Skip to content
2000
image of Pleiotropic Actions of Gastrodia Elata Glucosides in the Treatment of Painful Neuropathies and CNS Disorders: Focus on Mitochondrial Dysfunction and Modulation of Ion Channels

Abstract

Glycosides contained in have consistently shown neuroprotective and anti-inflammatory activity in preclinical models of neurological disorders, including peripheral neuropathies, cerebrovascular disorders, and chronic neurodegenerative disorders. In a commercial product used in Italy, gastrodin has replaced α-lipoic, the use of which is now limited by unexpected adverse effects, such as severe hypoglycemia. The clinical efficacy of gastrodin in traditional Chinese medicine has been ascribed to a plethora of mechanisms, which involve the modulation of intracellular signaling pathways and membrane ion channels. Moving from the pathophysiology of diabetic neuropathy, Alzheimer’s disease, and Parkinson’s disease, we now focus on what we consider a key mechanism in the action of gastrodin, ., the regulation of mitochondrial quality control. Gastrodin is able to enhance mitochondrial fusion and biogenesis, as shown by the induction of specific biochemical markers, such as mitofusins and mitochondrial transcription factors. This supports mitochondrial health, preventing the loss of energy production and formation of reactive oxygen species associated with disorders of the central and peripheral nervous system. In addition, gastrodin physically interacts with, and restrains the expression and activity of, voltage-sensitive ion channels and acid-sensing ion channels, which play a central role in pain transmission and nociceptive sensitization. Thus, gastrodin and other constituents of show promising potential to support first-line treatments, based on preclinical evidence in models of neurological disease.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X402568251002112117
2025-10-24
2025-12-15
Loading full text...

Full text loading...

References

  1. Wang Y. Bai M. Wang X. Peng Z. Cai C. Xi J. Yan C. Luo J. Li X. Gastrodin: A comprehensive pharmacological review. Naunyn Schmiedebergs Arch. Pharmacol. 2024 397 6 3781 3802 10.1007/s00210‑023‑02920‑9 38165423
    [Google Scholar]
  2. Wu Y.N. Wen S.H. Zhang W. Yu S.S. Yang K. Liu D. Zhao C.B. Sun J. Gastrodia elata BI.:A comprehensive review of its traditional use, botany, phytochemistry, pharmacology, and pharmacokinetics. Evid. Based Complement. Alternat. Med. 2023 2023 1 5606021 10.1155/2023/5606021 37114145
    [Google Scholar]
  3. Zhan H.D. Zhou H.Y. Sui Y.P. Du X.L. Wang W. Dai L. Sui F. Huo H.R. Jiang T.L. The rhizome of Gastrodia elata Blume – An ethnopharmacological review. J. Ethnopharmacol. 2016 189 361 385 10.1016/j.jep.2016.06.057 27377337
    [Google Scholar]
  4. Su Z. Yang Y. Chen S. Tang Z. Xu H. The processing methods, phytochemistry and pharmacology of Gastrodia elata Bl.: A comprehensive review. J. Ethnopharmacol. 2023 314 116467 10.1016/j.jep.2023.116467 37187361
    [Google Scholar]
  5. Ahmad O. Wang B. Ma K. Deng Y. Li M. Yang L. Yang Y. Zhao J. Cheng L. Zhou Q. Shang J. Lipid modulating anti-oxidant stress activity of gastrodin on nonalcoholic fatty liver disease larval zebrafish model. Int. J. Mol. Sci. 2019 20 8 1984 10.3390/ijms20081984 31018538
    [Google Scholar]
  6. Xiao G. Tang R. Yang N. Chen Y. Review on pharmacological effects of gastrodin. Arch. Pharm. Res. 2023 46 9-10 744 770 10.1007/s12272‑023‑01463‑0 37749449
    [Google Scholar]
  7. Cai Z. Huang J. Luo H. Lei X. Yang Z. Mai Y. Liu Z. Role of glucose transporters in the intestinal absorption of gastrodin, a highly water-soluble drug with good oral bioavailability. J. Drug Target. 2013 21 6 574 580 10.3109/1061186X.2013.778263 23480725
    [Google Scholar]
  8. Song Z. Luo G. Han C. Jia G. Zhang B. Potential targets and action mechanism of gastrodin in the treatment of attention-deficit/hyperactivity disorder: Bioinformatics and network pharmacology analysis. Evid. Based Complement. Alternat. Med. 2022 2022 1 12 10.1155/2022/3607053 36133787
    [Google Scholar]
  9. Yu S.J. Kim J.R. Lee C.K. Han J.E. Lee J.H. Kim H.S. Hong J.H. Kang S.G. Gastrodia elata blume and an active component, p-hydroxybenzyl alcohol reduce focal ischemic brain injury through antioxidant related gene expressions. Biol. Pharm. Bull. 2005 28 6 1016 1020 10.1248/bpb.28.1016 15930737
    [Google Scholar]
  10. Wu S. Huang R. Zhang R. Xiao C. Wang L. Luo M. Song N. Zhang J. Yang F. Liu X. Yang W. Gastrodin and Gastrodigenin improve energy metabolism disorders and mitochondrial dysfunction to antagonize vascular dementia. Molecules 2023 28 6 2598 10.3390/molecules28062598 36985572
    [Google Scholar]
  11. Liu Y.M. Wu A.D. Chen Y. Ma T.F. Dong B.Z. She Z.G. Yi M.L. Mao W.M. Gastrodin inhibits prostate cancer proliferation by targeting canonical Wnt/β-catenin signaling pathway. Med. Oncol. 2023 41 1 32 10.1007/s12032‑023‑02254‑9 38150063
    [Google Scholar]
  12. Hu Y. Li M. Chen X. Huang C. Cao H. Wang G. Du X. Gastrodin ameliorates the inflammation, oxidative stress, and extracellular matrix degradation of il-1β-mediated fibroblast-like synoviocytes via suppressing the Gremlin-1/NF-κB pathway. Discov. Med. 2024 36 186 1441 1452 10.24976/Discov.Med.202436186.134 39054715
    [Google Scholar]
  13. Harrington J.S. Ryter S.W. Plataki M. Price D.R. Choi A.M.K. Mitochondria in health, disease, and aging. Physiol. Rev. 2023 103 4 2349 2422 10.1152/physrev.00058.2021 37021870
    [Google Scholar]
  14. Flores-Romero H. Dadsena S. García-Sáez A.J. Mitochondrial pores at the crossroad between cell death and inflammatory signaling. Mol. Cell 2023 83 6 843 856 10.1016/j.molcel.2023.02.021 36931255
    [Google Scholar]
  15. Ge P. Dawson V.L. Dawson T.M. PINK1 and Parkin mitochondrial quality control: A source of regional vulnerability in Parkinson’s disease. Mol. Neurodegener. 2020 15 1 20 10.1186/s13024‑020‑00367‑7 32169097
    [Google Scholar]
  16. Sun W. Miao B. Wang X.C. Duan J.H. Ye X. Han W.J. Wang W.T. Luo C. Hu S.J. Gastrodin inhibits allodynia and hyperalgesia in painful diabetic neuropathy rats by decreasing excitability of nociceptive primary sensory neurons. PLoS One 2012 7 6 e39647 10.1371/journal.pone.0039647 22761855
    [Google Scholar]
  17. Feldman E.L. Callaghan B.C. Pop-Busui R. Zochodne D.W. Wright D.E. Bennett D.L. Bril V. Russell J.W. Viswanathan V. Diabetic neuropathy. Nat. Rev. Dis. Primers 2019 5 1 41 10.1038/s41572‑019‑0092‑1 31197183
    [Google Scholar]
  18. Eid S.A. Rumora A.E. Beirowski B. Bennett D.L. Hur J. Savelieff M.G. Feldman E.L. New perspectives in diabetic neuropathy. Neuron 2023 111 17 2623 2641 10.1016/j.neuron.2023.05.003 37263266
    [Google Scholar]
  19. Schlossmacher M.G. Frosch M.P. Gai W.P. Medina M. Sharma N. Forno L. Ochiishi T. Shimura H. Sharon R. Hattori N. Langston J.W. Mizuno Y. Hyman B.T. Selkoe D.J. Kosik K.S. Parkin localizes to the Lewy bodies of Parkinson disease and dementia with lewy bodies. Am. J. Pathol. 2002 160 5 1655 1667 10.1016/S0002‑9440(10)61113‑3 12000718
    [Google Scholar]
  20. Chen Y. Yang H. Wang D. Chen T. Qi X. Tao L. Chen Y. Shen X. Gastrodin alleviates mitochondrial dysfunction by regulating SIRT3-mediated TFAM acetylation in vascular dementia. Phytomedicine 2024 128 155369 10.1016/j.phymed.2024.155369 38547618
    [Google Scholar]
  21. Jia F. Fellner A. Kumar K.R. Monogenic Parkinson’s disease: Genotype, phenotype, pathophysiology, and genetic testing. Genes 2022 13 3 471 10.3390/genes13030471 35328025
    [Google Scholar]
  22. Kawahara K. Hashimoto M. Bar-On P. Ho G.J. Crews L. Mizuno H. Rockenstein E. Imam S.Z. Masliah E. Alpha-Synuclein aggregates interfere with Parkin solubility and distribution: Role in the pathogenesis of Parkinson disease. J. Biol. Chem. 2008 283 11 6979 6987 10.1074/jbc.M710418200 18195004
    [Google Scholar]
  23. Imam S.Z. Zhou Q. Yamamoto A. Valente A.J. Ali S.F. Bains M. Roberts J.L. Kahle P.J. Clark R.A. Li S. Novel regulation of parkin function through c-Abl-mediated tyrosine phosphorylation: Implications for Parkinson’s disease. J. Neurosci. 2011 31 1 157 163 10.1523/JNEUROSCI.1833‑10.2011 21209200
    [Google Scholar]
  24. Brahmachari S. Karuppagounder S.S. Ge P. Lee S. Dawson V.L. Dawson T.M. Ko H.S. c-Abl and Parkinson’s Disease: Mechanisms and therapeutic potential. J. Parkinsons Dis. 2017 7 4 589 601 10.3233/JPD‑171191 29103051
    [Google Scholar]
  25. Misgeld T. Schwarz T.L. Mitostasis in neurons: Maintaining mitochondria in an extended cellular architecture. Neuron 2017 96 3 651 666 10.1016/j.neuron.2017.09.055 29096078
    [Google Scholar]
  26. Trist B.G. Hare D.J. Double K.L. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell 2019 18 6 e13031 10.1111/acel.13031 31432604
    [Google Scholar]
  27. Jiang N. Bo H. Song C. Guo J. Zhao F. Feng H. Ding H. Ji L. Zhang Y. Increased vulnerability with aging to MPTP: The mechanisms underlying mitochondrial dynamics. Neurol. Res. 2014 36 8 722 732 10.1179/1743132813Y.0000000296 24620958
    [Google Scholar]
  28. Jiang G. Hu Y. Liu L. Cai J. Peng C. Li Q. Gastrodin protects against MPP+-induced oxidative stress by up regulates heme oxygenase-1 expression through p38 MAPK/Nrf2 pathway in human dopaminergic cells. Neurochem. Int. 2014 75 79 88 10.1016/j.neuint.2014.06.003 24932697
    [Google Scholar]
  29. Kumar H. Kim I.S. More S.V. Kim B.W. Bahk Y.Y. Choi D.K. Gastrodin protects apoptotic dopaminergic neurons in a toxin-induced Parkinson’s disease model. Evid. Based Complement. Alternat. Med. 2013 2013 1 13 10.1155/2013/514095 23533492
    [Google Scholar]
  30. Gan Q. Peng M. Wei H. Chen L. Chen X. Li Z. An G. Ma Y. Gastrodia elata polysaccharide alleviates Parkinson’s disease via inhibiting apoptotic and inflammatory signaling pathways and modulating the gut microbiota. Food Funct. 2024 15 6 2920 2938 10.1039/D3FO05169B 38385354
    [Google Scholar]
  31. Zhao M. Zhou Y. Sheng R. Zhang H. Xiang J. Wang J. Li P. Ma T. Liu P. Chen Q. Wen W. Xu S. Gastrodin relieves Parkinson’s disease-related motor deficits by facilitating the MEK-dependent VMAT2 to maintain dopamine homeostasis. Phytomedicine 2024 132 155819 10.1016/j.phymed.2024.155819 38885579
    [Google Scholar]
  32. Tipton K.F. Singer T.P. The radiochemical assay for monoamine oxidase activity. Biochem. Pharmacol. 1993 46 8 1311 1316 10.1016/0006‑2952(93)90093‑C 8240379
    [Google Scholar]
  33. Ascherio A. Schwarzschild M.A. The epidemiology of Parkinson’s disease: Risk factors and prevention. Lancet Neurol. 2016 15 12 1257 1272 10.1016/S1474‑4422(16)30230‑7 27751556
    [Google Scholar]
  34. Reddy P.H. Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer’s disease. Exp. Neurol. 2009 218 2 286 292 10.1016/j.expneurol.2009.03.042 19358844
    [Google Scholar]
  35. Zhu X. Perry G. Smith M.A. Wang X. Abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease. J. Alzheimers Dis. 2012 33 s1 S253 S262 10.3233/JAD‑2012‑129005 22531428
    [Google Scholar]
  36. Cai Q. Tammineni P. Alterations in mitochondrial quality control in Alzheimer’s disease. Front. Cell. Neurosci. 2016 10 24 10.3389/fncel.2016.00024 26903809
    [Google Scholar]
  37. Kerr J.S. Adriaanse B.A. Greig N.H. Mattson M.P. Cader M.Z. Bohr V.A. Fang E.F. Mitophagy and Alzheimer’s disease: Cellular and molecular mechanisms. Trends Neurosci. 2017 40 3 151 166 10.1016/j.tins.2017.01.002 28190529
    [Google Scholar]
  38. Reddy P.H. Oliver D.M.A. Amyloid beta and phosphorylated tau-induced defective autophagy and mitophagy in Alzheimer’s disease. Cells 2019 8 5 488 10.3390/cells8050488 31121890
    [Google Scholar]
  39. Yao J. Irwin R.W. Zhao L. Nilsen J. Hamilton R.T. Brinton R.D. Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2009 106 34 14670 14675 10.1073/pnas.0903563106 19667196
    [Google Scholar]
  40. Mao P. Manczak M. Calkins M.J. Truong Q. Reddy T.P. Reddy A.P. Shirendeb U. Lo H.H. Rabinovitch P.S. Reddy P.H. Mitochondria-targeted catalase reduces abnormal APP processing, amyloid production and BACE1 in a mouse model of Alzheimer’s disease: Implications for neuroprotection and lifespan extension. Hum. Mol. Genet. 2012 21 13 2973 2990 10.1093/hmg/dds128 22492996
    [Google Scholar]
  41. Fang E.F. Hou Y. Palikaras K. Adriaanse B.A. Kerr J.S. Yang B. Lautrup S. Hasan-Olive M.M. Caponio D. Dan X. Rocktäschel P. Croteau D.L. Akbari M. Greig N.H. Fladby T. Nilsen H. Cader M.Z. Mattson M.P. Tavernarakis N. Bohr V.A. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat. Neurosci. 2019 22 3 401 412 10.1038/s41593‑018‑0332‑9 30742114
    [Google Scholar]
  42. Sheng Z.H. Cai Q. Mitochondrial transport in neurons: Impact on synaptic homeostasis and neurodegeneration. Nat. Rev. Neurosci. 2012 13 2 77 93 10.1038/nrn3156 22218207
    [Google Scholar]
  43. Mishra M. Huang J. Lee Y.Y. Chua D.S.K. Lin X. Hu J.M. Heese K. Gastrodia elata modulates amyloid precursor protein cleavage and cognitive functions in mice. Biosci. Trends 2011 5 3 129 138 10.5582/bst.2011.v5.3.129 21788698
    [Google Scholar]
  44. Wang Y. Zhao M. Xie C. Li L. Lin L. Li Q. Li L. Chen F. Yang X. Yang J. Gao M. Fermented Gastrodia elata Bl. alleviates cognitive deficits by regulating neurotransmitters and gut microbiota in D-Gal/AlCl3-Induced Alzheimer’s disease-like mice. Foods 2024 13 13 2154 10.3390/foods13132154 38998659
    [Google Scholar]
  45. Wang W. Wang Y. Wang F. Xie G. Liu S. Li Z. Wang P. Liu J. Lin L. Gastrodin regulates the TLR4/TRAF6/NF-κB pathway to reduce neuroinflammation and microglial activation in an AD model. Phytomedicine 2024 128 155518 10.1016/j.phymed.2024.155518 38552431
    [Google Scholar]
  46. Fasina O.B. Wang J. Mo J. Osada H. Ohno H. Pan W. Xiang L. Qi J. Gastrodin from Gastrodia elata enhances cognitive function and neuroprotection of AD mice via the regulation of gut microbiota composition and inhibition of neuron inflammation. Front. Pharmacol. 2022 13 814271 10.3389/fphar.2022.814271 35721206
    [Google Scholar]
  47. Li M. Qian S. Gastrodin protects neural progenitor cells against Amyloid β (1–42)-Induced neurotoxicity and improves hippocampal neurogenesis in Amyloid β (1–42)-Injected mice. J. Mol. Neurosci. 2016 60 1 21 32 10.1007/s12031‑016‑0758‑z 27112440
    [Google Scholar]
  48. Pilotto F. Chellapandi D.M. Puccio H. Omaveloxolone: A groundbreaking milestone as the first FDA-approved drug for Friedreich ataxia. Trends Mol. Med. 2024 30 2 117 125 10.1016/j.molmed.2023.12.002 38272714
    [Google Scholar]
  49. Chowanadisai W. Bauerly K.A. Tchaparian E. Wong A. Cortopassi G.A. Rucker R.B. Pyrroloquinoline quinone stimulates mitochondrial biogenesis through cAMP response element-binding protein phosphorylation and increased PGC-1alpha expression. J. Biol. Chem. 2010 285 1 142 152 10.1074/jbc.M109.030130 19861415
    [Google Scholar]
  50. Devasani K. Kaul R. Majumdar A. Issueation of pyrroloquinoline quinone with atorvastatin augments mitochondrial biogenesis and attenuates low grade inflammation in obese rats. Eur. J. Pharmacol. 2020 881 173273 10.1016/j.ejphar.2020.173273 32535101
    [Google Scholar]
  51. Li S. Yang Q. Zhou Z. Yang X. Liu Y. Hao K. Fu M. Gastrodin protects retinal ganglion cells from ischemic injury by activating phosphatidylinositol 3-kinase/protein kinase B/nuclear factor erythroid 2-related factor 2 (PI3K/AKT/Nrf2) signaling pathway. Bioengineered 2022 13 5 12625 12636 10.1080/21655979.2022.2076499 35609324
    [Google Scholar]
  52. Sills G.J. Rogawski M.A. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology 2020 168 107966 10.1016/j.neuropharm.2020.107966 32120063
    [Google Scholar]
  53. Garcia-Elias A. Benito B. Ion channel disorders and sudden cardiac death. Int. J. Mol. Sci. 2018 19 3 692 10.3390/ijms19030692 29495624
    [Google Scholar]
  54. Hull J.M. Isom L.L. Voltage-gated sodium channel β subunits: The power outside the pore in brain development and disease. Neuropharmacology 2018 132 43 57 10.1016/j.neuropharm.2017.09.018 28927993
    [Google Scholar]
  55. Catterall W.A. Forty years of sodium channels: Structure, function, pharmacology, and Epilepsy. Neurochem. Res. 2017 42 9 2495 2504 10.1007/s11064‑017‑2314‑9 28589518
    [Google Scholar]
  56. Bissay V. Van Malderen S.C.H. Keymolen K. Lissens W. Peeters U. Daneels D. Jansen A.C. Pappaert G. Brugada P. De Keyser J. Van Dooren S. SCN4A variants and Brugada syndrome: Phenotypic and genotypic overlap between cardiac and skeletal muscle sodium channelopathies. Eur. J. Hum. Genet. 2016 24 3 400 407 10.1038/ejhg.2015.125 26036855
    [Google Scholar]
  57. Cummins T.R. Howe J.R. Waxman S.G. Slow closed-state inactivation: A novel mechanism underlying ramp currents in cells expressing the hNE/PN1 sodium channel. J. Neurosci. 1998 18 23 9607 9619 10.1523/JNEUROSCI.18‑23‑09607.1998 9822722
    [Google Scholar]
  58. Drenth J.P.H. Waxman S.G. Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders. J. Clin. Invest. 2007 117 12 3603 3609 10.1172/JCI33297 18060017
    [Google Scholar]
  59. Wang X. Zhang B. Li X. Liu X. Wang S. Xie Y. Pi J. Yang Z. Li J. Jia Q. Zhang Y. Mechanisms underlying gastrodin alleviating Vincristine-Induced peripheral neuropathic pain. Front. Pharmacol. 2021 12 744663 10.3389/fphar.2021.744663 34975470
    [Google Scholar]
  60. Persson A.K. Hoeijmakers J.G.J. Estacion M. Black J.A. Waxman S.G. Sodium channels, mitochondria, and axonal degeneration in peripheral neuropathy. Trends Mol. Med. 2016 22 5 377 390 10.1016/j.molmed.2016.03.008 27085813
    [Google Scholar]
  61. Wemmie J.A. Taugher R.J. Kreple C.J. Acid-sensing ion channels in pain and disease. Nat. Rev. Neurosci. 2013 14 7 461 471 10.1038/nrn3529 23783197
    [Google Scholar]
  62. López-Ramírez O. González-Garrido A. The role of acid sensing ion channels in the cardiovascular function. Front. Physiol. 2023 14 1194948 10.3389/fphys.2023.1194948 37389121
    [Google Scholar]
  63. Qiu F. Liu T.T. Qu Z.W. Qiu C.Y. Yang Z. Hu W.P. Gastrodin inhibits the activity of acid-sensing ion channels in rat primary sensory neurons. Eur. J. Pharmacol. 2014 731 50 57 10.1016/j.ejphar.2014.02.044 24642360
    [Google Scholar]
  64. Xiao M.M. Zhang Y.Q. Wang W.T. Han W.J. Lin Z. Xie R.G. Cao Z. Lu N. Hu S.J. Wu S.X. Dong H. Luo C. Gastrodin protects against chronic inflammatory pain by inhibiting spinal synaptic potentiation. Sci. Rep. 2016 6 1 37251 10.1038/srep37251 27853254
    [Google Scholar]
  65. Ferrari S. Mulè S. Galla R. Brovero A. Genovese G. Molinari C. Uberti F. Effects of nutraceutical compositions containing rhizoma gastrodiae or lipoic acid in an in vitro induced neuropathic pain model. Int. J. Mol. Sci. 2024 25 4 2376 10.3390/ijms25042376 38397054
    [Google Scholar]
  66. Dai Y. Ban W. Yang Z. Gastrodin, a promising natural small molecule for the treatment of central nervous system disorders, and its recent progress in synthesis, pharmacology and pharmacokinetics. Int. J. Mol. Sci. 2024 25 17 9540 10.3390/ijms25179540 39273485
    [Google Scholar]
  67. Jang J.H. Son Y. Kang S.S. Bae C.S. Kim J.C. Kim S.H. Shin T. Moon C. Neuropharmacological potential of Gastrodia elata blume and its components. Evid. Based Complement. Alternat. Med. 2015 2015 1 14 10.1155/2015/309261 26543487
    [Google Scholar]
  68. Xie H. Chen Y. Wu W. Feng X. Du K. Gastrodia elata blume polysaccharides attenuate Vincristine-Evoked neuropathic pain through the inhibition of neuroinflammation. Mediators Inflamm. 2021 2021 1 10 10.1155/2021/9965081 34366713
    [Google Scholar]
  69. Leena M.M. Silvia M.G. Vinitha K. Moses J.A. Anandharamakrishnan C. Synergistic potential of nutraceuticals: Mechanisms and prospects for futuristic medicine. Food Funct. 2020 11 11 9317 9337 10.1039/D0FO02041A 33211054
    [Google Scholar]
  70. Gullo D. Evans J.L. Sortino G. Goldfine I.D. Vigneri R. Insulin autoimmune syndrome (Hirata disease) in European Caucasians taking α‐lipoic acid. Clin. Endocrinol. (Oxf.) 2014 81 2 204 209 10.1111/cen.12334 24111525
    [Google Scholar]
  71. Gao Y. Kamogashira T. Fujimoto C. Iwasaki S. Yamasoba T. Pyrroloquinoline quinone (PQQ) protects mitochondrial function of HEI-OC1 cells under premature senescence. NPJ Aging 2022 8 1 3 10.1038/s41514‑022‑00083‑0 35927260
    [Google Scholar]
  72. Medoro A. Davinelli S. Milella L. Willcox B. Allsopp R. Scapagnini G. Willcox D. Dietary Astaxanthin: A promising antioxidant and anti-inflammatory agent for brain aging and adult neurogenesis. Mar. Drugs 2023 21 12 643 10.3390/md21120643 38132964
    [Google Scholar]
  73. Bai Y.X. Wu H.L. Xie W.L. Li X. Han J.J. Liu J. Chen S.Q. Yin P. Dong N.G. Wu Q.P. Efficacy and safety of gastrodin in preventing postoperative delirium following cardiac surgery: A randomized placebo controlled clinical trial. Crit. Care 2025 29 1 108 10.1186/s13054‑025‑05331‑9 40069830
    [Google Scholar]
  74. Zhou X. Shao J. Xie X. Xu Y. Shao T. Jin Z. Effectiveness of gastrodin for migraine: A meta-analysis. Front. Neurol. 2022 13 939401 10.3389/fneur.2022.939401 36090869
    [Google Scholar]
  75. Zhao Y. Martins-Oliveira M. Akerman S. Goadsby P.J. Comparative effects of traditional Chinese and Western migraine medicines in an animal model of nociceptive trigeminovascular activation. Cephalalgia 2018 38 7 1215 1224 10.1177/0333102417728245 28836816
    [Google Scholar]
  76. Ma C. Zhu C. Zhang Y. Yu M. Song Y. Chong Y. Yang Y. Zhu C. Jiang Y. Wang C. Cheng S. Jia K. Yu G. Li J. Tang Z. Gastrodin alleviates NTG-induced migraine-like pain via inhibiting succinate/HIF-1α/TRPM2 signaling pathway in trigeminal ganglion. Phytomedicine 2024 125 155266 10.1016/j.phymed.2023.155266 38241917
    [Google Scholar]
/content/journals/cn/10.2174/011570159X402568251002112117
Loading
/content/journals/cn/10.2174/011570159X402568251002112117
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test