse agonist, for the treatment of Parkinson’s disease psychosis.Neuropsychopharmacology201035488189210.1038/npp.2009.17619907417
    [Google Scholar]
  88. WeilR. ReevesS. Hallucinations in Parkinson’s disease: New insights into mechanisms and treatments.Adv. Clin. Neurosci. Rehabil.2020194202210.47795/ONNS518933102741
    [Google Scholar]
  89. TeepleR.C. CaplanJ.P. SternT.A. Visual hallucinations.Prim. Care Companion J. Clin. Psychiatry2009111263210.4088/PCC.08r0067319333408
    [Google Scholar]
  90. LeeH.M. KohS.B. Many faces of Parkinson’s disease: Non-motor symptoms of Parkinson’s disease.J. Mov. Disord.201582929710.14802/jmd.1500326090081
    [Google Scholar]
  91. FokunangC.N. NdikumV. TabiO.Y. JiofackR.B. NgameniB. GuedjeN.M. Tembe-FokunangE.A. TomkinsP. BarkwanS. KechiaF. AsongalemE. NgoupayouJ. TorimiroN.J. GonsuK.H. SielinouV. NgadjuiB.T. AngwaforI.I.I.III NkongmeneckA. AbenaO.M. NgogangJ. AsonganyiT. ColizziV. LohoueJ. Kamsu-Kom, Traditional medicine: Past, present and future research and development prospects and integration in the national health system of Cameroon.Afr. J. Tradit. Complement. Altern. Med.20118328429510.4314/ajtcam.v8i3.6527622468007
    [Google Scholar]
  92. YuanH. MaQ. YeL. PiaoG. The traditional medicine and modern medicine from natural products.Molecules201621555910.3390/molecules2105055927136524
    [Google Scholar]
  93. FabricantD.S. FarnsworthN.R. The value of plants used in traditional medicine for drug discovery.Environ. Health Perspect.2001109Suppl. 1697510.1289/ehp.01109s169
    [Google Scholar]
  94. MalíkM. TlustošP. Nootropic herbs, shrubs, and trees as potential cognitive enhancers.Plants2023126136410.3390/plants1206136436987052
    [Google Scholar]
  95. KennedyD.O. WightmanE.L. Herbal extracts and phytochemicals: Plant secondary metabolites and the enhancement of human brain function.Adv. Nutr.201121325010.3945/an.110.00011722211188
    [Google Scholar]
  96. LamparielloL.R. CortelazzoA. GuerrantiR. SticozziC. ValacchiG. The magic velvet bean of mucuna pruriens.J. Tradit. Complement. Med.20122433133910.1016/S2225‑4110(16)30119‑524716148
    [Google Scholar]
  97. KatzenschlagerR. EvansA. MansonA. PatsalosP.N. RatnarajN. WattH. TimmermannL. Van der GiessenR. LeesA.J. Mucuna pruriens in Parkinson’s disease: A double blind clinical and pharmacological study.J. Neurol. Neurosurg. Psychiatry200475121672167710.1136/jnnp.2003.02876115548480
    [Google Scholar]
  98. ColeG.M. TeterB. FrautschyS.A. Neuroprotective effects of curcumin.Adv. Exp. Med. Biol.200759519721210.1007/978‑0‑387‑46401‑5_817569212
    [Google Scholar]
  99. MishraS. PalaniveluK. The effect of curcumin (turmeric) on Alzheimer′s disease: An overview.Ann. Indian Acad. Neurol.2008111131910.4103/0972‑2327.4022019966973
    [Google Scholar]
  100. Van NormanG.A. Limitations of animal studies for predicting toxicity in clinical trials: Is it time to rethink our current approach.JACC Basic Transl. Sci.20194784585410.1016/j.jacbts.2019.10.00831998852
    [Google Scholar]
  101. Van NormanG.A. Limitations of animal studies for predicting toxicity in clinical trials: Part 2: Potential alternatives to the use of animals in preclinical trials.JACC Basic Transl. Sci.20205438739710.1016/j.jacbts.2020.03.01032363250
    [Google Scholar]
  102. PirintsosS. PanagiotopoulosA. BariotakisM. DaskalakisV. LionisC. SourvinosG. KarakasiliotisI. KampaM. CastanasE. From traditional ethnopharmacology to modern natural drug discovery: A methodology discussion and specific examples.Molecules20222713406010.3390/molecules2713406035807306
    [Google Scholar]
  103. NebrisiE.E. Neuroprotective activities of curcumin in Parkinson’s disease: A review of the literature.Int. J. Mol. Sci.202122201124810.3390/ijms22201124834681908
    [Google Scholar]
  104. Sharifi-RadJ. RayessY.E. RizkA.A. SadakaC. ZgheibR. ZamW. SestitoS. RapposelliS. Neffe-SkocińskaK. ZielińskaD. SalehiB. SetzerW.N. DosokyN.S. TaheriY. El BeyrouthyM. MartorellM. OstranderE.A. SuleriaH.A.R. ChoW.C. MaroyiA. MartinsN. Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications.Front. Pharmacol.2020110102110.3389/fphar.2020.0102133041781
    [Google Scholar]
  105. HwangO. Role of oxidative stress in Parkinson’s disease.Exp. Neurobiol.2013221111710.5607/en.2013.22.1.1123585717
    [Google Scholar]
  106. SinghP.K. KotiaV. GhoshD. MohiteG.M. KumarA. MajiS.K. Curcumin modulates α-synuclein aggregation and toxicity.ACS Chem. Neurosci.20134339340710.1021/cn300120323509976
    [Google Scholar]
  107. AhmadB. LapidusL.J. Curcumin prevents aggregation in α-synuclein by increasing reconfiguration rate.J. Biol. Chem.2012287129193919910.1074/jbc.M111.32554822267729
    [Google Scholar]
  108. GehmB.D. McAndrewsJ.M. ChienP.Y. JamesonJ.L. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor.Proc. Natl. Acad. Sci. USA19979425141381414310.1073/pnas.94.25.141389391166
    [Google Scholar]
  109. BuljetaI. PichlerA. ŠimunovićJ. KopjarM. Beneficial effects of red wine polyphenols on human health: Comprehensive review.Curr. Issues Mol. Biol.202345278279810.3390/cimb4502005236825997
    [Google Scholar]
  110. UngurianuA. ZanfirescuA. MarginăD. Regulation of gene expression through food—curcumin as a sirtuin activity modulator.Plants20221113174110.3390/plants1113174135807694
    [Google Scholar]
  111. LagougeM. ArgmannC. Gerhart-HinesZ. MezianeH. LerinC. DaussinF. MessadeqN. MilneJ. LambertP. ElliottP. GenyB. LaaksoM. PuigserverP. AuwerxJ. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha.Cell200612761109112210.1016/j.cell.2006.11.01317112576
    [Google Scholar]
  112. MengT. XiaoD. MuhammedA. DengJ. ChenL. HeJ. Anti-inflammatory action and mechanisms of resveratrol.Molecules202126122910.3390/molecules2601022933466247
    [Google Scholar]
  113. GomesB.A.Q. SilvaJ.P.B. RomeiroC.F.R. dos SantosS.M. RodriguesC.A. GonçalvesP.R. SakaiJ.T. MendesP.F.S. VarelaE.L.P. MonteiroM.C. Neuroprotective mechanisms of resveratrol in Alzheimer’s disease: Role of SIRT1.Oxid. Med. Cell. Longev.201820181815237310.1155/2018/815237330510627
    [Google Scholar]
  114. PriceN.L. GomesA.P. LingA.J.Y. DuarteF.V. Martin-MontalvoA. NorthB.J. AgarwalB. YeL. RamadoriG. TeodoroJ.S. HubbardB.P. VarelaA.T. DavisJ.G. VaraminiB. HafnerA. MoaddelR. RoloA.P. CoppariR. PalmeiraC.M. de CaboR. BaurJ.A. SinclairD.A. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function.Cell Metab.201215567569010.1016/j.cmet.2012.04.00322560220
    [Google Scholar]
  115. ZhouJ. YangZ. ShenR. ZhongW. ZhengH. ChenZ. TangJ. ZhuJ. Resveratrol improves mitochondrial biogenesis function and activates PGC-1α pathway in a preclinical model of early brain injury following subarachnoid hemorrhage.Front. Mol. Biosci.2021862068310.3389/fmolb.2021.62068333968980
    [Google Scholar]
  116. MinochaT. BirlaH. ObaidA.A. RaiV. SushmaP. ShivamalluC. MoustafaM. Al-ShehriM. Al-EmamA. TikhonovaM.A. YadavS.K. PoeggelerB. SinghD. SinghS.K. Flavonoids as promising neuroprotectants and their therapeutic potential against Alzheimer’s disease.Oxid. Med. Cell. Longev.2022202211310.1155/2022/603899636071869
    [Google Scholar]
  117. PancheA.N. DiwanA.D. ChandraS.R. Flavonoids: An overview.J. Nutr. Sci.20165e47e4710.1017/jns.2016.4128620474
    [Google Scholar]
  118. VauzourD. VafeiadouK. Rodriguez-MateosA. RendeiroC. SpencerJ.P.E. The neuroprotective potential of flavonoids: A multiplicity of effects.Genes Nutr.200833-411512610.1007/s12263‑008‑0091‑418937002
    [Google Scholar]
  119. BellaviteP. Neuroprotective potentials of flavonoids: Experimental studies and mechanisms of action.Antioxidants202312228010.3390/antiox1202028036829840
    [Google Scholar]
  120. PizzinoG. IrreraN. CucinottaM. PallioG. ManninoF. ArcoraciV. SquadritoF. AltavillaD. BittoA. Oxidative stress: Harms and benefits for human health.Oxid. Med. Cell. Longev.201720171841676310.1155/2017/841676328819546
    [Google Scholar]
  121. MiyamotoN. IzumiH. MiyamotoR. KondoH. TawaraA. SasaguriY. KohnoK. Quercetin induces the expression of peroxiredoxins 3 and 5 via the Nrf2/NRF1 transcription pathway.Invest. Ophthalmol. Vis. Sci.20115221055106310.1167/iovs.10‑577721051700
    [Google Scholar]
  122. SharmaA. ParikhM. ShahH. GandhiT. Modulation of Nrf2 by quercetin in doxorubicin-treated rats.Heliyon202064e0380310.1016/j.heliyon.2020.e0380332337383
    [Google Scholar]
  123. SinghN.A. MandalA.K.A. KhanZ.A. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG).Nutr. J.20151516010.1186/s12937‑016‑0179‑427268025
    [Google Scholar]
  124. ChenB. ZhangW. LinC. ZhangL. A comprehensive review on beneficial effects of catechins on secondary mitochondrial diseases.Int. J. Mol. Sci.202223191156910.3390/ijms23191156936232871
    [Google Scholar]
  125. AyazM. SadiqA. JunaidM. UllahF. OvaisM. UllahI. AhmedJ. ShahidM. Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders.Front. Aging Neurosci.20191115510.3389/fnagi.2019.0015531293414
    [Google Scholar]
  126. JansenR.L.M. BroganB. WhitworthA.J. OkelloE.J. Effects of five ayurvedic herbs on locomotor behaviour in a drosophila melanogaster Parkinson’s disease model.Phytother. Res.201428121789179510.1002/ptr.519925091506
    [Google Scholar]
  127. SinghB. PandeyS. VermaR. AnsariJ.A. MahdiA.A. Comparative evaluation of extract of Bacopa monnieri and Mucuna pruriens as neuroprotectant in MPTP model of Parkinson’s disease.Indian J. Exp. Biol.2016541175876630179419
    [Google Scholar]
  128. PathaniaR. ChawlaP. KhanH. KaushikR. KhanM. A. An assessment of potential nutritive and medicinal properties of mucuna pruriens: A natural food legume.3 Biotech202010626110.1007/s13205‑020‑02253‑x
    [Google Scholar]
  129. GalaniV.J. RanaD.G. Dopamine mediated antidepressant effect of mucuna pruriens seeds in various experimental models of depression.Ayu2014351909710.4103/0974‑8520.14194925364207
    [Google Scholar]
  130. KamkaenN. ChittasuphoC. VoraratS. TadtongS. PhrompittayaratW. OkonogiS. KwankhaoP. Mucuna pruriens seed aqueous extract improved neuroprotective and acetylcholinesterase inhibitory effects compared with synthetic l-dopa.Molecules20222710313110.3390/molecules2710313135630617
    [Google Scholar]
  131. HadjiconstantinouM. NeffN.H. Enhancing aromatic l-amino acid decarboxylase activity: Implications for L-DOPA treatment in Parkinson’s disease.CNS Neurosci. Ther.200814434035110.1111/j.1755‑5949.2008.00058.x19040557
    [Google Scholar]
  132. HegdeM. GirisaS. BharathwajC.B. VishwaR. KunnumakkaraA.B. Curcumin formulations for better bioavailability: What we learned from clinical trials thus far?ACS Omega2023812107131074610.1021/acsomega.2c0732637008131
    [Google Scholar]
  133. WeeksB.S. Formulations of dietary supplements and herbal extracts for relaxation and anxiolytic action.Relarian. Med. Sci. Monit.20091511RA256RA26219865069
    [Google Scholar]
  134. AguiarS. BorowskiT. Neuropharmacological review of the nootropic herb Bacopa monnieri.Rejuvenation Res.201316431332610.1089/rej.2013.143123772955
    [Google Scholar]
  135. KrauseD.L. MüllerN. Neuroinflammation, microglia and implications for anti-inflammatory treatment in Alzheimer’s disease.Int. J. Alzheimers Dis.201020101910.4061/2010/73280620798769
    [Google Scholar]
  136. LuP. JonesL.L. SnyderE.Y. TuszynskiM.H. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury.Exp. Neurol.2003181211512910.1016/S0014‑4886(03)00037‑212781986
    [Google Scholar]
  137. El OuaamariY. Van den BosJ. WillekensB. CoolsN. WensI. Neurotrophic factors as regenerative therapy for neurodegenerative diseases: Current status, challenges and future perspectives.Int. J. Mol. Sci.2023244386610.3390/ijms2404386636835277
    [Google Scholar]
  138. TanseyM.G. McCoyM.K. Frank-CannonT.C. Neuroinflammatory mechanisms in Parkinson’s disease: Potential environmental triggers, pathways, and targets for early therapeutic intervention.Exp. Neurol.2007208112510.1016/j.expneurol.2007.07.00417720159
    [Google Scholar]
  139. FatimaU. RoyS. AhmadS. AliS. ElkadyW.M. KhanI. AlsaffarR.M. AdnanM. IslamA. HassanM.I. Pharmacological attributes of Bacopa monnieri extract: Current updates and clinical manifestation.Front. Nutr.2022997237910.3389/fnut.2022.97237936061899
    [Google Scholar]
  140. LiF.S. WengJ.K. Demystifying traditional herbal medicine with modern approach.Nat. Plants2017381710910.1038/nplants.2017.10928758992
    [Google Scholar]
  141. YuanH. MaQ. CuiH. LiuG. ZhaoX. LiW. PiaoG. How can synergism of traditional medicines benefit from network pharmacology?Molecules2017227113510.3390/molecules2207113528686181
    [Google Scholar]
  142. LeenaM.M. SilviaM.G. VinithaK. MosesJ.A. AnandharamakrishnanC. Synergistic potential of nutraceuticals: Mechanisms and prospects for futuristic medicine.Food Funct.202011119317933710.1039/D0FO02041A33211054
    [Google Scholar]
  143. LehárJ. KruegerA.S. AveryW. HeilbutA.M. JohansenL.M. PriceE.R. RicklesR.J. ShortG.F.III StauntonJ.E. JinX. LeeM.S. ZimmermannG.R. BorisyA.A. Synergistic drug combinations tend to improve therapeutically relevant selectivity.Nat. Biotechnol.200927765966610.1038/nbt.154919581876
    [Google Scholar]
  144. RealeM. CostantiniE. JarlapoodiS. SerraF. AielliL. KhanH. BelwalT. FalascaK. Neuroprotective potential of bacopa monnieri: Modulation of inflammatory signals.CNS Neurol. Disord. Drug Targets202322344145110.2174/187152732166622011112404735021981
    [Google Scholar]
  145. WeinerB.J. LewisM.A. ClauserS.B. StitzenbergK.B. In search of synergy: Strategies for combining interventions at multiple levels.J. Natl. Cancer Inst. Monogr.2012201244344110.1093/jncimonographs/lgs00122623594
    [Google Scholar]
  146. LewisM.A. FitzgeraldT.M. ZulkiewiczB. PeinadoS. WilliamsP.A. Identifying synergies in multilevel interventions.Health Educ. Behav.201744223624410.1177/109019811667399428330388
    [Google Scholar]
  147. YangY. ZhangZ. LiS. YeX. LiX. HeK. Synergy effects of herb extracts: Pharmacokinetics and pharmacodynamic basis.Fitoterapia20149213314710.1016/j.fitote.2013.10.01024177191
    [Google Scholar]
  148. WilliamsonE. Synergy and other interactions in phytomedicines.Phytomedicine20018540140910.1078/0944‑7113‑0006011695885
    [Google Scholar]
  149. MukherjeeP.K. VenkateshP. PonnusankarS. Ethnopharmacology and integrative medicine - Let the history tell the future.J. Ayurveda Integr. Med.20101210010910.4103/0975‑9476.6507721836796
    [Google Scholar]
  150. Reyes-GarcíaV. The relevance of traditional knowledge systems for ethnopharmacological research: Theoretical and methodological contributions.J. Ethnobiol. Ethnomed.2010613210.1186/1746‑4269‑6‑3221083913
    [Google Scholar]
  151. Sheng-JiP. Ethnobotanical approaches of traditional medicine studies: Some experiences from Asia.Pharm. Biol.200139Suppl. 1747910.1076/phbi.39.s1.74.000521554174
    [Google Scholar]
  152. AzizM.A. KhanA.H. AdnanM. UllahH. Traditional uses of medicinal plants used by Indigenous communities for veterinary practices at Bajaur Agency, Pakistan.J. Ethnobiol. Ethnomed.20181411110.1186/s13002‑018‑0212‑029378636
    [Google Scholar]
  153. DemieG. NegashM. AwasT. Ethnobotanical study of medicinal plants used by indigenous people in and around Dirre Sheikh Hussein heritage site of South-eastern Ethiopia.J. Ethnopharmacol.2018220879310.1016/j.jep.2018.03.03329601979
    [Google Scholar]
  154. CloudQ.Y. RedversN. Honoring indigenous sacred places and spirit in environmental health.Environ. Health Insights2023171178630223115750710.1177/1178630223115750736825244
    [Google Scholar]
  155. FitzpatrickE.F.M. MartiniukA.L.C. D’AntoineH. OscarJ. CarterM. ElliottE.J. Seeking consent for research with indigenous communities: A systematic review.BMC Med. Ethics20161716510.1186/s12910‑016‑0139‑827770780
    [Google Scholar]
  156. MooreN. HamzaN. BerkeB. UmarA. News from Tartary: An ethnopharmacological approach to drug and therapeutic discovery.Br. J. Clin. Pharmacol.2017831333710.1111/bcp.1304227297624
    [Google Scholar]
  157. Iglesias-LopezC. AgustíA. VallanoA. ObachM. Current landscape of clinical development and approval of advanced therapies.Mol. Ther. Methods Clin. Dev.20212360661810.1016/j.omtm.2021.11.00334901306
    [Google Scholar]
  158. ImranY. WijekoonN. GonawalaL. ChiangY.C. De SilvaK.R.D. Biopiracy: Abolish corporate hijacking of indigenous medicinal entities.Sci. World J.202120211810.1155/2021/889884233679261
    [Google Scholar]
  159. SteelA. FoleyH. BugarcicA. WardleJ. BoydH. BreakspearI. CarltonA-L. CopeG. DuaK. GreenwayP. Exploring criteria for the translation of traditional knowledge within contemporary clinical practice, research, policy, and education: A stakeholder forum.J. Integr. Complement. Med.2023296-734836010.1089/jicm.2022.0683
    [Google Scholar]
  160. DutyS. JennerP. Animal models of Parkinson’s disease: A source of novel treatments and clues to the cause of the disease.Br. J. Pharmacol.201116441357139110.1111/j.1476‑5381.2011.01426.x21486284
    [Google Scholar]
  161. PienaarI.S. GötzJ. FeanyM.B. Parkinson’s disease: Insights from non-traditional model organisms.Prog. Neurobiol.201092455857110.1016/j.pneurobio.2010.09.00120851733
    [Google Scholar]
  162. SchoberA. Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP.Cell Tissue Res.2004318121522410.1007/s00441‑004‑0938‑y15503155
    [Google Scholar]
  163. UmscheidC.A. MargolisD.J. GrossmanC.E. Key concepts of clinical trials: A narrative review.Postgrad. Med.2011123519420410.3810/pgm.2011.09.247521904102
    [Google Scholar]
  164. WongC.H. SiahK.W. LoA.W. Estimation of clinical trial success rates and related parameters.Biostatistics201920227328610.1093/biostatistics/kxx06929394327
    [Google Scholar]
  165. GuptaU. VermaM. Placebo in clinical trials.Perspect. Clin. Res.201341495210.4103/2229‑3485.10638323533982
    [Google Scholar]
  166. EvansK. CollocaL. PecinaM. KatzN. What can be done to control the placebo response in clinical trials? A narrative review.Contemp. Clin. Trials202110710650310.1016/j.cct.2021.10650334237458
    [Google Scholar]
/content/journals/cn/10.2174/1570159X23666250523112027
Loading
/content/journals/cn/10.2174/1570159X23666250523112027
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test